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A calculation is made of the birefringence induced by spatial dispersion in cubic crystals with a 
many-valley structure of the conduction band in the wavelength range of indirect exciton transi- 
tions. The effect is due to the nonsphericity of the energy spectrum of the conduction band and is 
governed by the anisotropy constants of the phonon spectrum. 

An allowance for the spatial dispersion of the permittiv- 
ity gives rise to an optical anisotropy of cubic crystals.' In 
the case of nongyrotropic semiconductors in their transpar- 
ency range this optical anisotropy is manifested by a birefrin- 
gence. In the case of direct-gap semiconductors the birefrin- 
gence in the region of interband (or exciton) transitions is 
due to a nonsphericity (corrugations) of the energy spec- 
trum of the valence band which is characteristic of cubic 
crystals. The wave functions of the valence band quadruply 
degenerate at the point k = 0 depend on the direction of qua- 
simomentum k, so that interband matrix elements of the 
electron-photon interaction operator (considered for a fixed 
value of k )  exhibit a polarization dependence. When there is 
in the momentum space a preferred direction selected by the 
wave vector of light q, the dependence of the matrix elements 
on the direction of polarization of light gives rise to an an- 
isotropy of the permittivity t e n ~ o r . ~  

In the case of some cubic semiconductors the lower 
minimum of the conduction band is not located at the center 
of the Brillouin zone but on [ 1001 or [ 11 1 1 axes. The funda- 
mental absorption edge of such semiconductors corresponds 
to indirect exciton transitions. The many-valley structure of 
the conduction band gives rise to a polarization dependence 
of the corresponding matrix elements. Therefore, we can ex- 
pect the nonsphericity of the conduction band to be also a 
cause of optical anisotropy. 

We shall calculate the birefringence of cubic crystals 
with a many-valley structure of the conduction band in the 
vicinity of the ground state of indirect excitons. 

According to the phenomenological analysis in Ref. 1, a 
birefringence occurs in particular when light propagates 
along the [ 1101 crystallographic direction. The magnitude 
of the effect is then given by the expression 

The initial, intermediate, and final states in Eqs. (2) 
and (3)  are described by wave functions of the type Iphoton; 
exciton; phonon). For the sake of simplicity, we shall first 
assume that the temperature is T = 0 and that only sponta- 
neous creation of phonons occurs; all the necessary phonon 
factors will be given in the final expressions. Then, in the 
ground state 10) there is a photon with a momentum q and a 
polarization e, i.e., 10) = Iq, e; 0; 0); in the intermediate 
state Iu) there is a direct exciton with a momentum k and an 
energy E, =ED (k) ,  i.e., Iv )  = (0; k, 8; 0). The final state 
If) corresponds to an indirect exciton with a quasimomen- 
tum K, and an energy EXK, ) , and a phonon of the a branch 
with a momentum x, and an energy fiRx,, i.e., If) = 10; K, , 
a, s; x, ,0) (the index s labels the conduction band valleys). 

In the relationship (3), the quantity j is the current 
operator and He, is the Hamiltonian of the electron-phonon 
interaction. Out of all the possible virtual states Ju), we shall 
consider only those which correspond to the minimum value 
of the energy denominator in Eq. (3), i.e., we shall consider 
transition from the upper valence band to the nearest con- 
duction band. The quasimomenta of an indirect exciton K, 
and of a phonon x, will be measured from the point K,, 
which is at the bottom of the valley corresponding to the 
absolute minimum of the conduction band. 

In the case of sufficiently weak Coulomb interaction the 
matrix elements of Eq. (3)  can be regarded as independent 
of the small momenta K, and x, (Ref. 3).  In fact, if the 
Coulomb interaction is weak, the exciton states originate 
from the hole and electron states near the extrema of the 
corresponding energy band and the phonons participating in 
the interaction with excitons correspond to a limited region 
of the Brillouin zone near the point K, . The energy denomi- 
nator E, - E, on the right-hand side of Eq. (3)  may be 

2noAn=A& (o ,  4) =E,,(o, q) - E ~ ( o ,  4) (I), (1)  replaced by a constant if the virtual state is not too close 
(compared with the exciton binding energy) to the final 

where cii are the components of the permittivity tensor in a state. Then, the intermediate states correspond to free elec- 
system of [ 1001 fourfold axes. 

tron-hole pairs. The wave functions describing the virtual 
The permittivity tensor is given by1 

state are products of the basis wave functions of the valence 
(0)  (0 1 M'(q> 1 f) (f 1 MJ(-4) 10) and conduction bands: 

ecj(o, q) =el, (a) -- 0 2 V  , , 
(2) 

10, p>=I0, u)(O, c), 
(4) 

where V is the volume of a crystal and c r '  (a) is the back- IK,,,, p>=IKo,,  v )  IKo,, c). 

ground permittivity dependent smoothly on the frequency of 
light o. The matrix element for indirect transitions is given The matrix elements of Eq. (3)  differ from zero for 

by3 
K, + x, - q = 0 and are proportional to the probability of 
finding an electron and a hole at the same point in space.3 

(Ole'qrj ' Iv)(vIHOllf) 
( o I M ' ( ~ )  ~f)=z if-Eu (3) The wave function of an indirect exciton for re = r,  and 

Ks = 0 is a product of an envelope function Fa (O), describ- 
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ing the relative motion of an electron and a hole, and of 
Bloch functions which correspond to the valence and con- 
duction bands, modulate the envelope function, and are tak- 
en at the critical points k, = 0 and ke = KO, (Ref. 4). 
Therefore, a matrix element described by Eq. (3) can be 
represented approximately by 

The quantities AE, and AE, are given by the expressions 

AE,=E,(O) -E, (KO,), AE,=E,(O) -En(%.). (6)  

An explicit calculation of the quantities in Eq. (5) re- 
quires knowledge of the specific electron-phonon interac- 
tion Hamiltonian He,. Following Refs. 5 and 6, we shall con- 
fine ourselves to symmetry considerations, which allow us to 
reduce the matrix elements to a certain number of constants 
and also to determine the dependence of each matrix element 
on the quantities GS, e, and a. 

We shall assume that the conduction band minima are 
located in the momentum space along the [I001 axes. A 
typical example is Si. The fundamental absorption of Si cor- 
responds to indirect exciton transitions between the top of 
the valence band (or r;, without allowance for the 
spin) and six A minima of the conduction band.' Transitions 
assisted by all kinds of phonons are allowed.' We shall con- 
sider the strongest transition assisted by a transverse optical 
phonon. Symmetry properties of an indirect exciton are gov- 
erned by the group C,, . In view of the anisotropy of the 
conduction band, the lowest exciton state is split at K ,  = 0 
into two quadruply degenerate levels, one of which corre- 
spond to light holes and the other to heavy holes. The basis 
wave functions of the ground state are 

la, s)=ly, q; s)=Y,"q,q. (7 )  

The functions *",re the basis wave functions of holes 
in the I J, m, ), representation (the valley index s = x ,  y, z 
labels the quantization axis); the spatial part of the electron 
wave function p, transforms in accordance with the A, rep- 
resentation of the C,, group; 77 = {aeBe) represents spin 
functions. Selecting the quantization axis along thez axis, we 
find that5 

Y," 13/2, 3/2)r=2-"' (yz+ ixz) ah, 

yZz= 1312, i/2)z=6-i'2[2xya,,- (yz+ixz) @h], 
(8) 

The functions \y with the upper indices x and y can be ob- 
tained from the system (8)  by cyclic transposition of x ,  y, 
and z. The number of nonzero linearly independent compo- 
nents of the matrix element is (see, for example, Ref. 4) 

NO = $ z Xu. (g)xv(g)xx(g). 
A' 

wherex, ,x, andx, are the characters of the corresponding 

representations; h is the order of the group; the summation 
in Eq. (9)  is carried out over all the elements of the groupg. 
It should be noted that the electron-photon interaction oper- 
ator j transforms in accordance with the representation r,,, 
whereas the wave functions of the virtual state I kos , p )trans- 
form in accordance with A,; the representation correspond- 
ing to the state 10, P )  is reducible: 

It is easily shown that in the dipole approximation for the 
matrix elements (Ov 108 ) and (Ov I&, J3 ), we obtain 
No = 1 for the virtual states r,, and A,, whereas No = 0 
applies to the other states. Bearing in mind that the operator 
He, for the TO phonons transforms in accordance with the 
representation A,, we find that the matrix elements (0, 
c 1 He, I &,, c) and (0, v 1 He, I K, , v) also have one nonzero 
independent component each. Therefore, the matrix ele- 
ment (01M. (0) lf) reduces to two quantities: WT (for the 
virtual state r,,) and QT (for A,): 

Here, f and g are the numerical functions, and the index a 
represents the transverse phonon polarization. 

When the contributions of all the nonresonant terms 
are included in the background permittivity, the tensor E in 
the vicinity of the ground state of an indirect exciton is final- 
ly obtained in the form 

where the symbol P in front of the sum indicates that the 
summation over the quasimomentum K, applies to the prin- 
cipal value; 

v.0 

The numerical functions f andg are calculated in accordance 
with Eqs. (5)  and ( 1 1 ) allowing for the definitions (7)  and 
(8).  If i#j, all the quantities D vanish. The values of D are 
listed in Table I for the case when i = j. We recall that the 
index i represents the direction of polarization of light e: if 
i = x,  y, z, we have, respectively, e [ 1001, [OlO], [001] 

If q<Gs, the phonon energy fiRqs - , can be expanded 
as a series in the vicinity of the point Gs. For example, in the 
case of the zth valley, we have 

hQK,-,=hQK,fAnqfB,,qZ2fBI (q:+q;) , (14) 

where n = {0, 0, 1) is a unit vector in the direction of kz. 
We shall consider only the case of parabolic dispersion 

of the exciton energy band and assume that 

E,' (K,) =E,-RT+ (fiZK,Z/2Mll+AZK~V2M~), (15) 

where M ,, , K, and M, , K, are the longitudinal and trans- 
verse values of the mass and phonon momentum. We shall 
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13i2?, 3 / 2 >  0 W T Z  W1.2 0 0 
1312, - 3 / 2 )  0 WT' WT2 0 0 
I ' /e ,  '12) 213R~Z '/3WT2 '/3WT2 2/3RTZ '/3RT2 
l"2, p'/2> ' /~RT' '/3WT2 '13WT2 2/3RTZ 2/3RT2 

Note: The followinn notation is used in the above table: 

also ignore the splitting A of the ground state of an indirect 
exciton (A-0.3 meV is quoted in Ref. 9 for Si) and bear in 
mind that in experimental studies of the transmission of light 
the energy deficit is SsA. 

Then, substituting the values from Table I and the ex- 
pansion ( 14) in Eqs. ( 12) and ( I) ,  and also writing down 
explicitly the phonon factors, we find that the summation 
over the quasimomentum K, and over the valleys s gives the 
following expression in the first nonvanishing approxima- 
tion in respect of the wave vector: 

2"Ml,'"nfLy2 
A E  (a ,  q) =- 

AZa2 

Here the functions n, (KO) are the phonon occupation 
numbers, 

The formula ( 16) is valid at frequencies w such that 

G,>hQK,qlKa. (19) 

Similar calculations can be carried out also in the case 
of Ge. We shall confine ourselves to a listing of the main 
differences from the preceding case and give the final results. 
The minima of the conduction band of Ge are located in the 
momentum space at the point L at the edge of the Brillouin 
zone. The basis wave functions of the exciton states trans- 
form in accordance with representations of the group D 3d 

and represent a superposition of states described by Eq. (7). 
Since the bottom of a valley corresponds to the edge of the 
Brillouin zone, the constant A in the expression for the 
phonon energy ( 14) vanishes. 

According to the experimental data,5 the element Ge is 
characterized by AE., ,hE, and, consequently, the transi- 
tions assisted by phonons in the valence band can be ignored. 
When phonons are scattered by electrons, both longitudinal 
acoustic and transverse optical phonons take part.' We shall 
consider only the LA phonon because it is stronger. The cor- 
responding operator of the electron-phonon interaction He, 
transforms in accordance with the L ; representation.8 Con- 
sequently, the value of A& is given by the following expres- 
sion valid at optical frequencies governed by the inequality 
(19): 

where 

It follows from Eqs. ( 16) and (20) that the birefringence of 
cubic crystals in the region of indirect exciton transitions is 
due to the anisotropy of the matrix element and of the 
phonon spectrum. The polarization dependence of the ma- 
trix elements is a consequence of the many-valley structure 
of the conduction band. Therefore, the nonsphericity of the 
conduction band at the point k = 0 is the cause of the optical 
anisotropy of cubic crystals. Since the phonon constants A 
and B are of the order of the ratios filRKo and filRko/Kg 
respectively, the birefringence is governed not only by the 
spatial dispersion parameter but also by the ratio of 
the phonon energy haKo to the deficit S, . In the region of 
indirect exciton transitions is quite realistic to expect a small 
energy deficit when the ratio fiRK0/6, becomes of the order 
of unity or larger. Since in the optical part of the spectrum we 
have (aq)2-10-h, it follows that the birefringence is 
A ~ ( w , ~ ) / n 2  - 10-6-10-5. According to Eqs. ( 16) and 
(20), the effect rises resonantly on approach to an exciton 
absorption line. 
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