
Two-dimensional superfluid Fermi liquid with p-pairing 
S. E. Korshunov 

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR 
(Submitted 19 December 1984) 
Zh. Eksp. Teor. Fiz. 89,531-539 (August 1985) 

The axial and planar phases of the two-dimensional superfluid Fermi liquid are discussed. The 
difference between the free energies of these phases is calculated with corrections for strong 
coupling at arbitrary temperature. The sign of this difference turns out to be temperature-inde- 
pendent in this approximation. Phase transitions occurring in the axial and planar phases as the 
temperature is increased, and the structure of ordered states, are investigated. Ordering is exam- 
ined with allowance for the spin-orbit interaction. A schematic phase diagram is constructed. 

1. INTRODUCTION 

In weak solutions of 3He in 4He at low temperatures, 
practically all the 'He is absorbed on the free surface, form- 
ing a submonomolecular 1a~er . l .~  Since the concentration 
can be varied between wide limits and the substrate (4He) 
uniformity is perfect, this layer is an attractive object for the 
investigation of the properties of the two-dimensional Fermi 
liquid. Theoretical estimates show that the submonomolecu- 
lar layer of 3He on 4He can undergo a transition to the super- 
fluid state either by singlet pairing (in the case of a thin 4He 
film3) or by triplet pairing.4 The properties of the superfluid 
Fermi liquid with s-pairing are, in many ways, analogous to 
those of the superfluid Bose-liquid, whereasp-pairing leads 
to a whole series of new and interesting properties.5 The 
shape of the phase diagram and the structure of the ordered 
states in the case of the two-dimensional Fermi liquid withp- 
pairing have not, however, been adequately investigated. 

In the BCS approximation, the minimum of the free 
energy of the two-dimensional superfluid Fermi liquid with 
p-pairing is attained for two different phases simultaneously 

particles but, in this particular approximation, it is indepen- 
dent of temperature. Since, in the BCS approximation, the 
free energies of the a- and b-phases are equal, the inclusion of 
the corrections evaluated below becomes important for the 
shape of the phase diagram even in the case of parameter 
values that are satisfactory in the BCS approximation. 

We shall also examine the sequences of phase transi- 
tions that occur in the a- and b-phases as the temperature is 
raised. In the case of thea-phase, the transition to the normal 
state occurs through three successive phase transitions, 
whereas in the case of the b-phase, there are two such transi- 
tions. The phase transitions in the a-phase were investigated 
by Stein and C r o ~ s , ~  who confined their attention to the orbi- 
tal part of the order parameter. 

We emphasize that, when we speak of the superfluid 
(ordered) state, or of symmetry breaking, we follow Bere- 
zinskiilo and have in mind the gradual reduction in correla- 
tion, and not the long-range order which is not possible in 
two-dimensional, continuously degenerate systems at finite 
temperature. ".12 

A - - 
(the axial and the planar phases) .697 Following Brusov and 

2. STRONG COUPLING CORRECTIONS TO THE FREE 
Popov,' we shall denote them by lower-case Latin letters ENERGY 
(respectively, a and b) in order to avoid confusion with the 
three-dimensional case. The relative stability of the a and b The order parameter for the two-dimensional super- 

phases has not been investigated with more accurate (as fluid Fermi liquid with p-pairing is a complex matrix Apj 

compared with the BCS approximation) allowance for the with three columns (subscript p, spin space) and two rows 
interaction. The belief that the a-phase is stable6 is based on a (~ubscriptj? orbital space). For the a-phase, we have 

direct transfer of the Ginzburg-Landau expansion coeffi- 
cients (calculated in the paramagnon approximation) from 
the three-dimensional to the two-dimensional case. This ap- 
proach cannot be regarded as valid because the Ginzburg- 
Landau expansion coefficients are expressed in terms of inte- 
grals of the quasiparticle scattering amplitude and are 
known to be different in the three- and two-dimensional 
cases. 

In this paper, we use the results reported by Rainer and 
Serene8 to calculate the difference A@,-, between the free 
energies of the a- and b-phases in the higher-order (as com- 
pared with BCS approximation in the ratio of the transition 
temperature Tc to the Fermi energy E,. In the two-dimen- 
sional case, the difference A@, - , can be calculated not only 
near Tc but at arbitrary temperature. The sign of the differ- 
ence depends on the type of interaction between the quasi- 

where dp is a unit vector in spin (three-dimensional) space 
and A; and Aj" are mutually perpendicular unit vectors in 
orbital (two-dimensional) space. The vector 1 = [A'A" ] can 
only be parallel or antiparallel to the normal v to the surface. 
The position of the vectors A; and Aj" is conveniently para- 
metrized in terms of the phase q, by expressing the combina- 
tion A; + iAj" in term of some fixed unit vectors A,!') and 
Aj2) in orbital space: 

w h e r e I = l . v =  f 1. 
The b-phase order parameter is 

APj=A (dr '  A!' )+~Y)  A,"') el", 
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where d jl) and d F) are mutually perpendicular unit vectors 
in spin space and A:') and A,!') are fixed unit vectors in orbi- 
tal space. 

In contrast to the three-dimensional case, the gap in the 
spectrum is isotropic (independent of the direction of k )  in 
both phases under consideration. The corresponding normal 
Green functions 

are therefore the same for both phases provided the gap Wis 
the same (we consider that the Green functions have the 
same form as in the BCS approximation; this is sufficient for 
the evaluation of the corrections in which we are interest- 
ed'). The anomalous Green functions 

then differ only by the form of the matrix A,, in the numera- 
tor. In the BCS approximation, the free energy at an arbi- 
trary temperature is the same for both phases. 

Rainer and Serene8 have investigated the corrections to 
the BCS approximation in the next (third) order of small 
quantities in T, / E ~  (the BCS approximation itself yields the 
free energy in the second-order approximation in this ratio). 
They have shown that, to evaluate these corrections, it is 
sufficient to consider diagrams consisting of two vertex func- 
tions joined by four lines (of the form shown in Fig. 1 ). One 
can then assume that the Green functions have the same 
form as in the BCS approximation, and take the vertex func- 
tions as for the normal Fermi liquid, neglecting their depen- 
dence on the frequencies and absolute magnitudes (but not 
directions) of the momenta. This argument is also valid for 
the two-dimensional Fermi liquid. 

If we wish to compare the free energies of the a- and b- 
phases, it is obvious that diagrams that do not contain the 
anomalous Green functions will yield the same contribution 
(because the normal Green functions are identical). Dia- 
grams containing two anomalous Green functions each, will 
provide a contribution proportional to A,,A 2, which is also 
the same for the two phases. 

The differences between the free energies of the a- and 
6-phases in this approximation are thus seen to be deter- 
mined exclusively by the diagram with four anomalous 
Green functions (Fig. 1). It corresponds to the following 
contribution to the free energy:' 

FIG. 1. 

x (I'~&s ( k ~ ,  I iz ;  k37 kl f kr - kg) 

XPa? (klon,) Pap (kzfin,) Fvv ( k w n , )  

X Fc5p (kl f kz - k37 wn, $- U)n, - on,) 

x r?:,, (kl, k2; k3, kl 4- kr -- k3)). ( 5 )  

Here and henceforth, the factor k, is included in the defini- 
tion of the temperature T. 

Substituting the anomalous Green functions (4)  in (5 )  
for the a- and 6-phases, summing over the spin indices, and 
integrating by parts with respect to the momenta, we find 
that, in the leading order in T, / E ~ ,  the difference between 
the free energies is 

. ADa-,=-yF(A, T)S% Ism+/ [T.'(,. k2; k, .  kl) 

- , ,> 

- ~ ~ ~ ' ( k , ,  -k,;  kz, -kz) I .  (6)  

where 

y- N(O)E, 3, T, is antisymmetric in spin indices and repre- 
sents the dimensionless amplitude for the scattering of quasi- 
particles with pomenta on the Fermi surface, and $ is the 
angle between k, and k,. 

The sign of the expression in (6)  depends on T, . When 
scattering in the "hole-particle" channel predominates, the 
a-phase is the more stable, whereas the 6-phase is the more 
stable in the "particle-particle" channel. In the three-dimen- 
sional case, the shape of the phase diagram and the thermo- 
dynamic parameters indicate that scattering in the particle- 
hole channel is the more important. However, there is no 
reason to suppose that, for all concentrations, the interac- 
tion of quasiparticles in the submonomolecular 3He layer 
has the same qualitative characteristics as in the three-di- 
mensional 3He. Hence, a change in the concentration (and, 
correspondingly, in the scattering amplitude) may result in 
a change in the sign of the integral in ( 6 )  and, correspond- 
ingly, in the phase transition between the a- and 6-phases. 

We note that the sign of A@, -, does not depend on 
temperature in this approximation. This means that the line 
representing the phase transition between the a- and 6- 
phases (if this transition actually occurs) on the tempera- 
ture vs concentration diagram should be almost parallel to 
the temperature axis. 

In the three-dimensional case, an analogous compari- 
son between the free energies of the A- and B-phases cannot 
be made as simply at an arbitrary temperature. The point is 
that, for the A-phase, the gap is anisotropic and the free ener- 
gy is very sensitive to the precise angular dependence of the 
gap width. It follows that, in the case of three dimensions, 
comparison between the free energies of different phases is 
possible only near T,,  and this is usually done by having 
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recourse to the calculation of the Ginzburg-Landau expan- 
sion coefficient. 

Let us now consider phase transitions occurring in the 
a- and 6-phases as the temperature is raised. In two-dimen- 
sional, continuously-degenerate systems, orientational fluc- 
tuations of the order parameter play a dominant role. If the 
condition T, ( E F  is satisfied, the transition to the disordered 
state occurs at temperatures at which the Ginzburg-Landau 
criterion is still satisfied, and fluctuations in the magnitudes 
and "form" of the order parameter can be neglected. Disor- 
der is then due to the appearance of topological singularities 
(domain walls of infinite length, single vortices, and so on). 

3. PHASE TRANSITIONS IN THE a-PHASE 

Let us consider, to begin with, the a-phase in the ab- 
sence of spin-orbit coupling. The degeneracy space of the 
order parameter 

is ( (S2xS ')/Z :I))  XZ  i2'. The two-dimensional spheres2 
is the domain of d, and the one-dimensional sphere S ' is the 
domain of p. Factorization with respect to the group 2;') 
reflects the fact that the pairs of variables d, p and - d, 
p + a correspond to the same value of the order parameter 
(7 ) .  The group 2 i2' is the domain of 2. 

In their analysis of phase transitions in the a-phase, 
Stein and Cross9 consider only the orbital part (2)  of the 
order parameter (7). In accordance with the form of (2), 
they conclude that, in addition to the standard Berezinskiy- 
Kosterlitz-Thouless (BKT) phase transition, due to the dis- 
sociation of the vortex m o l e c ~ l e s , ' ~ . ~ ~ ~ ~ ~  there is also a possi- 
ble Ising-type phase transition due to the appearance of 
disorder in the field of the parameter I. Moreover, the order 
parameter also has a spin part whose fluctuations are more 
highly developed [because of the higher dimensionality 
(d = 3)  of spin space]. 

The expression for the gradient energy of the a-phase 
splits into terms involving d and p: 

and contains only two independent coefficients, namely, Kd 
and K, (they are equal in the BCS approximation). It  fol- 
lows from Polyakov's resultsI5 that, as we pass to larger 
scales, the coefficient Kd is renormalized to zero for any 
arbitrarily low temperature, and K, remains finite at suffi- 
ciently low temperature. Hence, it follows that the d correla- 
tions decrease exponentially, which means that any pair cor- 
relator of the form 

will also fall exponentially, whereas the power-law decrease 
(typical of ordered phases in two-dimensional, continuously 
degenerate systems) will occur only in "fourth-order" cor- 
relators of the form 

The form of ( 10) shows that e 2 ' ~  and not ei, plays the role of 

the order parameter, contrary to the statements made in 
Refs. 9 and 7. This is readily understood since p is actually 
determined to within a (it can be redefined by redefining d).  

Thus, there is a breaking of symmetry in the ordered 
phase not under the group of two-dimensional rotations 
U( 1) but under its factorization with respect to the group 
Z,, which identifies rotations differing by a.  When we speak 
of the group of two-dimensional rotations, we have in mind 
the relative rotation of orbital space and phase. Of course, 
the group U( 1 ) / Z ,  is also the group U( 1 ) . 

Equally important is that the simplest singularities are 
vortices with circulation f a. This leads to a fourfold in- 
crease in the universal value of the jump in the superfluid 
density16 in the BKT transition 

as compared with the value indicated by Stein and C r o ~ s . ~  
We note that the ordering considered here may be ob- 

served only by confirming the presence of superfluid density. 
Other traditional methods (for example, NMR) are useless 
because of the above exponential fall in the pair correlators. 

Stein and Cross9 point that, in addition to the BKT 
transition in the a-phase, there is also a possible Ising-type 
transition due to disorder in I. We shall show that these two 
transitions occur independently of one another. 

Consider the domain wall between regions with differ- 
ent I. Symmetry considerations show that the order param- 
eter within it is 

where V, varies smoothly from 0 (I  = 1 ) to 7r/2 (I = - 1 ). 
Since the condensation energy is independent of the com- 
mon phase p and of the direction of the vector d, the mini- 
mum of the free energy of the domain wall is attained for 
p = cost, d = const. Ohmi et al." investigated the domain 
wall in the a-phase, but confined their attention to a special 
distribution of the order parameter in which q, varies across 
the thickness of the wall, so that the domain wall is not stable 
and does not minimize the free energy, whilst a mass current 
flows along the wall. 

The quantity A does not vanish anywhere within the 
domain wall, so that the stiffness with respect to the variable 
p remains finite as well. In the Ising transition due to the 
disorder in I, the concentration of the domain walls (propor- 
tional to energy in the Ising model) is found to be contin- 
uous. Consequently, in this transition, there is no jump in the 
effective stiffness with respect to p, so that there is no jump- 
induced BKT transition. 

On the other hand, the vanishing of the effective stiff- 
ness to p in the BKT transition has no effect on the free 
energy of the domain wall for I and, consequently, on the 
Ising transition temperature. It follows that there is no rea- 
son for the two transitions to occur simultaneously. Order- 
of-magnitude estimates ( T,,, -taKq, T, - K,  ) do not 
answer the question as to which of them occurs at the lower 
temperature. 

We now turn to the role of the spin-orbit coupling. In 
the a-phase, the dipole energy has the same form as in the 
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three-dimensional –� phase^ 

where 1 may be replaced with the normal v to the surface. 
The energy ( 13) partially lifts the degeneracy of the order 
parameter. The minimum of ( 13) is attained for d = _+ v. 
Precisely the same values of the order parameter are attained 
at zero temperature (i.e., in the absence of fluctuations). 
The degeneracy space is then S ' X Z ,  and can be uniquely 
parametrized by specifying the phase p and the number 
I =  + I .  

At low but finite temperatures, we must consider not 
only the homogeneous principal state corresponding to the 
absolute minimum of energy, but also states corresponding 
to the local minima of energy, as well as fluctuations in the 
neighborhood of the principal and other minima. Inclusion 
of the latter leads to a power-type reduction in the correla- 
tors but, in contrast to the case where there is no spin-orbit 
coupling, it is the pair correlator (9) and not the fourth- 
order correlator that decreases in the power-type manner. 

Order-parameter configurations corresponding to local 
energy minima include not only the domain walls for 1 and 
the traditional vortices, but also solitons, i.e., linear objects 
in which the vector d changes its direction (passing through 
the position corresponding to a dipole energy maximum) 
whilst the phase e, remains constant. In the two-dimensional 
superfluid Bose liquid, there are no such singularities. The 
soliton separates regions with opposite directions of the vec- 
tor d, which is equivalent to values of the phase p differing by 
P. The thickness of the soliton is of the order of the dipole 
length lD (6 - K, /go), and the energy (per unit length) is 
of the order of K, /gD. 

It is important to note that solitons are not topological- 
ly removable singularities because they separate order pa- 
rameter regions that cannot be taken from one into another 
by a continuous transformation. A soliton can end on a vor- 
tex with a half-integer number of circulation quanta (as in 
the three-dimensional case"'). When T(K,, however, these 
break points are coupled by a strong logarithmic interaction 
into small, closely-spaced pairs. This enables us to speak not 
of the breaking up of solitons but of small beaks within them, 
which are unimportant as we pass to scales exceeding the 
average size of a break. From the standpoint of thermody- 
namics, solitons behave as continuous lines similar to the 
domain walls in the Ising model. 

Comparison of the energy of a soliton with its entropy 
(determined by the possibility of bending) shows that, when 
T-K, , the free energy of a soliton must be zero. It is impor- 
tant to recall, however, that fluctuations in the three-dimen- 
sional vector d may lead to an essential renormalization of 
K, (Ref. 15 ) as we pass from scales of the order of the coher- 
ence length 6 to the scales of the order of 6, at which this 
renormalization ends (we consider that <D $6). In that case, 
the phase transition due to the vanishing of the free energy of 
the soliton occurs for T- K, /In (lD /{) (compare with Ref. 
19). It is precisely the condition gD g{ that enables us to 
hope that this phase transition will occur at a sufficiently low 
temperature to ensure that the end point of the solitons will 

be bound into small pairs. 
The appearance of infinite-length solitons in the phase 

transition considered here leads to an exponential decay of 
the pair correlators (9).  The phase corresponding to higher 
temperatures involves a power-type decay of the fourth-or- 
der correlators described above. Since a change in the sign of 
d is equivalent to a change in the phase by n, we may con- 
clude that the appearance of infinite-length solitons leads to 
the restitution of symmetry between states with phases dif- 
fering by P, which was broken only by the presence of spin- 
orbit coupling. Although the absence of strict long-range 
order in p prevents us from isolating Ising-type variables 
that assume different values on either side of the soliton, 
thermodynamics indicates that solitons should behave like 
Ising domain walls. The corresponding phase transitions 
should resemble phase transitions in the Ising model. 

The last fact becomes more readily understood if we 
recall that in the Hamiltonian given by the sum of the gradi- 
ent energy (8) and the dipole energy ( 13), there is no cou- 
pling between the variables d and p. The coupling between 
them is purely topological because the pairs d, p and - d, 
p + P correspond to the same value of the order parameter, 
and this manifests itself only in the possibility of vortex-type 
singularities with half-integral number of circulation quan- 
ta. If, however, we are concerned with temperatures at 
which vortices with circulation + P are coupled to small 
pairs over scales exceeding the mean pair size, there is practi- 
cally no coupling between d and p. It is well-known that it is 
precisely large distances that are important for fluctuational 
phase transitions. The transition considered above corre- 
sponds to the disordering of the three-dimensional vector d 
in the "easy axis" type anisotropy field and, according to the 
universality hypothesis, it should be accompanied by the 
same critical behavior as the phase transition in the Ising 
model. 

Further increase in temperature gives rise to phase tran- 
sitions due to the dissociation of pairs of vortices with circu- 
lation + P and the disordering of 1, considered in the first 
part of this section. Thus, when a weak spin-orbit interaction 
is present, the transition from the a-phase to a completely 
disordered state consists of three different phase transitions 
(two Ising transitions and a BKT transition). 

When the condition T, ( E ,  is satisfied, the weak-cou- 
pling approximation ensures that all these transitions occur 
in a small neighborhood of T, (transition temperature in the 
BCS approximation), since it is only for (T, - T)/T, - T, / 
E, that the constants in the expression for the gradient ener- 
gy turn out to be of the order of T. 

4. PHASE TRANSITIONS IN THE b-phase 

The order parameter (3)  of the 6-phase can be written 
in the form 

where R,, is the three-dimensional rotation matrix. Because 
of the presence of the projecting factor a,, - Y,YI, the sub- 
scriptj can only assume two values. This projection ensures 
that the same value ofApj can be represented in two ways in 
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the form of ( 14) with different matrices R,, and phases dif- 
fering by n-. The degeneracy space of the order parameter can 
be written as (SO(3) X S  ')/Z,, where SO(3) is the domain 
of R,, and S ' is the domain of p, whereas the factorization 
with respect to Z reflects the above ambiguity. 

The situation in the b-phase is quite analogous to that 
encountered in the case of the a-phase (if we disregard the 
presence of the discrete degree of freedom in the a-phase). 
The gradient energy splits into terms involving R,, and p. In 
the absence of spin-orbit coupling, only the stiffness related 
to p (superfluid density) does not become renormalized to 
zero at large distances. As in the a-phase, only the fourth- 
order correlator (10) decreases in the power-type manner, 
and eziP plays the role of the order parameter. The transition 
to the disordered state occurs through the dissociation of 
pairs of vortices with circulation f n-. The jump in the su- 
perfluid density at the transition point has the same value 
( 1 1 ) as in the a-phase. 

The dipole energy in the b-phase depends on the three- 
dimensional rotations matrix R,, . It is convenient to para- 
metrize it in the standard fashion5 using the vector n defining 
the direction of the axis of rotation and the angle 6 through 
which the rotation takes place. The expression for the dipole 
energy then follows from the general Leggett formulaz0 and 
takes the form 

where n,, = n - (n v ) v  is the projection of n onto the 
plane. 

The energy (15) reaches a minimum for cos 6 = 0, 

n = f v. All the values of R,, that minimize (15) can be 
specified by the single matrix R,, (rotation by n-/2 around 
v )  and different values of the phase p. The degeneracy space 
contracts to S1.  At low temperatures, the presence of the 
dipole interaction leads to a power-law reduction in the pair 
correlators (9).  

As in the a-phase, solitons may be present in the b- 
phase. The vector n can then reverse its direction in the inte- 
rior of the soliton. When lD >{, an increase in temperature is 
first accompanied by the Ising phase transition due to the 
vanishing of the free energy of the soliton. This is a transition 
to the phase with the exponential reduction in pair correla- 
tors but finite superfluid density, for which there is a restora- 
tion of the spontaneously broken symmetry between the 
states with phases differing by n-. 

Thus, the transition to the disordered state in the b- 

I 

FIG. 2. 

phase occurs via two phase transitions. As in the case of the 
a-phase, the temperature of these transitions for T, ( E ,  are 
only slightly lower than the transition temperature T, in the 
BCS approximation. 

5. CONCLUSION 

Our results enable us to construct a schematic phase 
diagram for the two-dimensional superfluid Fermi liquid 
withp-pairing (Fig. 2). The phase transition between the a- 
and b-phases is a first-order transition, whereas the other 
transitions are second-order transitions. 

We emphasize that our prediction that the BKT transi- 
tion will split into two (one of which will be the Ising transi- 
tion) in the a- and b-phases of the superfluid Fermi liquid is 
valid only provided {, ,{, which ensures the essential re- 
normalization of K, . Splitting will not occur otherwise. 

We must also note the favorable fact that the effective 
strength of the spin-orbit coupling can be reduced by a mag- 
netic field. In the case of the a-phase (as for the three-dimen- 
sional A-phase5), the part of the free energy that depends on 
the orientation of the order parameter and is due to the mag- 
netic field can be written in the form 

Comparison of (16) with (13) will show that, when Hllv, 
the application of the magnetic field is equivalent to the re- 
placement of g, with g g  = g, - XH '. An increase in H is 
accompanied by a decrease in gg ,  which changes sign when 
Hz = (g,/x) l f 2 ~ h e  quantity 6, increases correspondingly 
and becomes infinite. For H > H :, the spin-orbit coupling is 
absent and the vector d lies in an anisotropy field of the "easy 
plane" type.'' 

The foregoing analysis leads us to the conclusion that, 
as H approaches Hz from below, the splitting of the BKT 
transition into two will necessarily take place. In the case of 
the b-phase, the anisotropic part of the magnetic energy can 
be written in the form @&,, = -x(H, Rpjvj )'/2, for Hllv, 
which converges to @:, = - XH [cos 8 - ( 1 - cos 6 )  
ni ] '/2. 

As the magnetic field perpendicular to the plane is in- 
creased, the height of the barrier separating the minima 
@ii, + @Lag decreases, and vanishes together with the soli- 
ton energy and the Ising transition temperature for 
H,b = (2gD/19X)1f2. 

Thus, both in the case of the a-phase and in the case of 
the b-phase, the splitting of the BKT transition will neces- 
sarily occur as the magnetic field is increased (at right-an- 
g l e ~  to the plane), although it is absent for H = 0 because of 
the unfavorable ratio of the constants. 

The possible splitting of the BKT transition, the exis- 
tence of the intermediate phase, and the Ising character of 
the transition due to the vanishing of the free energy of the 
soliton are more rigorously demonstrated in Ref. 22 by con- 
sidering the example of a particular modification of the two- 
dimensional x-y model. 

The author is indebted to G. E. Volovik, S. V. Ior- 
danskii, and G. V. Umin for useful discussions. 
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