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It has been shown previously [Sov. Phys. JETP 58,722 ( 1983) ] that the "exotic" properties of a 
Bose condensate [of the quasiaverage $ = (4) I, which stem from the anomalous fluctuations in 
+b caused by phase degeneracy, rule out the identification of a "microscopic" basis of a phenomen- 
ological c-number field of a superfluid with this condensate. A microscopic definition of the c- 
number field as a quasiaverage is written by replacing the original field operator $ by an effective 
operator $. The need for this replacement is even more obvious when the fluctuations resulting 
from the degeneracy destroy the condensate entirely: $ = 0 [the superfluidity, either two-dimen- 
sional ( T> 0) or one-dimensional ( T = 01, of the Bose system is retained]. When the condensate 
vanishes, $ = 0, the effective field = ($) is conserved. Furthermore, regardless of the presence 
of a condensate, this field can be represented as the wave function of some effective condensate of 
quasiparticles which determines the ground state of the superfluid. At T >  0, this field, along with 
the thermal excitations, determines the density matrix of the superfluid. The effective condensate 
not only reveals the quantum-mechanical nature of the c-number field of a superfluid, in terms of 
a macroscopically filled one-particle level (by analogy with an ideal Bose gas and ordinary "clas- 
sical" fields) but also constitutes a necessary and sufficient condition for superfluidity. It asso- 
ciates with the superfluidity an effective long-range order which is conserved even if the initial 
long-range order is disrupted by fluctuations. The manifestations of two types of an infrared 
anomaly of the anharmonicity - one stemming from a phase degeneracy and one stemming from 
an increase in the fluctuation amplitude toward a transition point -are analyzed for a Bose 
system without a condensate. 

I. INTRODUCTION 

1. A unique property of a superfluid is the presence of a 
subsystem which is described phenomenologically by a c- 
number field of macroscopic amplitude, so that the quan- 
tum-mechanical nature of the system has some direct macro- 
scopic manifestations: a dissipationless mass transfer1 and a 
quantization of the circulation of the velocity2 at all T>O, as 
well as interference field effects near T, (Ref. 3 ) .  The pheno- 
menological c-number field which results from a spontane- 
ous breaking of the gauge symmetry describes, in addition to 
the "superfluid" macroscopic motion, the phase transition 
i t ~ e l f . ~ . ~  The microscopic nature of the c-number field of a 
superfluid Bose liquid was analyzed in Ref. 5. The field the- 
ory of superfluidityG8 identifies as the "natural microscopic 
basis" of the c-number field the quasiaverage of the field 
operator, $ = ($), which is a condensate of the original bo- 
sons. In this theory, which makes use of the analogy with an 
ideal Bose gas,9 the Bose system as a whole is represented as a 
classical nonlinear field @with fluctuating normal modes $', 
for which the anharmonicity of the zero-point and thermal 
vibrations are taken into account in succession by diagrams 
of a field perturbation theory: 

The description of the macroscopic motion H ($,@* ), of the 
broken symmetry, 

h 

%f the spectrum H,, and of the interaction of the excitations 
Hi,, directly from (1)  requires a single refinement, viz., 
allowance for ankanrmonicity, i.e., replacement of the initial 
Hamiltonian H($,+b+ ) in ( 1 ) by an "effective" Hamiltonian 
fi(*,*+ ), which by definition contains exact vertices in- 
stead of zeroth-approximation vertices. 

As is shown in Ref. 5, however, this refinement disrupts 
the analogy with a classical field "without pathology": The 
exact vertices are radically different from the zeroth-approx- 
imation vertices; in particular, the two-prong vertex El, (0) 
(the primary characteristic of the long-wave properties of 
the field $ and of the spontaneous transition to $, # 0, which 
tends toward zero only toward the transition point. 

according to description ( 1 ), vanishes identically upon the 
replacement 2 = 3 (Refs. 10 and 11 ). In the exact ap- 
proach, most of the characteristics which are related to 
2,,(0) in the first approximation [the hybridization of the 
"particles and holes"- the creation and annihilation opera- 
tors, which transform the quadratic spectrum into a linear 
spectrum; the velocity of sound c, = (2; (O)/rn)lt2; the 
equilibrium value 

etc.], lose their direct connection with Z,,(O) = 0. On the 
other hand, the connection between Z,,(O) and the longitu- 
dinal susceptibility to perturbations of the condensate, 
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I (4) I, is conserved, qSh = $sh is permissible; more on this below). A representa- 
tion of the type in ( 1) in terms of 4 in the long-wave region, 

in contrast with the standard picture of a spontaneous break- 
ing of the gauge symmetry of a classical field,5 
x,, (p--,O) + 

The vanishing of Z12(0) occurs even in the "quasihar- 
monic" model 

a=mp,d-' v,<I, p= (nlp,d)'"-lla'b, ( 2 )  

where each integration with respect to momentum in the 
diagrams characterizing the anharmonicity is accompanied 
by a small factor a .  Herep, is a characteristic momentum of 
the interaction potential, and d is the number of spatial di- 
mensions. The ratio of the potential energy to the kinetic 
energy is small ( - a )  for a pair of particles, but over a unit 
volume it is - 1, and it is this circumstance which is largely 
responsible for the interesting features of this model. The 
source of this "infrared anomaly of the anharmonicity" is 
the large interaction of long-wave field modes ( V,, , # 0), 
whose energy E = cp is small according to the Goldstone 
theorem. There are no anomalies in the hydrodynamic varia- 
bles n and v, where the interaction of modes vanishes in the 
limit p -+ 0, and the effective Hamiltonian in the long-wave 
limit (the Landau Hamiltonian' ), 

becomes the same as the original Hamiltonian, 
H(ii,i) = H($,$+), if we set ~ ( i i )  = Voii2/2. The reason 
for the difference in variables is that V = (Wm ) Vq, is linear, 
and $ = I$leip nonlinear, in the phase p: the "broken-sym- 
metry variable," whose fluctuations are large because of the 
degeneracy, 

If the choice of variables is to reflect both the hydrody- 
namic nature of the weakly interacting (approximately inde- 
pendent) long-wave degrees of freedom of the superfluid 
(the linearity of these degrees of freedom in f i  and +) and the 
specific field nature of the state (the quantization of the cir- 
culation and the spontaneous breaking of the gauge symme- 
try), we must introduce a variable of the field type-the 
effective field opernator * = $L + *sh -while retaining the 
linearity in ii and q, in the long-wave region. The long-wave 
component of the field $, 

is found by linearizing the expression 

which characterizes (somewhat arbitrarily) the original 
field $. Because of the "long-wave" nature, we need no refin- 
ement in the definition of i or + (Refs. 12 and 13). In the 
short-wave region, where 2 and + lead to an ultraviolet di 
Yergente, the field $ = *sh must be approximately 
$sh = $ - $L (in the case no#O, the identification 

A 

N = H (ii, v)  = H ( n  + &', v + vr) = H (n,  v) + g2 + gint 
= H (G, G') = H ($, $*) + H,  (2, $'+) + @;nl, 

A - - 
Ir,=ll,+$,$=<$>, (4) 

corresponds to a converging perturbation theory. We note 
that H(*,**), thought of as a functional, is not the same as 
H I ($,$+ ) The quadratic term is identical in the two Hamil- 
tonians, but H :,,, differs from Hi,, in that it corresponds to a 
weak interaction, which vanishes in the long-wave limit, of 
the modes of the field * [the field *appears in H I(*,$+ ) not 
only "as part of" * = $ + $' but also separately; conse- 
quently, despite the similarity between H($,$*) and 
H($,$* ) the infrared anomaly of the anharmonicity does 
not "regenerate" in the variables *I. 

The exact vertesx &,,(o) in terms of the "adequate" 
variables * is nonvanishing and plays the same important 
role as in the first approximation; i.e., 

c= @,, (0) i m )  'I2, I 4) I 261, (0) 

The eEective Hamiltonian in the variables *, 
a = a t ($ ,$+) ,  is analogous to HI(*,$+) and in fact de- 
scribes the macroscopic motion of the superfluid at T = 0, 

and the broken symmetry, 

in terms of a classical nonlinear field "without pathologies." 
It also describes the spectrum of E2 and the interaction of 
the perturbations, 2 :,,, . The generalization of $ to T >  0 in- 
dicates a microscopic basis for the decomposition of the su- 
perfluid into two subsystems (which interact in a peculiar 
way; more on this below) : a classical field at T = 0 and ther- 
mal excitations. This generalization demonstrates that the 
choice ofthe quantity (p, /m) 'I2 instead of [ $ I  = as the 
modulus of the superfluid-ordering parameter in the pheno- 
menological theory4 is not by chance. In terms of $ the 
anomaly resulting from the phase degeneracy disappears, 
but the anomaly stemming from the "mode damping" in the 
limit T -+ Tc remains: ill (0) co Zl2(0) -' + oo. Near T, 
(in the "fluctuation region") the small parameter of the 
model, (2) is lost; this situation is analogous to that of a real 
field. 

2. In place of fi, and @, in the definition of $ we could 
also use, to ad~antage the "polar coordinates" fiL and @, of 
the variable $,, the long-wave part of $ (with momenta 
Ip(<q,), provided that qospc (p, is the "momentum of the 
infrared anomaly of the anharmonicity," at which the in- 
frared increase in the field diagrams becomes important5). 
However, we can eliminate the ambiguity from the defini- 
tion of * by requiring that the normal modes of the field $ 
agree with the exact quasiparticle operators. This definition 
not only eliminates the infrared anomaly of the anharmoni- 
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city, which obstructs the analogy with a nonlinear classical 
field, but also indicates the similarity with an ideal Bose 
gas-a similarity which is more profound than that in the 
original form of London's concept9 of field theory (Section 
2). Here $ = (*),=, means the wave function of a one- 
particle level of certain "condensate quasiparticles," and the 
set of these quasiparticles represents an effective condensate. 
This set gives an exact description of the ground state. The 
quantum-mechanical nature of the c-number superfluid 
field is thus revealed in terms of a macroscopically filled one- 
particle level or coherent state, by analogy with ordinary 
"classical" fields such as radio waves, a laser beam, or a 
sound wave in a crystal in the limit T  + 0 and also an ideal 
gas of massive bosons. At T >  0, some of the quasiparticles 
undergo a transition from the effective condensate to a gas of 
"above-condensate quasiparticles." In the description of the 
macroscopic motion and long-wave vibrations of the effec- 
tive condensate one can see the special interaction of the 
condensate and the gas: an "entrainment" and a "hybridiza- 
tion" (even if the interaction of quasiparticles is not taken 
into account explicitly). 

3. The microscopic nature of the c-number field and the 
analogy between a superfluid and a classical nonlinear field 
or an ideal Bose gas are particularly interesting in the case in 
which the original boson condensate vanishes: no = 0. This 
question is the subject of the present paper. The disappear- 
ance of the original condensate (a  small number of dimen- 
s i o n ~ ' ~  and the nature of the boundaries15) use a manifesta- 
tion of the same infrared anomaly of an anharmonicity 
which has led in cases considered previously5 to only a pa- 
thology of the properties of the original condensate (an infi- 
nite longitudinal susceptibility). There are several consider- 
ations which suggest that the basic properties of the state, 
primarily the superfluidity, may be retained in this case.15'16 
In the present paper we study the elimination of the infrared 
anomaly of the anharmonicity in the case no = 0, the deter- 
mination of $, and the existence of an effective condensate 
with ($) #O in the absence of the original condensate, 
[4 )  = 0 (Section 3 ) .  We show that the effective condensate 
forms a microscopic basis for the superfluid component, re- 
gardless of whether the original condensate is retained, and 
it emerges as a necessary and sufficient condition for 
superfluidity. We refine the nature of the "disappearance" of 
the original condensate. The conservation of the macroscop- 
ic filling number No (the unbounded increase in No with the 
volume V, although slower than that of V) is also a condition 
for superfluidity (Section 4). We note that in the case no = 0 
we have Z,,(p)=O; i.e., the "hybridization" of the particles 
and "holes" does in fact disappear (although the spectrum 
remains sonic). The characteristics of the system in terms of 
?J and * are quite different not only in the long-wave region 
but also in the short-wave region. We cannot replace $sh by 
qSh; physically, the "binary" condensate disappears along 
with the "one-particle" condensate. Although the effective 
condensate is, in a sense, made up of the original conden- 
sate-the one-particle condensate and the "higher-order" 
condensates (pairs, trios, etc. )- the disappearance of all the 
original condensates does not contradict the retention of an 

effective condensate; the explanation is simply that the ap- 
proximation of the effective condensate by a finite set of 
original condensates, growing more slowly than V, is not an 
adequate approximation (Section 5 ) . With no = 0 (d  = 2, 
T >  0; d = 1, T =  O), the long-wave field properties differ 
even more radically from the "harmonic" (Bogolyubov ap- 
proximation), but in terms of $ all the anomalies vanish, and 
we see the reappearance of the picture of a classical field with 
a broken gauge symmetry and quantized fields: 

If n,#O, the Bogolyubov approximation in terms of $ for 
model (2)  (the thermal "emptying" of the effective conden- 
sate is taken into account) breaks down only in the immedi- 
ate vicinity of T,.  In the case no = 0 (i.e., d = 2), this ap- 
proximation breaks down even at T -  T, . This result can be 
understood by noting that here the "singular" excitations, 
which must be taken into account in a special way, become 
important: the Kosterlitz-Thouless transition" (Section 6). 

The long-range order in terms of the parameter of the 
Ginzburg-PitaevskiiA tran~it ion,~ 4, for which the effective 
condensate is the microscopic basis (Section 2), is thus not 
disrupted in the cases d = 2, T >  0 and d = 2,T = 0 (Section 
4).  It can be shown that this eventuality is ruled out by 
Rice's calculations14: A path - integration - -  with the Ginzburg- 
Landau Hamiltonian F = H($,$*) over 141, (where 
$ = 1$leG ) indicates a disruption of the long-range order in 
the correlation function ($(r) $* (0)  ) . [The difference - - -  
between a($,$*) andz1($,$+ ) does not rule out the use of 
a ($ ,@) ,  since it is actually the quadratic part g 2 ,  which is 
identical for and a ' ,  which figures in the calculations of 
Ref. 14.1 The error here is that the nonlinear transformation 
of variables is not legitimate in the effective Hamiltonian 
[e.g., a($,$*) #&n,p), although H($,$*) = H(n,p);  
see Ref. 51. The result of Ref. 14 is valid only in application 
to the original order parameter $(($) = ny'2), for 
($(r) $* (0)  ) . Furthermore, this error is cancelled here by 
another error: The form used fora($,$*) in Ref. 14 ignores 
the infrared anomaly of the anharmonicity [when this 
anomaly is taken into account, & ($,$*) gives us 
($(r) $* (0) ) (without a long-range order) through an im- 
mediate integration over $,$*I. In the calculation of Ref. 14 
for ($(r)$* (0)) ,  it would have been correct to work direct- 
ly fromB (n,p). A path integral w i t h a  (or, more precisely, 
k2) can be used, but only in terms of "its own" variables; if 
the variables are appropriate ( a  weak anharmonicity), the 
calculations lead to not only the exact result for the correla- 
tion function of these variables (the Lagrangian L, = G - I )  

but also an approximate result for other correlation func- 
tions. The additional refinements of Ref. 14 are required in 
the case of superconductivity [an elongation of the type 
V$ -+ (V - ie /#k)$  of the derivatives ing($,$*) leads to a 
gap, while electrical neutrality leads to a new mode without a 
gap; see Section 41. 

The infrared anomaly of the anharmonicity is also ig- 
nored in a($,$*) in Josephson's approach (see Ref. 31 in 
Ref. 5). Although the nature of x,, ( E  = 0, p -+ 0), which 
reflects the infrared anomaly, is not used in the derivation of 

291 Sov. Phys. JETP 62 (2), August 1985 Yu. A. Nepomnyashchil 291 



the relation between the density of the original condensate 
andp, ( T --, Tc ), it is still more accurate to speak in terms of 
an effective condensate instead of the original condensate 
here [the original condensate may be absent even at T = 0 
(d = 3), if there are intense short-wave zero-point vibra- 
tions]. 

2. EFFECTIVE CONDENSATE AND THE SUPERFLUID 
COMPONENT 

1. The quasiparticle concept associates in an approxi- 
mate way the weakly perturbed states of interacting and 
noninteracting systems. To what extent can we identify the 
c-number field of a superfluid with the c-number field of an 
ideal Bose gas? The latter is of course identified with the 
wave function of a condensate level (normalized to the num- 
ber of particles, N), as in (5 ), or with an eigenvalue of a 
condensate operator, as in (6)  [and, simultaneously, of the 
field as a whole, (7) 1 .  A coherent state of a "condensate- 
mode oscillator" I @',, ), (6), (7),  is approximately the 
same as the "N-fold excited" state I @,, ), (5) ,  because of the 
macroscopic nature of N> 1. Here 

1 1 - 
( Do>= - 

(N!) " (~~')"IO), I @ I ) = - - ~ ( $ ~ + ) " ~ O ) ;  (N!) ( 5 )  

6oID,'>=N"I@o'>, 6p+oI@o')=0, ( 6 )  

I cDOr)=exp[N'" (do+-6,) ] lo>, $,I @,'>=go (r) I mi'); 

Here I@,) is a state with an inhomogeneous condensate, and 
I@,*) is a normalized excited state. A trivial answer to the 
question of the c-number field comes from a simple model 
for a superfluidity in which the interaction for the above- 
condensate particles is taken into account only in the form of 
the "external field" of the condensate. The wave functions 
here are identical to the "ideal-gas" wave functions (5)-(8) 
(although the gas is not a superfluid). The superfluidity is 
provided by a gap in the spectrum: 

The function +bo(r) in I@; ) satisfies a nonlinear equation; 
the excitations are orthogonal to +bo(r). If the "anomalous 
terms" (a,fa Z P  + a,a -, ) are also taken into account, the 
above-condensate states transform into quasiparticles. Tke 
ideal-gas descri;ption corresponds to a linearization of H 
with respect to $' in ( 1 ) , simulating in an excellent way the 

numerous properties of a ~ u ~ e r f l u i d : ~  

1 @B') = G B '  1 @;>7 

?. fi - ,. . - . - A  

U B  = e B, up -, a, = uBapu = Gp ch 2x (p) 

h 

The linearization of H is not appropriate, however, be- 
cause of the infrared anomaly of the anharmonicity which is 
generated by the interaction of particles with p#O. The 
problem of the nature of the c-number field can be solxed 
without resorting to approximations at all. We denote by Ua 
unitary transformation of the ideal-gas st_ate I@,) into the 
exact ground state of a Bose liquid: I @) = U I@,). Introduc- 
ing the operators 

we write the ground state as a condensate of quasiparticles of 
an effective condensate,*( 12), or a coherent state of an effec- 
tive-condensate mode 5 ,  (of the effective field V), ( 13 ), 
(14): 

Y (r) I @ ' > =  (N/V)'"IcDr>, 

[see (5)-(8)]. To describe the excited states I@*) we write 
I@) as the "vacuum," 6, I@) = 0 (the approximation of in- 
dependent one-particle excitations ) : 

h h h 

[see (8)  1. Since Hi,, commutes with N and P = C pii, + ii,, 
h P 

U has the same properties in the homogeneous case. We can 
thus write u as 
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A 

In contrast with ( lo), U transforms not only the excitation 
operators but also the operator representing a macroscopi- 
cally filled mode. Correspondingly, 2 --t ii,#2,. The coeffi- 
cients l/N1'', 1/N, ... , at the front of the sums in (17) are 
chosen such that the N-independent expectation values 

I ) ,  <$(ri )G(rz); i ) (r3)) , . .  . between I@') 

correspond to N-independent functions f ,'"'. For model (2), 
we can find the functions f j:' by, for example, minimizing 
the ground-state energy (@IH I@) (at T = 0) or the free en- 
ergy, taking the gas of excitations into accountA(at T >  0, 
outside the "fluctuation region"). In general, U is deter- 
mined by the circumstance that &, ,, diagonalizes k2 ( i t ,$). 
The nonlinear corrections in fip and Dp are given by pertur- 
bation theory1' [formally in the parameter 1/N but actually 
i n a  in (2)] .  

The relationship between 9 and $in (3 ) is simple in the 
A A n - 

approximationx,,~~ -+ 1, i.e., 5,  = b, : 

where the AP are Bogoly^ubov combination2 oLthe gP. 
From the fact that U commutes with N, P we have 

We see from ( 19) that the "walls" ( - v P) act only on the 
excitations-not on the effective condensate. 

The description in terms of Y is exact for the ground 
state (characterizing it as an effective condensate, establish- 
ing the exact meaning of the c-number field) and is the best 
approximation for the excited states in terms of independent 
one-particle excitations. It is also possible to take into ac- 
count the interaction of excitations: 

This interaction is responsible for the appearance of bound 

states of excitations, 2 A, b ,+ b ', , near points with E; = 0, 
P 

etc., and for a deviation of the gas of excitations from ideal. 

However, since it vanishes in the limit p + 0, it does not 
generate an infrared anomaly of the anharmonicity, and by 
definition it dzes not excite quasiparticles from the effective 
condensate (HI I*) = 0). A 

If, in the expression for U in ( 17) written in the form 

we interpret the operators h "',6 i3),h i3), ... as independent 
boson operators which create bound pairs, trios, etc., of 
above-condensate particles-more precisely, "excitations of 
an ideal gas" (although their c o m m u t a t i ~  relations are 
slightly different, and operators of the type b i3' always give 
us zero when they act on I@, > )-then a state with an effec- 
tive condensate will represent a coherent state of corre- 
sponding bosons with a macroscopic value (as in the original 
condensate) of the amplitudes. The N-independent expecta- 
tion values between I@') of the quantities 

c;b>, <Glp>, <$$$), <I&$), . . . 

correspond to 

(z,)-N'", (i!") )-N'/.; 

in this sense the effective condensate is a sort of set of original 
condensates: one-particle, "binary," and condensates of all 
"higher orders." For model (2),  each of the higher-order 
original condensates is characterized by an intensity which 
is weaker, the greater the number of particles in its compos- 
ite particle. 

Canonical transformations dealing with 2, have been 
introduced previously'8 to study the relationship between a 
theory of the Bogolyubov type6 and the hydr~dynamic~ap- 
proach.'2 It was shown in Ref. 18 that even the use in R in 
( 17) of a term with f (p) leads to corrections to the energy 
and the spectrum without infrared divergences 
Lf(2)(P) =x(p) , (? ) ,  SO that there are no terms 

n n h  - (6; ii + pxg + xO+ 'spa - , ) in H(&,ii+ ) 1. The transfor- 
mations L?, - ii: '2' 

fi(Z)" -gc2) - (i~' = e ape - ch 2f2) ( p )  ap - sh 2f(') ( p )  6:p~o') 

are, in contrast witb ii, --t hP in ( lo) ,  nonlinear in the Four- 
ier components of $, so that they are capable of eliminating 
the infrared anomalyAof the anharmonicity, according to 
Ref. 5. Corrections to R (2' were also made in Ref. 18 in order 
to reach agreement with the quasiparticle operators from 
Ref. 12, written at a higher order of accuracy in 1/N than is 
&i2'. 

The case of a slightly inhomogeneous effective conden- 
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sate does not reduce toLhe p~oblem of an ideal gas [G, ( 11 ) ] 
in an external field JUW + Wdr. A change in the wave func- 
tion of the effective condensate (an inhomogeneity) also 
changes its internal structure. The long-wave excitations re- 
tain their hydro$ynamic nature: Teey :re linear in n, and 
p,. (but not in 4, which combine a, ). A 

2. At low values T>O we have T T z \ V T = , ,  and a 
change in the microscopic state reduces to a transition of 
some of the quasiparticles from the effective condensate to 
"thermal" particles: 

[see (20) 1. If, however, at = 0 the wave function of the 
effectke condensate, 4 = (V = (q)  [a classical field with 
H = H(p' ($,@) 1, describes simultaneously a spontaneous 
breaking of gauge symmetry, a macroscopic motion, and 
long-wave excitations of the superfluid, then upon the ap- 
pearance of thermal excitations these aspects of the field de- 
scription correspond to noncoincident c-number fields: re- 
spectively (*), (the effective consendate), $s (the 
"superfluid amplitude," which reflects the entrainment of 
part of the mass of the above-condensate quasiparticles as 
the effective condensate moves because of the "non-Gali- 
lean" nature of the spectrum), and 4, (the effective field, 
which incorporates the hybridization of the oscillations of 
the "superfluid component" with the collisional sound in the 
gas of excitations). 

Let us consider, at low T, an effective condensate which 
mo?ng at a velocity v in frame of reference K '. Since 

V T  z\VT=,, the mass of the quasiparticles of the effective 
condensate is again equal to the original mass of the particles 
(at T = 0, this equality is a consequence of the principle of 
relativity; i.e., 

Let us assume that the gas of quasiparticles is at rest in K ' (a  
Gibbs distribution is given in K '). If we were dealing with 
noninteracting particles, rather than quasiparticles, the con- 
tribution of the "above-condensate subsystem" would not 
depend on the motion of the condensate; in particular, its 
momentum would be zero. The spectrum of quasiparticles, 
in contrast, is tied to the rest frame of the condensate, K, so 
that the motion of the condensate with respect to the gas of 
excitations with a given T leads to a change (which depends 
on v )  in all the characteristics of the gas: the momentum, the 
energy, the free energy, the entropy, etc., even the number of 
quasiparticles. The corresponding equations can be written 
easily by noting that the only change from the case in which 
the Bose liquid moves as a whole is a change in the excitation 
distribution function: 

As a result, the gas of excitations, which is "at rest," contrib- 
utes to the momentum and energy of the system, APand A E  

(the volume is V = 1). For the overall system we find 

The increment in the mass of the effective condensate due to 
the changes in the gas of excitations changes the very nature 
of the temperature dependence of the mass: 
(P - M N , , ) ~ ~ T ~ , [ ~ -  (ps,ps + a ) ] ~ o T ~ . I n a s e n s e , p a r t ~ f  
the mass is entrained by the effective condensate. We wish to 
call attention to the discrepancy between the characteristics 
of the inertia of the moving effective condensate in P and E in 
(24); in an arbitrary frame of reference KO, this discrepancy 
leads to a coupling of the velocities of the gas of excitations, 
v,, and of the effective condensate, v, = v, + v (a sort of 
dynamic dependence of the subsystems): 

P(KO,= P , ,V~,+~.V~,  h"Ko'=1/2 (p.+a) v,,~+'/, (p,+a) ~,~-av,v,. 

(25) 

This effect, like the nonadditivity ofp,, studied in Ref. 5, 

results from a violation of the relativity principle in the E, 

spectrum. This violation is responsible for the entrainment 
effect: P # Po, E + Eo. Different manifestations of the non- 
Galilean nature of the spectrum are seen in different orders 
in u: In zeroth order we find 

in first order we find 

3 En, (F,) d3p+pn, 

and in second order we find a change in the internal charac- 
teristics of a gas of excitations with a fixed temperature T as 
the condensate moves; here 

The simultaneous breaking of Galilean symmetry and gauge 
symmetry is a specific feature of the superfluid transition 
and is not seen, for example, in the case of a Lorentz-invar- 
iant Higgs condensate. A decoupling of vs and v, is achieved 
by replacing E by the free energy E 

In other words, thermodynamically, v, is, in accordance 
with a basic assumption of two-fluid hydrodynamics, an in- 
dependent variable, which complements the parameters of 
the "local Gibbs distribution," Tp ,  and v, . An analogous 
decoupling occurs in the energy E if we fix the entropy of the 
gas of excitations, S(hE(S,p) = AF(T,p), instead of T. 
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The renormalization of the mass of the effective con- 
densate, mRo +p, , implies a renormalization of the ampli- 
tude of the c-number field which describes the superfluid 
motion: J Y , J ~  =& + Jqs J 2  =ps/m (in M, IVYTJ2/ 
2m + lVqS I2/2m) : The parameter m-the coupling 
between v and the wavelength of the field--cannot change. 
There is no renormalization in a description of an inhomo- 
geneous state of the effective condensate if the gas of excita- 
tions is assumed to be at rest with respect to the effective 
condensate (boundary effects, etc.). 

To calculate the spectrum and structure of the long- 
wave oscillations of the effective condensate we need to con- 
sider, in addition to the entrainment, their hybridization 
with collisional sound in the gas of excitations (4 ,  ) . A cor- 
responding calculation was carried out in Ref. 5 for low T, 
with damping ignored. '' 

A microscopic description by means of an effective con- 
densate and excitations is a more general approach than a 
thermodynamic (or hydrodynamic) separation into super- 
fluid and normal components. It can describe local devia- 
tions from equilibrium of the following entities: a gas of exci- 
tations (a  kinetic equation), the amplitude of the c-number 
field (a nonlinear field equation which uses an effective field 
Hamiltonian and the damping due to the hybridization of 
the perturbations of the field with dissipative processes in 
the system of excitations), and the field structure (i.e., the 
"composit~n'~of the quasiparticles of the effective conden- 
sate, 6, = Uii,U -', the relations among the densities of the 
original condensate-the one-particle, binary, etc.). It is the 
perturbations of the latter type which are characterized by 
an infrared anomaly of the anharmonicity, x (p+O)+oc. 

3. INFRARED ANHARMONICITY ANOMALY IN BOSE 
SYSTEMS OF VARIOUS DlMENSlONALlTlES 

1. When the original condensate disappears, 
($) = nh/2 = 0, the original field theory, ( 1 ) (Refs. 6-8), 
cannot even be formulated, but the infrared anomaly of the 
anharmonicity - - is manifested in the "combined" variables 
( n ~ .  ,PL ,*Sh : 

where the diagrams are field diagrams in the region IpI)q, 
(the role of no in these diagrams is played by (i, )). It is 
possible to eliminate all manifestations of the infrared anhar- 
monicity anomaly by choosing go appropriately? 

We first consider the simplest model, (2).  A specific 
feature of the tase no = 0 is a divergence (with decreasing 
q,) n' = n - (n, ) in the harmonic approximation: 

The choice q,%j, provides for the factor (i, ) in the dia- 
grams the same estimate as in the case 
no#O( (n, ) = n [ 1 - O ( a )  ] ) . Correspondingly, we can es- 
timate the divergence of an arbitrary field diagram by ana- 
logy with the case n,#O: 

Here p is the lower limit of the integration; R = (n3/ 
2 + n, - r/2 + 1 ) is the number of integrations; r,s,n3, and 
n, are the numbers of external lines of particles and the po- 
tential and the numbers of three- and four-prong vertices, 
respectively; A,  is an estimate of the "tree" diagram; and in 
the case d = 3 we should make the replacement ( p d  
p )  - +In (pdp)  . Estimate (30) incorporates the lowering 
of the degree of the divergence upon a summation over the 
directions of the lines of the particles at the three-prong ver- 
tices: the factor (p/p,) (Ref. 10). It can be seen from (30) 
that for all d there exists a definite "momentum of the in- 
frared anomaly,"p, (>PC ), such that the choice q,sp, pre- 
serves the small factor in the integration in the region lp 1 >q,: 

T=O: 
~ ~ - p ~ e - ' ~ ~  (d=3) ; u p ,  (d=2) ; a'"po (d=l) ; 

(31) 
T>O (T>C~ ,~= ' )  : 

2. We now consider the integration in the region 
lpl< q,. The interaction of the hydrodynamic modes is weak 
if q,+, -mc; for model (2) ,  this condition does not contra- 
dict the requirementp, (q, everywhere outside the "fluctu- 
ation region" (Section 6 ) .  In models of the low-density type, 
/3 = ( n/pg) 1'2(1, where the long-wave characteristics of 
the system are affected substantially by the short-wave re- 
g i o n , ~  > g,, the choice q,<mc simplifies the incorporation of 
this effect, allowing us to express the long-wave vertices in 
terms of thermodynamic derivatives.16 

The lines of the density P = n, - ( i ,  ) and the phase 
p = 4L-- (GL ) are connected to the field diagrams by fac- 
tors ((n, ) + P) 'I2, which replace the contributions from 
the condensate lines n;I2 at "incomplete" vertices of the Be- 
lyaev technique,' and increments in p in the field Green's 
functions: l6 

It is not difficult to see that the restriction 

for E/C-p + 0 and a differentiation of q at the vertices with 
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keep the integrals with gab (p)  small, despite the fact that 
each prong p is accompanied by an additional field Green's 
function Gik , which introduces a factor ( ~ d q , ) ~ >  1. The 
choicep, (qo+, thus causes each integration over both the 
regionp > go (G, ) and the regionp <go (gab ) to contribute 
a small factor. This circumstance might appear to contradict 
the result B,,(p)=O (Section 5). The situation can be ex- 
plained by noting that the connection gab mentioned above 
implies, along with (27), the transformation16 

[without which, the lines .rr and p would have been connect- 
ed in the combination 

where the phase is not differentiated, and a divergence re- 
mains]. The difference between $:, and $,, is important in 
the case no = 0, while at no#O it can be ignored. The substi- 
tution 

with an expansion of the exponential function, for example, 
in the correlation function ($,, (x)$, (x') ) gives us, in ad- 
dition to ($:, (x)  $:, (x') ), a sum of terms which comprise in 
the Fourier representation integrals of 

for 0 < Ik I < Ik ' 1  < ... <go. These integrals diverge specifi- 
cally in the case no = 0 (e.g., at T >  0,d = 2 we find Sd 'k / 
k 2).  We can make similar arguments for 

etc. However, we have 

G 8 h ' + + s h f = G s h + ~ s h ,  

so that the distribution of particles with p > qo is described 
adequately by the harmonic approximation. 

* - A  

For any no we can use ii, ,p, ,$I, (or AL ,;, ,$,, , where - A A A A 

$,, is related ton,, = A - n, ,p,: = p - p, in a way similar 
to that in which 4 is related to A, p)  to construct $ [see (3)  1. 
In terms of $, the harmonic approximation is adequate. In a 
determination with tpe help of the exact quasiparticle opera- 
tors (i.e., when i,, p, are used at small p),  

is the density of the effective condensate. 
3. Estimates of the type in (29) and (31) can also be 

found in the more general case of a Bose system with 
d-2 

a,ff=mp,h V,ff<l 

(p,, -mc is a characteristic phonon momentum, and 
V,, = mc2/n is the effective potential). Let us consider, for 
example, the low-density model 

at T = 0 (a = r n ~ , d - ~  V,, is arbitrary). In an integration 
beyond the phonon region, the basic contribution comes 
from the ladder diagrams, which determine 

( n  is the contribution of a "rung of the ladder"-an integral 
of the product of two Green's functions), 

ladder ladder 
pph- (pm)'", p=Z,, (0) -Xi, (0) -nVejf. 

We thus have 

In the cases d = 3 and 2 we havea, ,p, QPh [see (29), (3 1 ) 
with a + P,P,~, +p,, 1. The reason for the "lowering" of 
the "smallness" of a,, with decreasing d lies in the weaken- 
ing of the role of large momenta, which suppress the effective 
interaction in the summation of the ladders (the other side of 
the increase in the role of small momenta). 

4. NECESSARY AND SUFFICIENT EVIDENCE OF 
SUPERFLUIDITY 

1. Neither the condensate density no#O nor the super- 
fluid density p, $0 determines the necessary and sufficient 
condition for superfluidity: Superfluidity persists at 
d = 2 , T > O a n d d =  1, T=Oi fno=O,  but it disappearsif 
d = 1, T >  0, although here we havep, # 0 (in the case d = 1, 
the superfluid motion is understood as being with respect to 
the "substrate," or the "background system," which is inter- 
acting with the gas of excitations). This fact is explained 
clearly by Langer's analysis,19 which describes a Bose sys- 
tem in t e F s  of a path integral over coherent states (eigen- 
states of $): Continuous changes in the fluctuating field 
$#O cannot alter the circulation of the velocity, which has 
discrete values, so that the superfluid motion is maintained 
even if we have a vanishing expectation value ($) = 0. The 
superfluidity is lost only if an important role is played by 
configurations for which the condition ( / $ I )  # O  is violated 
(there is a disruption of the phase at the points ( IqI ) = 0).  
In the one-dimensional case (a  closed contour of length L), 
the appearance of even one such excitation (which is un- 
avoidable for any T >  0,L + oo ) makes a preservation of the 
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superfluid motion impossible. A supeduidity at d = 1, T >  0 
would contradict the result of Ref. 20 for the exactly solvable 
model without a phase transition at all T >  0 (see also Ref. 
16). 

The concept of an effective field 4 (or @) indicates that 
a necessary and sufficient indicaiion of superfluidity is an 
effective condensate. We have I (V) 1' = no#0 if and only if 
the system is a superfluid system, ii, 
= L - d  (a; 6,) = n - E' [see (20) 1, but the number den- 

sity of phonons, <' = $ nG(~ , )ddp ,  is finite in the cases 
d = 2, T >  0 and d = l , T  = 0 and divergees logarithmically 
in the cased = 1,T> 0. 

In terms of @ we thus see why, "at the microscopic 
level," a transition from T = 0 to small T >  0 for a two-di- 
mensional Bose liquid essentially means a slight change in 
state (in particular, superfluidity is preserved), while the 
change in the case of a one-dimensional system is a radical 
change: While the effective condensate changes only insig- 
nificantly in the former case, it disappears completely in the 
latter case. The superfluidity emergF as a manifestation of 
the macroscopic (c-number) field (q) = iiA/2-n1'2, which 
is responsible for the macroscopically filled "quasiparticle" 
level  go-^ -+ CU,  as a consequence of an zffective long- 
range order (EL0)--even in the case with (*) = nA'2 = 0, 
when the original long-range order (OLA) is disrupted by 
phase fluctuations. 

As was mentioned in Ref. 5, the infrared anomaly of the 
anharmonicity is a consequence of specifically the Gold- 
stone theorem, not of the degeneracy with respect to p itself 
(this degeneracy is not present in cases of an external field 
h ,  iio+ii,, with a singular potential, e.g., Vp - l/p2). In this 
connection we wish to emphasize that the anomaly is a con- 
sequence of a spontaneous breaking of a global, not local, 
continuous symmetry, where the Goldstone excitations ac- 
quire a gap. Correspondingly, in the local case (a supercon- 
ductor or a Higgs condensate) there should be no disrup- 
tions of the original long-range order (the original 
condensate) (except in the cased = 1, T >  0, where nonper- 
turbative irregularities are important). We can assume that 
the "transverse" oscillations of $ (the source of the infrared 
anomaly) are established entirely by the gauge, which fixes 
the phase p, transforming into longitudinal gauge bosons 
with m #O. In the case of superconductivity, however, it is 
necessary to take into account the circumstance that the sys- 
tem as a whole is neutral and that there is a breaking of not 
only the local gauge symmetry but also the global Galilean 
symmetry. As a result, a gap-free mode (sound) appears, as 
one of the pole components of ( p p  ) . The answer to the ques- 
tion of whether the original condensate (the original long- 
range order) is preserved depends on the choice of gauge: 
affirmative if the phase p is fixed, and negative if the longitu- 
dinal component of A is fixed, e.g., A = 0 (in this case, we 
can introduce an effective condensate and an effective long- 
range order in the standard way). 

2. We also wish to call attention to the definite role 
played by the original condensate in the condition for 
superfluidity. Let us consider a Bose liquid with an increas- 
ing but finite volume Ld . If nO#O ( d  = 3,T>O;d = 2,T = 0)  

the condensate level p,, - 2 d / L  is distinguished from its 
neighbors in that it is filled more rapidly with increasing 
volume Ld : 

[the result of the harmonic approximation, 
NF: cu l/p,N;:", rn l/p2-see (28 )-is exact in this 
case]. In thecased=2,T>Oandd= l,T=O,ontheother 
hand, the condensate level is not singled out: 

[as long as the condition ~ < f i / i , ,  (29) holds, we can use 
the, harmonic approximation, (28), for N, 1. In the case 
d = l ,T  > 0 the number of particles in the neighboring levels 
increases under these conditions even more rapidly ( a L 2, 

than in the condensate ( a L ) .  Interestingly, the relation 
between the particle filling numbers of the condensate level 
and of the nearest above-condensate levels for an interacting 
Bose system in the harmonic approximation, (34), (35), at 
T >  0 is the same for an ideal gas, despite the important dif- 
ference between the spectra of the two systeps. The role of 
the spectrum can be seen in terms of V, in the case 
d = 2,T> O,Ld - co : The gas of particles loses its conden- 
sate (NAT'O) = 0), while the gas of quasiparticles retains its 
condensate (z T<Tcz N) . 

At small momenta,p <PC, the phase fluctuations which 
destroy the condensate also change the asymptotic behavior 
of the Green's  function^:'^^''^'^ 

G t l  ( r ,  T=O) m r 6 ,  6=rnT/2nn; 

Npml/pZ-6 (d=2, T>O) ; 

, ( r  0 )  r =mc/2nn, 

N,ml /~ ' -~  (d=l,  T=O) ; (36) 
Gii  ( r ,  z=0) me-"', a=rnT/2n; 

N,.na/ (p2+aZ) (d=l, T>O). 

With increasing Ld - (beginning at L X fi/i, ), we thus 
find that (35) is replaced by 

We see that the number of particles in the lowest energy state 
(the "condensate"), which again is undistinguished from its 
neighbors, retains an important feature of an ordinary con- 
densate: It is "macroscopic," increasing without bound with 
increasing volume (although slightly more slowly). This 
circumstance refines the conclusion that the condensate dis- 

appears [that lim (no = N d L  d, is zero]. In the cased = 1, 
L - m  

T >  0, on the other hand, the condensate disappears com- 
pletely and the number of particles in the low-lying levels in 
"microscopic"-it does not increase with the "volume" L of 
the Bose system: 

The macroscopic nature of the filling of the condensate level 
in the cases d = 2,T> 0 and d = l ,T = 0 justifies the exis- 
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tence of a phase operator 6 for a Bose system [it appears in 4 
in (3) 1, whose "correct" definition is related to the assump- 
tion that No is "ma~roscppic."'~ At small values T>O 
(d  = 2), the definition of q, and 8 dgers only very slightly 
fromthat inth~caseT=O ( d =  2) :YTzY,  =O.Thegen- 
eralization of q, (Ref. 13) ( T  = 0,d = 3) to the case T = 0, 
d = 2 is obvious. In the no;superfluid caze, d = 1, T >  0, we 
cannot introduce a phase q, or thus 4, IP. Relations (36)- 
(38) explain the meaning of the relationship between 
superfluidity and the nature of the decrease in the field corre- 
lation function over distance: A slow (nonexponential) de- 
crease leads to a filling of the condensate level which in- 
creases with the volume (in this sense, the filling is 
macroscopic), and this result is sufficient for the appearance 
of an effective long-range order and superfluidity. 

3. At d = 2, T >  0 and d = 1, T  = 0, the infrared anom- 
aly of the anharmonicity in GI, = ( I ) $ + )  leads to the disap- 
pearance of the priginal long-range order in the correlation 
function ($(r)$ + (0 ) )  [see (36)l. The absence of an in- 
frared anomaly from 

means 

where 1412 is the effective long-range order, and 
($ ( r )  $'+ (0)  ) has the form of the solution of the Laplace 
equation in a d-dimensional space at T >  0 or a (d  + 1 ) -di- 
mensional space at T  = 0. At d = 2, T >  0 and d = 1, T = 0 
the fluctuations ($+$')-dB in (28) diverge, but the 

h 

transformation 4 - 9, ( 11 ), ( 18), causes them to con- 
verge: 

,. ,. 
(yly')=ii'= , iui'"d~(e W T / C ~  

P 

(at T  = 0, the field $ does not fluctuate at all: 

In the case d = 2, T >  0 we have 

< ~ ( ~ ) Y + ( O ) > = I ~ I J ~ ~ + < Y ~ ( ~ ) Y ' + ( O ) ) ,  

lY12=l$12, < 9 (r) Y '+ (0) )-11~. 

In the case d = 1, T >  0 we have neither an original long- 
range order nor a~effectiv~long-range order: ;' diverges. If 
we formally set (Y ,,, = Y ,= ,, we find 

<Y' (r) @'+ (0) )T>o-ln r. 

This analysis of superfluidity can be generalized to the 
case of a crystalline state. Two types of ordering--crystal- 
line (a correlation in the positions of the particles) and su- 
perfluid (a  coherence of the wave functions)--constitute 
the "particle-wave alternatives" for the state of a Bose sys- 
tem in the low-temperature limit.5 An infrared anomaly of 
the anharmonicity also arises in the case of a crystal: This is a 
general property of systems with a spontaneously broken 

global continuous symmetry. The replacement in a crystal of 
the original order parameter 

by some effective parameter R ( r )  [which is linear in u ( r )  ] 
eliminates the infrared anomaly and preserves the effective 
long-range o rde~ in  the cases d = 2, T > 0 and d = 1, T = 0. 
The meaning ofR ( r )  (an analog of $) is less "physical" than 
that of 4: It  simply reflects the regularity of the lattice of 
mean positions of the atoms. In no case does the infrared 
anomaly of the anharmonicity disrupt the internal structure 
of the state, for which the smallness of the fluctuations of the 
gradient of the degeneracy parameter is important: 
(v2) COP,, for a superfluid and ( (ui -ui + 1 )') for a crystal. 
The parameter of the effective long-range order of a crystal 
(an analog of an effective condensate, 4 = Y) at T = 0 is 
naturally normalized by n = N / V ,  under the assumption 
that the ordering extends to all the particles, as in the case of 
superfluidity. In each case the parameter of the effective 
long-range order at T  = 0 is thus independent of the intensi- 
ty of the zero-point vibrations, although the latter may 
greatly reduce the parameter of the original long-range or- 
der (d  = 3, -0; d = 2, T = 0). In other words, in terms of 
the effective long-range order there is no substantial differ- 
ence between systems with a slight anharmonicity corre- 
sponding directly to the field and particle semiclassical be- 
havio? [the model with a(1(2) ,  a crystal with a small de 
Boer parameter, A(1 ] and to the general case of coherent 
and crystalline ordering. Thermal phonons play different 
roles for these two types of ordering: The phonons lower the 
coherent ordering (they "deplete" the effective condensate) 
but not the crystalline ordering. In a crystal, the parameter 
of the effective long-range order reduces the thermal defec- 
tons (defects): vacancies and interstitials. However, the pa- 
rameter of the effective long-range order at T = 0 is equal to 
n even in the case of a crystal with a low-lying band of vacan- 
cions, where the number of particles may turn out to be low- 
er than the number of sites because of corrections to the band 
approximation. Only when a superfluid component appears 
in the crystal do the two parameters of the effective long- 
range order at T = 0 "take their shares" of the total number 
of degrees of freedom. Finally, we note that a superfluid is 
similar to a normal Fermi liquid at T  = 0 in the sense that in 
both cases, in terms of quasiparticles, an analogy with an 
ideal gas becomes apparent. The number of quasiparticles in 
a Bose condensate and in the Fermi filling is equal to the 
total number of particles. 

5. DISTINCTIVE FEATURES OF THE INFRARED ANOMALY IN 
A BOSE SYSTEM WITHOUT A CONDENSATE 

1. We can show that in the case no = 0 the infrared 
anomaly of the anharmonicity which stems from the phase 
degeneracy "distorts" the field characteristics of the system 
(it introduces a qualitative distinction from the harmonic 
approximation), not only at small  momenta,^ 5 p c  , but also 
at large momenta,p>p, . A direct calculation in terms of the 
variables n, q, (in the case d = 2, T> 0, for example) indi- 
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cates that the Green's function GI, (p) vanishes: 

($ (r ,  T )  (r', T ' )  )=( [ n  (r ,  T )  n (r', z ' )  1"' 

x "XP {i[cp(r, a)+cp(r', z ')  I} ) 
-nexp {-'/Z([cp(r, .c)+cp(rf, 7 ' )12 ) ) ;  

The expression in the argument diverges logarithmically 
(because of the term with E = 0), SO that we have 
($(r,r)$(r',rl)) = 0. The result is physically understanda- 
ble: The same factor which disrupts the single-particle con- 
densate, i.e., the long-wave phase fluctuations (note, for ex- 
ample, the vanishing of the expectation value 

in the case d = 2, T >  0 by virtue of the logarithmic diver- 
gence of the argument 

rules our the existence of "binary" and other "higher-order" 
condensates. Consequently, if the infrared anomaly leads to 
the equality ZI2(O) = 0 in the case no#O, in the case no = 0 
we have 

At the same time, for G,, = - ($$*) in the region p )  p, 
the harmonic approximation is justified [the expression 
analogous to ( 39) with a phase difference in place of t$e s tm 
converges]. This result is understandable: $: $sh 

A A 

= $lfh+ $:h ( Section 3). 
Using G,, ( p , ~ )  and GI, ( p , ~ )  = 0 we can easily find the 

susceptibilities xll and X, to perturbations of the field $ 
(Ref. 5). In the case no = 0, xll (p  + O,E = 0) not only di- 
verges (otherwise, we would have X: = - 1/4mci) but 
also (in contrast with xinof " ) agrees entirely with X ,  
(which is understandable in view of the disappearance of the 
condensate, ($) = NJL + 0, which distinguishes~,~ from 
XI 1: 

(d-2. T>O) 
XII, X L = G ~ ~  (p+O, E=O) 

2. The inadmissibility of the approximate identification 
of *sh ,41fh with 4sh in the case no = 0 characterizes a "stiffen- 
ing" of the restrictions on the choice of suitable variables. 
This stiffening also has some other aspects. In the case 
no = 0, we cannot restrict the expression for the suitable nor- 
mal modes in terms of the field modes to the lowest-order 
corrections to the linear terms, as we may in the case no#O 
(Ref. 5).  If we carry out a series expansion in the expression 
G,,-n expi --;([q,(r,r) --q,(r',~')]~))andswitchtothe 

Fourier representation, 

we find that in the case no# 0 the divergence of the terms in 
the limitp 4 0 decreases rapidly with the index of the term 
of the expansion: The first term (the pole term) is propor- 
tional to l/p2; the second is proportional to l np  for d = 3, 
T=Oor to  l /p ford=3,  T>Oord=2,T=O; the th i rd is  
proportional to lnp ford = 3, T >  0 or d = 2, T = 0; the oth- 
er terms converge. The addition to $ ($*) in 
G,, = - ($$*) of certain expressions of second and third 
orders in $, $* thus eliminates all the divergences except the 
pole term (all manifestations of the infrared anomaly of the 
anharmonicity). In the case no = 0 ( d  = 2, T >  0; d = 1, 
T = 0), on the other hand, the divergence of all the terms in 
(42) in the limit p -+ 0 is identical (the expansion becomes 
formal), and it is not possible to eliminate the divergences by 
corrections of any sort to $, $* in G,, which are of finite 
order in the fields. The approximate phase operator pro- 
posed in Ref. 22 and the approximate phonon operator pro- 
posed in Ref. 2 1 are suitable. 

A specific feature of the case no = 0 is also seen in the 
h 

nature of the permissible approximations for U = eB , ( 17h 
While in the case no # 0 we can restrict the expression for R 
to the lowest powers of 4, in the present case this is, in a 
sense, not legitimate: The low-order approximations corre- 
spond to the incorporation of the infrared anomalies of pairs, 
trios, etc., but all the infrared anomalies "disappear", 
Nt ' /L  -+ 0, and in order to obtain an effective condensate 
with # o - ~ d  we would have to use the entire series in ( 17). 

6. FLUCTUATION REGION FOR A TWO-DIMENSIONAL BOSE 
SYSTEM 

In contrast with the case d = 3, where model (2)  loses 
its small parameter only near T, (r=T, - T/Tc(l,  in the 
case d = 2 this happens as early as T- T, (7- 1 ). The field 
diagrams in the short-wave region, p > go, lose their small 
parameter if the lower limit of the integrations, q,, turns out 
to be on the order of p, in (3 1). On the other hand, the 
anharmonicity of the hydrodynamic modes in the region 
p <go becomes important when go reaches the characteristic 
hydrodynamic momentum po( T) = mc( T); here 
C( T) - [no( T) Vo/m] 'I2, where no(T) is the number density 
of particles of the original condensate or of the effective con- 
densate. Assuming no( T) -nr, i.e., c (T)  -crl", 
po(T) -po~'12, we find the size of the "fluctuation region" 
from the condition po ( T) -p, : 

This result agrees with the special role played by the "non- 
perturbative" irregularities (vortices) in the cased = 2: Re- 
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gardless of the strength of the interaction, the vortices disso- 
ciate, disrupting the supeduidity, at Tf = m/2m - T, 
(Ref. 17). 

In a certain sense, the two types of infrared anomalies of 
the anharmonicity-that due to the phase degeneracy and 
that due to the increase in the fluctuation amplitude toward 
T,-are independent: The analog of a nondegenerate Bose 
system, the real field @, has the same fluctuation region. 

h h  ere? = = Q0 + a'. At T- T, , we can use the substitu- 
tion @' + @'. The Hamiltonian is analogous to that used in 
the microscopic theory of phase  transition^,'^ 

where 

In the cased = 2, as in the cased = 3 (Ref. 5 ), we can define 
a number Gi by examining the ratio of the fluctuations of the 
order parameter in a "volume" with a linear dimension r, to 
the square of the expectation value of the parameter 
Qo = ( l ~ 1 / b ) ~ / ~ :  

By analogy with Ref. 23, we find 

{the definition of r ,  [r ,  -' = x = ( laI/C) 'I2] follows from 
the asymptotic behavior of the correlation function, 

< @' ( r )  (Df (0) ) - (TIC) e-*'/r (d=3)  ; 

(TIC) e-"' ( x r )  -'" (d=2 ) ) .  

I am deeply indebted to V. L. Ginzburg, D. A. Kirzh- 
nits, L. P. Pitaevskii, and A. A. Sobyanin for interest in this 
study and for comments. 

"It is difficult to carry out a quantitative calculation of all of the effects for 
a strongly interacting Bose system at large T: The interaction of excita- 
tions changes the distribution of excitations, and it also contributes di- 
rectly to the entertainment (since it is non-Galilean) and complicates 
the hybridization. 
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