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We discuss the problem of the generalization of the nonlinear Korteweg-de Vries equation for 
weakly dispersive waves in a magnetized plasma. We obtain a three-dimensional nonlinear equa- 
tion for magnetosonic waves in such a plasma. We show that in the case of waves with frequencies 
of the order of or higher than the ion cyclotron frequency the structure of this equation differs 
significantly from the structure of the three-dimensional Kadomtsev-Petvisashvili equation. We 
study the three-dimensional stability of one-and two-dimensional magnetosonic solitons. We 
show that two-dimensional high-frequency magnetosonic solitons are stable under long-wave- 
length three-dimensional perturbations. 

1. INTRODUCTION 

Magnetosonic (MS) solitons play an important role in 
the problem of collective methods for heating a plasma and 
some other problems. Sagdeevl predicted them in the Fifties 
when studying the problem of collisionless shock waves in a 
magnetized plasma. Reference 1 and a subsequent review 
article2 dealt with large-amplitude solitons (the magnetic 
field of the wave was assumed to be comparable with the 
equilibrium magnetic field) corresponding to strongly dis- 
persive MS waves. Later the main attention was paid in theo- 
retical studies to small-amplitude MS waves with a weak 
dispersion. Such waves turned out to be interesting not only 
from a physical but also from a mathematical point of view. 
This was to a large degree connected with the fact that weak- 
ly nonlinear, weakly dispersive MS waves are in the one- 
dimensional approximation described by the well known 
Korteweg-de Vries ( KdV) equation3 and because of this are 
among the plasma applications of the general results of an 
analysis of that equation. 

The aim of the present paper is the derivation of two- 
and three-dimensional (i.e., of so-called multidimensional) 
equations for weakly nonlinear, weakly dispersive MS waves 
and the study of soliton effects described by those equations. 
We are thus in our work dealing, in particular, with multidi- 
mensional generalizations of the KdV equation for the case 
of MS waves. Kadomtsev and Petviashvili4 were the first to 
state in 1970 the problem of multidimensional generaliza- 
tions of the KdV equation. These authors constructed a two- 
dimensional generalization of the KdV equation, which later 
was named the Kadomtsev-Petviashvili (KP) equation. 
This equation has a canonical form (see Eq. (3.9) of the 
review by Danilov and PetviashviliS). 

Here u = u (t, x, z) is the required function which describes 
the wave field; t, x, z are the time and the coordinates (we 
assume that all quantities are suitably made dimensionless) 
and the " + " and " - " signs refer, respectively, to waves 
with positive and negative dispersions. In this notation the 

KdV equation means: 

It was noted in Ref. 4 that the KdV equation describes a 
wide class of waves in weakly dispersive media, amongst 
them MS waves in plasma. However, whether Eq. ( 1.1 ) de- 
scribes MS waves was not elucidated in Ref. 4. 

Reference 6 was the first paper about the problem of a 
multidimensional generalization of the KdV equation for 
waves in a magnetized plasma. In that paper ion-acoustic 
waves considered which propagated along the magnetic 
field. The authors of Ref. 6 showed that in the approxima- 
tion of a sufficiently strong magnetic field such waves are 
described by a three-dimensional equation of the form (see 
Eq. (3.12) in the review by Danilov and Petviashvili5) 

where z is the direction of the magnetic field, A, = a2/ 
ax2 + a '//ay'; x, y are the coordinates at right angles to the 
magnetic field. 

Reference 6 also stimulated studies of three-dimension- 
al ion-acoustic waves in a plasma with a rather weak magnet- 
ic field (in the unmagnetized plasma approximation) and of 
similar kinds of waves in other weakly dispersive media. 
Along those line, an equation was obtained of the form (see, 
for instance, Ref. 5) 

which by analogy with ( 1.1) was called the three-dimen- 
sional KP equation. 

The earlier history of multidimensional generalizations 
of the KdV equation was summarized in the above men- 
tioned review a r t i ~ l e . ~  However, the authors of Ref. 5 did not 
touch upon the case of MS waves. 

The problem of multidimensional genralizations of the 
KdV equation for MS waves did not receive attention in ear- 
lier investigations because of its seeming triviality, in view of 
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the similarity between the dispersion laws of MS waves and 
isotropic ion sound. An impression was therefore gained 
that MS waves, like ion-acoustic waves in a plasma with a 
weak magnetic field, are described by the two- and three- 
dimensional KP equations. This point of view was reflected 
in Refs. 7 and 8. Let us see how far this point of view is 
justified. One can get some idea about the problem of 
whether the two- and three-dimensional nonlinear equations 
for MS waves reduce to KP equations by comparing the lin- 
ear parts of the corresponding equations. To construct the 
linear part of the equations for MS waves we turn to the 
linear dispersion equation of these waves, which in the sim- 
plest case of a cold plasma has the form3 

Here s= 1 + k 2~2/wk;  w and k are the frequency and wave 
number, cA = B,,/(kn,yni )'I2 is the Alfvin velocity, 

are the squared electron and ion plasma frequencies, c is the 
velocity of light, 6 is the angle between the wave vector and 
the direction of the magnetic field B, which is assumed to be 
parallel to thez-axis; mi, me are the ion and electron masses, 
and e, is the electron charge. We put k = k + k; + k 
approximation ky > (k, , k, ) we get 

Replacing w and k by the operators w-tid /at, k-t - iV act- 
ing on a function p which characterizes the field, we con- 
struct using ( 1.6) the required linear equation for p: 

Instead of y we introduce the self-similar variable 

where u is the propagation velocity of the waves along y [do 
not confuse this u with the function u occurring in the ca- 
nonical nonlinear Eqs. ( 1.1 ) to ( 1.4) and u/a is the wave 
velocity along z (we assume that a( 1 ). In that case ( 1.7) 
reduces to the form 

Here E = 1 - C: (1  + a2)/u2 is a small parameter which 
has the meaning of the appropriately normalized permittivi- 
ty (we assume u z c A  ), and = a2mi/me. 

It is clear that in the case d / d ~  2 wpi/c (i.e., when 

k, 2wpi/c) which is of most interest for the problems dis- 
cussed in Refs. 1, 2, the MS waves are not described by the 
three-dimensional KP equation. It is thus clearly necessary 
to derive a three-dimensional equation for MS waves with 
arbitrary ky dmpi, and this is done in section 2. 

Recently9 a multidimensional generalization of the 
KdV equation was considered for the case of drift-ion-acous- 
tic waves. In that case not only the usual (scalar) nonlinear- 
ity, occurring, for instance, in Eqs. ( 1.1 ) to ( 1.4), but also 
the so-called vector nonlinearity, i.e., terms of the form 
[Va x Vb], , with a, b some functions which characterize the 
wave field, was taken into account. 

A recent paper by Manin and Petviashvili" was also 
devoted to a multidimensional description of nonlinear MS 
waves. However, that paper is wrong. One of the errors of 
Ref. 10 was explained in Ref. 11. It concerns the sign of the 
transverse dispersion of MS waves in a plasma with finite P 
(0 is the ratio of the plasma pressure to the magnetic-field 
pressure). This sign is positive in Ref. 10 while, in fact, it 
must be negative. The causes of such an error were discussed 
in detail in Ref. 11. 

The second error of Ref. 10 consists in the fact that 
when obtaining (although with an incorrect sign) an expres- 
sion for the transverse dispersion which refers to the case of 
low-frequency MS waves (w <wBi ), the authors of Ref. 10 
automatically extended it to the case of high-frequency MS 
waves (o > oBi ) . In other words, these authors tansferred 
results obtained by a series expansion in a small parameter 
(in this case in l/wBi to a region in which this parameter is 
large; this is, of course, inadmissable. 

We give in section 3 a general analysis of the nonlinear 
equation for MS waves. We study in section 4 the stability of 
one-dimensional MS solitons and in section 5 that of two- 
dimensional ones. The results are discussed in section 6. 

2. INITIAL EQUATIONS 

We study waves with a nonpotential electric field E. In 
that case the total magnetic field B differs from the equilibri- 
um field by a wave part B so that B = B, + B. We assume 
that the fields E and B depend both on the transverse coordi- 
nates x, y and on the longitudinal one z, so that d /dz # 0. It is 
then necessary to take into account both the longitudinal 
component 5, of the wave magnetic field and the transverse 
components, denoted by B,, i.e., to assume that 
B = 3, e, + B, where e, is a unit vector along z. We assume 
for the sake of simplicity that the plasma is cold, i.e., we 
neglect the ion and electron temperatures. We discuss in sec- 
tion 6 the limits of applicability of the cold-plasma approxi- 
mation. 

To describe the ions we use the gyromagnetic equation 
of motion 

4nnrnidVildt= (BV ) B- VB2/2, (2.1) 

obtained by adding the usual ion and electron equations of 
motion and neglecting the electron inertia (Vi is the ion ve- 
locity). It follows from (2.1 ) that 

274 Sov. Phys. JETP 62 (2), August 1985 Mikhanovskiletal. 274 



where V$' = c i  ( 1 + a 2 ) ~ , / u B ,  is the main part of V,;. 
Equation (2.2) has been written in terms of the variables 77, 
x ,  z, t which were introduced in section 1. We neglect the 
longitudinal motion. 

Substituting (2.2) into the equation of continuity for 
the ions we get an expression for the wave part f z i  of the ion 
density: 

n 

where h =gz /B,, L -6' / a ~ .  We neglected terms of order a2 
in the correction terms in (2.3). 

Turning to the evaluation of the wave part f i e  of the 
electron density we write their equation of continuity in the 
form 

dii. d i i ,  
-- u - + div (nV,,) + 

at  d q  e, 

where n = n, + ii, is the total electron density, V,, the 
transverse electron velocity, and j, the longitudinal current 
connected with the perturbed magnetic field through the 
Maxwell equation 

j,=c rot, R,/4n. (2.5) 

We used the fact that because we neglect the longitudinal 
wave motion of the ions the longitudinal electron velocity is 

VZe=jz/eena. (2.6) 

Moreover, from the equation for the transverse electron mo- 
tion we get, using (2.6), 

Substituting (2.7) into (2.4) we obtain 

We use for the function p characterizing the wave field 
[see ( 1.7), ( 1.9) 1 the transverse electric potential which is 
defined by the relation 

We find a connection between g, and q, by using the Max- 
well equation curl, B = 47~j, /C which in the framework of 
our approximations reduces to the form 

It follows from (2.9) and (2.10) that 

In contrast to the linear problem we take into account 
also the z-component of the wave electric field E, (it will 
become clear in what follows that E, is connected with the 
vector nonlinearity). Similar to Ref. 12 we express E, in 
terms of the longitudinal electric potential $ defined by the 
relation 

We then get for B, from the Maxwell equations the expres- 
sion (cf. Ref. 12) 

We find the connection between $ and q, by using the equa- 
tion for the longitudinal motion of the electrons, neglecting 
their longitudinal inertia, i.e., the condition for perfect elec- 
tron conductivity along the total magnetic field: 

Using (2.7) and (2.12) to (2.14) we express B l  in termsof 
P: 

Here 

Substituting (2.15) into (2.15) and using the fact that 
a /ax& /a77 we get 

The formulae given here allow us to express iii and ii, in 
terms of p .  Finding these expressions and using the quasi- 
neutrality condition iii = ii, we arrive at the required non- 
linear equation for p: 

Here 

q=3e, (2m,u2)-', 

and the expression for E is given in section 1. To obtain 
(2.18) we changed to a frame of reference moving along the 
magnetic field with a velocity ac, , i.e., we changed from a 
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variablez to the variable c = z - ac, t and after that, for the 
sake of convenience denoted 6 by z. 

3. GENERAL ANALYSIS OF THE NONLINEAR EQUATION 

We consider some general consequences2f Eq. (2.18 1. 
Acting upon that equation with the operator D, multiplying 
the result bye, and then integrating over space we get after a 
number of transformations 

ar,lat=o, (3.1) 

Equation (3.1 ) is the law of energy conservation for the case 
considered of MS waves and at the same time is a well de- 
fined guarantee for the self-consistency of the approxima- 
tions made above. 

Neglecting the vector nonlinearity, Eq. (2.18) takes the 
form 

where u was introduced in section 1. It follows from (3.3) 
that together with (3.1 ) we have, when we neglect the vector 
nonlinearity, also the conversation law 

ar,/at=o, (3.4) 

c2 2 
- - (z)  + - q.p3] dr. 

a p e  3 

To analyze the other consequences of Eq. (2.18) we intro- 
duce the concept of high-frequency and low-frequency mag- 
netosonic (HFMS and LFMS) solitons connected, respec- 
tively with HFMS and LFMS waves, i.e., waves with 
characteristic frequencies large or small compared to the ion 
cyclotron frequency oBi =eiB, /mi  c (ei = - e, is the ion 
charge). According to ( 1.6) HFMS waves correspond to 
characteristic wave numbers k,, > opi /c and LFMS waves to 
k,, <opt /c. The analog of the characteristic wave number is 
in the soliton problem the reciprocal of the characteristic 
width of the soliton 1/1, and the analog of the characteristic 
frequency is the reciprocal of the characteristic soliton time 
d l , .  HFMS waves thus correspond to solitons with I, < c/ 
opi (small scale solitons) and LFMS waves to solitons with 
I, > c/wpi (large scale solitons). 

In the case of LFMS waves Eq. (2.18) reduces to the 
form 

Apart from the notation, this equation is the same as ( 1.4), 
i.e., it is one of the variants of the three-dimensional KP 
equation. The integral I, for such waves (see (3.5)) means 

cz 
- - (9) + - q dr. 

@PC 
I aq 3 

On the other hand, for the case of HFMS waves instead 
of (3.6) it follows from (2.18) that 

It is clear that the three-dimensional equation for HFMS 
waves does not reduce to the three-dimensional KP equa- 
tion. 

According to Refs. 1 ,2  (see also Ref. 13) in the case of 
strongly nonlinear solitons I, =c/o,, so that such solitons 
correspond to waves with frequencies of the order of the 
lower hybrid one: w -- (mi /me ) 1'2w,i, i.e., with frequencies 
much higher than the ion cyclotron frequency. Therefore, if 
we use the assumption of weakly nonlinear MS waves and 
aim at an application of the results to the problem of colli- 
sionless shock waves, discussed in Refs. 1,2, and 13, we must 
bear in mind that for this problem we can only be interested 
in HFMS waves which are not described by the three-dimen- 
sional KP equation. The authors of Ref. 8 ignored this fact 
when they stated, in their study of wave collapse in media 
with positive dispersion in the framework of the three-di- 
mensional KP equation, that the problem considered by 
them is particularly important for the above mentioned 
problem. From what we have said it is clear that, indeed, the 
collapse problem studied in Ref. 8 bears no direct relation to 
this problem. 

It follows also from (3.8) that when speaking of two- 
dimensional HFMS waves one must distinguish two variants 
of such waves: g,  z waves and 77, x waves, the field of which 
depends, respectively on the coordinates mentioned. Putting 
in (3.8) a /ax = 0 we find that g, z waves are described by 
the equation 

This equation does not reduce to the two-dimensional KP 
equation. However, the case of 77, x waves (a /Jz = 0) it fol- 
lows from Eq. (3.8) that 

Apart from the notation and a transition to the appropriate 
frame of reference, this equation is the same as the two-di- 
mensional KP equation ( 1.1 ) . Hence, for HFMS g, x waves 
the results of the general analysis of the two-dimensional KP 
equation are applicable. Amongst such results is the conclu- 
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sion of Ref. 4, 14 that one-dimensional solitons have a two- 
dimensional (bending) instability for media with a positive 
dispersion (this case means 2 > 1) and that there are no 
instabilities in media with a negative dispersion (when 
2 < 1 ). For the problem of q, x waves with c? > 1 the con- 
clusion in Ref. 15 that there exist two-dimensional rational 
solitons (with a wave field decreasing as r-' with distance) 
is of considerable interest. 

Although HFMS and LFMS waves in the cold plasma 
case considered by us have almost the same dispersion law 
w -- k, c, [see ( 1.6) 1 the nature of the particle motion in 
them is essentially different. The difference in the nature of 
the ion motion in those and other waves is well known (not- 
withstanding the fact that Eq. (2.3) for iii is independent of 
the ratio of the characteristic wave frequency to the ion cy- 
clotron frequency!). It consists in the fact that in the case of 
HFMS waves the equilibrium magnetic field affects the ion 
wave motion very little, whereas in the case of LFMS waves 
this effect is very important. In the problem of the HFMS 
waves, in contrast to the LFMS wave case, the unmagnetized 
ion approximation is thus valid with some degree of accura- 
cy. The difference in the nature of the electron motion is not 
so apparent. One can use (2.7) to check that in the case of 
HFMS waves this motion is approximate rotational in the 
sense that the rotational part of the transverse electron ve- 
locity V,, is large compared to the compressible part, i.e., 

I rot, V,, / > div V,, I. (3.11) 

From this it is clear that the HFMS structures discussed by 
us have rotational properties. Hence, in our problem we are, 
generally speaking, dealing not with a trivial multidimen- 
sional generalization of the KdV equation through adding to 
it linear terms with derivatives with respect to one or two 
additional coordinates, as was done in Refs. 4 and 6, but with 
generalizing it to the case of rotational structures. A reflec- 
tion of the rotational nature of the HFMS structures are the 
terms in Eq. (3.8) with the vector nonlinearity. 

The estimates to be given in what follows indicate that 
the vector nonlinearity is important when 1, ? (mi /  
me ) '18~/w,,, . This corresponds to the case of HFMS solitons 
with rather large amplitudes h - (me/mi ) 'I4. 

It is also interesting to note that in contrast to the case of 
drift-ion-acoustic waves9 the vector nonlinearity occurs only 
in the essentially three-dimensional equations for the HFMS 
waves, but drops out of the two-dimensional equations. 
Hence, the analysis of the role of the vector nonlinearity 
turns out to be necessary only in the case of three-dimension- 
al problems. 

It is clear from what we have said that together with the 
case of sufficiently small-scale HFMS waves when it is nec- 
essary to take into account the vector nonlinearity there are 
HFMS solitons with not too small I, in the study of which 
one can neglect the vector nonlinearity. In the case Eq. (3.8) 
rtduces to the form 

One can also obtain this e%uation from (3.3) by dropping 
from it the term with d 2L -2p /dz2. It is clear that Eq. 
(3.12) differs radically from the three-dimensional KP Eq. 
(3.6). This difference is caused by the fact that whereas the 
term with the derivative with respect to z on the right-hand 
side of Eq. (3.6) is connected with the main terms in the 
dispersion Eq. ( 1.6), the "block" with derivatives with re- 
spect to z in Eq. (3.12) is connected with the longitudinal 
dispersion. To avoid misunderstandings we note that the dis- 
persion occurs in Eq. (3.12) in the form of a combination of 
two terms: one with the coefficient 1 - c? on the left-hand 
side of Eq. (3.12), and the second with the coefficent c2/w;i 
on the right-hand side of this equations. In the theory of one- 
dimensional MS waves only the first of these terms  occur^.^ 
However, in the problem of non-one-dimensional MS waves 
it is necessary to take into account also the second of these 
terms and this is done in the present paper. We note also that 
such kinds of terms are also taken into account in the above 
mentioned Ref. 10. 

4. STABILITY OF ONE-DIMENSIONAL SOLITONS 

In the present section we consider the stability of one- 
dimensional solitons characterized by a potential p0(7) ,  
where po(q)  is a soliton solution of the one-dimensional sta- 
tionary equation 

According to (4.1) the function po (q )  has the form 

cpo (q) = ~ , c ~ ~ E @ ~  ( E )  let ,  (4.2) 

@,,(g) =l/ch2(E/2), E=q/L, A=[($-oZ) / E ]  '5~/o,,. (4.3) 

In section 2 we also introduced the function h =B, /BO char- 
acterizing the relative deviation of the longitudinal magnetic 
field from its equilibrium value. Using (2.1 1 ), (4.2) we find 
that the potential po = po(7) corresponds to a function 
h = ho(q) which is equal to 

It is clear from (4.3) that the quantity A plays the role of the 
characteristic size 1, of the soliton which was introduced in 
section 3, i.e., 

In accordance with what was said in section 3 we are dealing 
with HFMS solitons, if 

and with LFMS solitons in the case of an inequality with the 
opposite sign. Comparing (4.4) and (4.6) we conclude that 
in the case of HFMS solitons 

where ho is a characteristic value of the function ho(q). On 
the other hand, in the case of LFMS we have an inequality 
which is the opposite of (4.7). 
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We consider a solution of Eq. (2.18) in the form 

where @ is a small correction to p, (perturbation of the soli- 
ton potential). Putting 

and using (2.18) we get the following expression for $: 

The prime indicates here derivatives with respect to 6, 

Similarly to Refs. 4, 9 we look for $ in the form of a 
series in powers of 0, K  , and K, 

For the sake of generality we assume here that the parameter 
b which characterizes the vector nonlinearity is a quantity of 
the order of unity. In what follows we shall be dealing with 
both cases where b g l  and with cases when b> 1. We note 
that the assumption that b > 1 does not contradict the condi- 
tion that K, is small, provided that p> 1. Using (4.6) it is 
clear that the vector nonlinearity is important only in the 
problem of the HFMS solitons. We discuss this problem in 
more detail in what follows. 

Using (4.9) we find that the function p, is given by the 
standard expression 

where A is an arbitrary constant, while the function p, satis- 
fies the equation 

Here 

From (4.13) we get 

According to (4.9) the equation for p, has the form 

Multiplying both sides of this equation by and integrat- 
ing the result over 6 with infinite limits we arrive at the re- 
quired dispersion equation for the perturbations of the soli- 
ton: 

where the asterisk indicates the complex conjugates. It is 
interesting to note that when we take the vector nonlinearity 
into account ( b  #O) and also when we neglect it, all coefli- 
cients in the dispersion equation turn out to be real (com- 
pare Ref. 9 ) . 

Substituting (4.140, (4.16) into (4.19) we reduce the 
dispersion equation to the form 

1 

Here 

We note that approximately 

It follows from (4.20) that solitons with 2 < 1, E > 0 
corresponding to waves with negative dispersion are stable 
for any relation between K  ,I and K ,  and any vector nonlin- 
earity. According to (4.4) for such solitons gz / B ,  > 0: the 
stable solitons are compression solitons. This is also that 
class of solitons which was first of all studied in Ref. 1 for 
o = 0, i.e., for strictly transverse propagation. We need thus 
consider only the stability of solitons with C? > 1, E < 0 (rar- 
efaction solitons). Such solitons were studied in its time in 
Ref. 2. Using (4.20) we find the criterion for the stability of 
such solitons: 

As we noted at the beginning of this section, for the case 
of LFMS solitons we have an equality which is the opposite 
of (4.6). Using also the fact that in that case C = l [see 
(4.22) 1 we conclude that the instability criterion (4.23) is 
not satisfied for LFMS solitons and that such solitons are 
thus unstable. To find the growth rate of that instability we 
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turn to the dispersion Eq. (4.20) which in the case of LFMS 
waves reads 

Hence it follows that perturbations of LFMS solitons grow 
at a rate 

where k = ( k i  + k: )'I2 is the wave number transverse 
with respect to the soliton front. The instability considered is 
a variant of the bending instability of a one-dimensional soli- 
ton which was first noted in Ref. 4. The condition for the 
applicability of Eq. (4.25) is found by recalling that, by as- 
sumption, 1p21 < lpll. It follows from that inequality that 

For larger k the instability is stabilized.14 We thus get from 
(4.25), (4.26) the estimate 

~ < E o . ,  (4.27) 

where w, zc,  /A  is a characteristic frequency of the soliton. 
When k = 0 the results (4.25) to (4.27) refer not only 

to LFMS solitons but also to solitons with arbitrary w, /aBi 
amongst which are HFMS solitons (as fork = 0 Eq. (2.18) 
reduces to the KP equation). We must thus elucidate for the 
case w, /wBi what new feature emerges when k #O. We con- 
sider this problem, first assuming that k, = 0 and then tak- 
ing into account finite k, . 

When k ,  = 0 the stability criterion (4.23) reduces to 
the form 

This inequality does not contain the perturbation wave 
numbers and thus characterizes a region of stationary soli- 
ton parameters which are stable against the perturbations 
considered. Comparing inequality (4.26) with (4.6) we con- 
clude that the HFMS solitons are stable (in the above-indi- 
cated sense). When u> 1 the stability criterion (4.28) takes 
the form 

In terms of the function h, [see (4.4) ] this means that the 
solitons are stable if their amplitude is not too small, 
A, 2 3a2. 

If inequality (4.28) is a strong one, i.e., if we are dealing 
with HFMS solitons, (4.23) means that the perturbations 
are stable provided their wave numbers satisfy the relation 

When 2% 1 and if we neglect the vector nonlinearity (4.30) 
reduces to the form [compare (4.29) 1 

According to (4.22) the coefficient C decreases when the 

parameter b increases. It is therefore clear from (4.30) that 
perturbations which are stable when C = 1 may become un- 
stable when C g  1. In that sense the vector nonlinearity plays 
a destabilizing role. One can obtain an estimate of the pa- 
rameter b by taking for k, its upper limit determined by the 
right-hand side of (4.26). We then have 

It is clear that b a l/d when 2% 1. The vector nonlinearity 
is thus most important when u is of the order 1. In that case 
b 2 1, provided that 

The corresponding solitons have a characteristic size 
I, z (mi/me ) "* c/ope. These were just the estimates used in 
section 3. 

In agreement with the general ideas of the theory of 
soliton ~tability,~ two-dimensional solitons may be formed 
as a result of the instability of one-dimensional solitons. Us- 
ing this and the analysis given above one may expect that 
two-dimensional solitons must have a characteristic 7-size 
I, of the order I, and a characteristic x-size I ,  of the order of 
the minimum wave length of the perturbation, i.e., accord- 
ing to (4.5), (4.6) 

We shall be dealing with such solitons and their three-di- 
mensional stability in section 5. 

5. THREE-DIMENSIONAL STABILITY OF TWO-DIMENSIONAL 
SOLITONS 

In the stationary case (d/dt = 0)  Eq. (3.10) (a  two- 
dimensional KP-type equation) reduces to the form 

where q,, = pO(v,  x) .  We consider the stability of two-di- 
mensional structures of the type (5.1) starting from our 
three-dimensional Eq. (3.3). A similar problem has been 
studied before in Ref. 7 in the framework of the three-dimen- 
sional KP Eq. ( 1.1 ) . In that case, as in Ref. 4, the method of 
a series expansion in powers of the frequency and the wave- 
number of the perturbations was used (cf. section 4). The 
same method will be used in our analysis. 

We put in (3.3) q, = q,, + @ where the perturbation@ is 
assumed to depend on t and z in the form exp( - iwt 
+ ik II z). We then get for @ the equation 

We look for 6 in the form of the series (4.11). As in 
section 4, we have q,, = AdpJdq. By analogy with Ref. 7 we 
find 
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The orthogonality condition for p, which follows from 
(5.2), gives the dispersion relation 

Here 

We reduce (5.4) to dimensionless form by making in 
(5.1 ) the change of variables 

cpo (q ,  X )  = (449)  00 (0, X) . (5.6) 

Here 

0=3-'" (* ) xb %=3-'" l ~ l  Ope 
--93 0 - 1  c (02-1)'" c x, (5.7) 

and the dimensionless function @, satisfies the equation 

We assume that 2 > 1, E < 0. Using (5.6), (5.7) we get from 
(5.5) 

where the dimensionless coefficients k,, k ,  are independent 
of c? and E and given by the relations 

as 
kp= QO2 dB dx, k,= ! (2) d0 dx. (5.10) 

80 

Using (5.9) we reduce (5.4) to the form 

(02- l )vz+ (2+ kQlkp)  e o v + ~ ~ k ~ / 3 k ~ - -  (aZ-I )  em,/mi=O. 

(5.11) 

It follows from (5.11 ) that the perturbations considered by 
us are stable provided that 

me + ---(oZ-I) 2>(i. 
m,e 

(5.12) 

In the case of HFMS waves, i.e., when I E I  ,a2 this ine- 
quality is satisfied for any k,, kQ.  The two-dimensionless 
HFMS structures described by Eq. (5.1) are thus stable in 
the framework of the assumptions made about the nature of 
the perturbations. On the other hand, in the case of LFMS 
waves ( (a2) the stability criterion (5.12) is not satisfied 
(we recall that E < 0). According to (5.11 ) the pertubations 
then increase with a growth rate given by the relation (com- 
pare (4.25)) 

The stability of the rational two-dimensional soliton 
found in Ref. 15 was discussed in Ref. 7. Such a soliton is 
characterized by the function 

In that case 

Substituting (5.15) into (5.12) and assuming that 2 )  1 we 
find that the rational soliton is stable when (cf. (4.29) 

According to Ref. 7 the rational soliton is unstable in 
situations described by the three-dimensional KP equation. 
This conclusion does not refer to rational solitons of HFMS 
waves which in accordance with what was said above are 
stable against three-dimensional perturbations. 

6. DISCUSSION OF THE RESULTS 

We have studied the problem of the three-dimensional 
generalization of the KdV equation for MS waves in a mag- 
netized plasma and have found that Eq. (2.18) is such a 
generalization. In the limiting case of LFMS waves this 
equation reduces to the three-dimensional KP Eq. (3.6), 
whereas in the opposite limiting case of HFMS waves it is 
Eq. (3.8), whose structure is essentially different from the 
three-dimensional KP equation [see also ( 3.12) 1. 

In deriving Eq. (2.18) we followed the cold-plasma ap- 
proximation. In this connection the problem arises about the 
limit of applicability of our results, i.e., about their sensitiv- 
ity to the electron and ion temperature. One obtains these 
limits of applicability easily by turning to the linear theory of 
magnetosonic waves expounded, for instance, in the mono- 
graph by Akhiezer et a1.16 We then find that one can neglect 
the electron temperature, if Be < 1, where 8, is the ratio of 
the electron pressure to the magnetic field pressure. One 
must then, however, bear in mind that there is a so-called 
resonance angle a=  (me/miDe )'I2 for which the damping 
of the waves is important due to the interaction with reso- 
nance electrons. The rate of this damping is proportional to 
8,. One must thus exclude waves with a -- (me /miBe ) ' I2 

from the consideration when be >me /mi or one must re- 
strict oneself to analyzing processes with characteristic 
times less than the inverse of the damping rate. The limits of 
applicability of the cold ion approximation depends in an 
essential way on whether the waves are high- or low-frequen- 
cy in relation to the ion cyclotron frequency. In the case of 
HFMS waves the cold ion approximation is valid when 
fli < 1, where& is the ratio of the ion pressure to the magnet- 
ic field pressure. In the case of LFMS waves the condition for 
the applicability of the cold ion approximation is consider- 
ably more rigid: Jli < me /mi (for details see Ref. 1 1 ). 

We note also that in deriving our nonlinear equations 
we assumed for the sake of simplicity that a < 1. Moreover, 
one should bear in mind that we use the weak dispersion 
approximation. This presupposes that the condition 
a < I, wPi /C is satisfied. For the smallest-scale solitons with a 
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characteristic frequency w - (mi/m, ) " 2 ~ ,  when 1, -c /  
up, this inequality means a < (me /mi ) ' I 2 .  When I, in- 
creases the range of admissable a broadens and when 1, 2 c/ 
wpi there do not arise any restriction on a except the condi- 
tion a < 1. 

Our three-dimensional Eqs. (2.18) and (3.8) supple- 
ment the well known set of nonlinear equations for weakly 
dispersive waves in a magnetized plasma (compare (2. IS), 
(3.8) with (1.1) to (1.3) and theequationsofRef. 9) .  We 
used these equations in sections 4 and 5 to analyze the stabil- 
ity of one- and two-dimensional HFMS solitons and showed 
that the stability problem for such solitons is not as trivial as 
would have followed from the three-dimensional KP equa- 
tion. In particular, two-dimensional HFMS solitons turn out 
to be stable, in contrast to the predictions of Ref. 7, under 
long-wavelength three-dimensional perturbations. This en- 
hances the practical value of Ref. 15 and of similar studies on 
two-dimensional structures described in the framework of 
the usual (two-dimensional) KP equation. It is natural that, 
as we have studied only long-wavelength pertrubations, the 
problem of the stability of both one- and two-dimensional 
HFMS solitons cannot be regarded as finally solved and an 
analysis is needed of shorter-wavelength perturbations. 

One must also bear in mind that soliton perturbations 
are possible which are not described by our original equation 
(2.18). Examples of such perturbations and the instabilities 
connected with them were, in particular, studied in Refs. 17 
to 20. According to Ref. 17 such instabilities restrict the 
lifetime of the solitons, but this time is, generally speaking, 
long compared to the reciprocal of the characteristic growth 
rates of the instabilities discussed by us. 

We note also that the nonlinear equations introduced 
by us can be used not only for a study of the stability of 
magnetosonic solitons, but also in a broader class of prob- 
lems of magnetosonic waves, such as problems going beyond 
the framework of the soliton problem (for instance, in prob- 
lems about periodic waves). 

Our three-dimensional nonlinear Eq. (2.18) takes into 
account besides the traditional effects of the theory of MS 
waves also the effects of the vector nonlinearity. We note 
that such an approach is conceptually close not only to the 
approach of the above mentioned Ref. 9, but also to the ap- 
proach of Refs. 21,22,23 (see also Ref. 24 which is a review) 
in which the vector nonlinearity was taken into account in 
the problem of lower-hybrid waves. It follows from our anal- 
ysis that the vector nonlinearity is important in the highest- 
frequency part of the MS wave spectrum and that is just the 
part where the transition from MS waves to lower-hybrid 
waves begins. We have elucidated the effect of the vector 
nonlinearity on the stability of one-dimensional HFMS soli- 
tons. It turned out that such a nonlinearity affects the 
growth rate and the condition for the occurrence of an insta- 
bility, but this effect is basically quantitative rather that 
qualitative. It is also interesting to study the role of the vec- 
tor non-linearity in other problems on HFMS waves and this 
can be done by using our Eqs. (2.18) or (3.8). 

We noted in the Introduction problems of applications 
which started the development of the theory of MS soli- 

tons . '~~  At the moment the concept of MS waves is widely 
used in the theory of the high-frequency heating of a plas- 
ma,25 in the theory of collective processes in a plasma with a- 
particles,26 and other applied sections of plasma theory. For 
the same problems the analysis given in the present paper is 
also of interest. 

The authors are grateful to A. A. Galeev and V. V. 
Krasnosel'skikh for useful discussions of the results of this 
paper. 
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