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The nonlinear problem of passage of electromagnetic radiation through a resonant gaseous medi- 
um is considered. A system of equations is obtained for the medium and for the field, with the 
dragging taken into account up to the terms of fourth order in the field. The Maxwell equation 
with cubic nonlinearity has an essentially nonlocal structure and depends on the type of the 
pumping wave (standing or traveling). In the order quadratic in intensity, the scattered field 
contains photons with frequencies equal to that of the pumping field as well as shifted in frequen- 
cy by + A. The appearance of photons with greatly differing mean free paths alters substantially 
the character of the diffusion of the excitations in the medium. The nonlinear effects lead to 
interaction of two light beams. Two traveling waves then attract and repel each other, depending 
on the sign of the detuning A. Interaction of the traveling wave with the scattered field of the 
standing wave leads to a phenomenon of the wave-front-reversal type. 

1. INTRODUCTION 

Effects connected with radiation dragging play an im- 
portant role in the spectroscopy of gases. Even in a low- 
density gas (nA 3< 1, whereA is the resonant wavelength) it is 
easy to realize conditions such that the dimension of the 
medium exceeds the photon mean free path. 

The existing theory of radiation dragging is based on 
the assumption that the external and scattered fields are 
weak, so that the propagation of the excitation in the reso- 
nant gas is linear in the field intensity and is described by an 
equation of Holstein-Biberman type.'-5 

In the absence of collisions, the frequencies of the scat- 
tered photons are changed only by the Doppler effect. We 
can thus distinguish in the radiation-dragging problem two 
limiting cases. If the atom motion is negligible, the frequency 
of the diffusing radiation does not differ from that of the 
pump ~ a v e . ~ . ~  In the case of strongly inhomogeneous broad- 
ening the correlation between the frequencies of the incident 
and scattered fields becomes, on the contrary, very weak and 
is preserved only accurate to the Doppler width.3 These 
limiting cases can be realized, for example, by varying the 
detuning A = w, - oat of the external-field frequency a, 
from zero, so that at kv,<A (u, is the characteristic thermal 
velocity) the atoms can be regarded as immobile, whereas at 
ku,#A we get strong Doppler broadening. 

This paper is devoted to nonlinear theory of radiation 
dragging. When an electromagnetic wave propagates 
through a resonant medium under conditions of noticeable 
saturation and absorption, the scattered field acquires a high 
intensity and must be taken into account together with the 
mean field. 

Nonlinear effects lead to a mutual influence of the mean 
and scattered fields and alter the scattered-radiation spec- 
trum via the field-induced frequency splitting. Nonlinear 
equations for the medium and the field were obtained ear- 
lier6 under conditions of strong inhomogeneous broadening, 
when the field splitting was less than kv, and the frequency 
correlation in the radiation diffusion could be neglected. In 
the present paper we consider the case of immobile atoms 

(kv,<A) when the scattered-radiation spectrum is altered 
only by field effects and the frequency correlation in the dif- 
fusion is most strongly manifested. 

The Maxwell equation for the mean field is derived 
(Sec. 3) in an approximation cubic in the field. Allowance 
for the radiation dragging in the pump-wave region makes 
this equation spatially nonlocal. The distribution function of 
the excited atoms is obtained accurate to terms of fourth 
order in the field (Sec. 4). In this approximation, the shifted 
components of the atom resonance-fluorescence spectrum 
alter the radiation-diffusion rate, since the mean free paths 
of photons with shifted and unshifted frequencies can differ 
greatly. 

We show that the form of the nonlinear Maxwell equa- 
tion depends strongly on the pump-wave spatial structure. 
In particular, if the medium is excited by a standing wave the 
resultant scattered field can lead to effects of the wave-front- 
reversal type. As an example of the manifestation of nonlin- 
ear nonlocal effects, we consider the interaction of two light 
beams, which can either attract or repel each other, depend- 
ing on the sign of the resonance detuning. 

2. INITIAL EQUATIONS 

The Hamiltonian of a system of two-level atoms that 
interact with a radiation field can be expressed in the reso- 
nance approximation in the form ( A  = c = 1 ) 

3,=3 (r,) , 3 (r) =g ckeZkr, g=d ( 2 ~ ~ 0 )  "' 

Here d is the dipole matrix element, the frequency of the 
external classical field E,(r)e  + C.C. differs little 
( A  = o, - oat ) from that of the atomic transition, the oper- 
ators of the j-th atom are described by Pauli matrices 8, 8+, 
and 2, and V(r) is the operator of the quantized electro- 
magnetic field. The atoms are immobile, are randomly dis- 
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tributed in space, and have a density n satisfying the condi- 
tion nA 3( 1. We consider for simplicity a scalar model of the 
interaction and disregard the polarization properties of the 
medium (level degeneracy) and of the radiation. 

The Heisenberg equations of motion for the medium 
and field operators are 

d 
i - 6j" ( t )  =20j ( t )  (Vo,+Pj ( t )  ) -H.a., 

dt 
( 3 )  

Solving (4) and neglecting the relativistic retardation over 
the size of the atom system, we get 

Pi ( t )  =Pol ( t )  + D:.%* ( t )  . 
j' 

The first term of this equation 

~ , ( t )  = g x  ek erp[ikrJ-i (ar-wo) t ]  
k 

is the field zero-point oscillation operator, and the second is 
the scattered-field operator expressed in terms of the photon 
Green's function: 

etbr I-. r+O 

D,:,--Do(rj-rjr),  Do ( r )  = - 
r=O ' 

(6) 

The value of this function at coinciding points (r = 0) takes 
into account the effect of the radiation field on the emitting 
atom itself, an effect that leads to damping of the upper 
atomic state with a relaxation constant. The lower is taken to 
be the ground state. 

We represent the operators 3, ( t) and ( t ) as sums of 
mean values and fluctuating parts: 

O j  ( t )  = o J + f j ( t ) ,  13; ( t )  =o)+f? ( t )  , 

oj=(6 , ( t )  ),, o;=(O;(t) ) o ,  ( f j ( t )  )o=(%3(t)  )O=O.  
(7 )  

The averaging (...), is over the initial state of the "atom- 
+ field" system, where there are no scattered photons and 

the atoms are in the ground state. 
Substituting (5) in (2)  and (3) and separating the re- 

laxation terms, we obtain in the quasistationary approxima- 
tion (d  /dt(y) the following equations for a, and a;: 

= -  D j  ( t )  f t o  v=A+iy12, 
j ' # j  

( 8 )  

j ' + j  

These equations describe the interaction between atoms lo- 
cated at points r, and a monochormatic field V ,  that is the 
sum of the incident and scattered fields, and with the non- 

monochromatic field due to the fluctuations of the atomic 
operators. 

The fluctuating parts of the atomic operators are deter- 
mined by the zero-point oscillations of the magnetic field 
and give the shifted components of the resonance-fluores- 
cence spectrum. These components are known7 to appear in 
fourth order in the external field and are quadratic in the 
amplitude of the zero-point oscillations. 

We confine ourselves hereafter to nonlinear effects of 
order V3 and_V4. They can be adequately described by the 
equations for f, ( t )  a n d j j ( t )  in the linear approximation in 
Po. Taking Fourier transforms with respect to time, we ob- 
tain (the frequency w is reckoned from the external-field 
frequency a,) 

Equations (8),  (91, and ( 10) are a closed system for the 
medium and the field, with the radiation reabsorption taken 
into account. 

3. EQUATION FOR MEAN FIELD IN THE CUBIC 
APPROXIMATION 

To obtain the macroscopic Maxwell equation we must 
average (9)  over the locations of the atoms in space. This can 
be done by using the impurity diagram te~hnique.~ 

In the approximation linear in the field (which we des- 
ignate by Y, ) we have u; = - 1 and u, = Z;Ti /v, and Eq. 
(9) takes the form 

Its solution 

is expressed in terms of the photon Green's function in the 
medium at zero frequency, DJ, = Dii, (w = 0) , where 
D,, (w ) satisfies the equation 

Averaging ( 13) over the disposition of the atoms (we denote 
this operation by angle brackets without a subscript), we 
obtain the macroscopic Green's function of the photon 

Y eik(o'r D ( r o ) = ( D j j , ( c o ) ) =  r=r,-rjr, 
2 k ( o ) r '  

(14) 
k ( o ) = k o [ 1 + 2 n x ( a )  I ,  

wherex(w) = - nd '/(w + v) is the linear susceptibility of 
the gas at the frequency w. 

256 Sov. Phys. JETP 62 (2), August 1985 Kazantsev et a/. 256 



Let u( r )  be the average (macroscopic field: 
u(r)  = ( V ,  ) z (Y,  ). Averaging of ( 12) leads, in the lead- 
ing order in the parameter nil 3, to the linear Maxwell equa- 
tion 

[vz+o; (1+4nxa)] u (r) =0, (15) 

wherex, =x (w  = 0). 
In the order quadratic in the field the atom-excitation 

probability is no longer zero 

(I+o:) 12% lTjl 2/1 v l 2  w,, (16) 

and yields the spatial distribution of the energy stored in the 
resonant medium. 

When averaging of I Z;Ti l 2  over the disposition of the 
atoms 

(lT"j12>=(TjTjt)=I~12f <TjYjjr)) 

it suffices to use for the irreducible part (( ...)) the "ladder" 
approximation in which only terms proportional to IDii, 1' 
are retained, since the remaining terms oscillate and are 
small in terms of the parameter nil 3. As a result we obtain for 
the macroscopic distribution function w(r) = (w,) of the 
excitations the integral equation 

P 

w (r) = w,(r) + 3 d3rrQ0 (r-rl) w (r') , 

where x0 = 277k0 Im X, is the linear absorption coefficient at 
the frequency o = 0. The points r and r' belong to the region 
occupied by the atom. The atom density is assumed con- 
stant, so that nw(r) is the probability of exciting the atom by 
a coherent mean field. The integral term in (17), which we 
designate by w, ( r )  (so that w = w, + w, ), is due to the ac- 
tion of the scattered incoherent field on the atom. We note 
that for immobile atoms the excitations are transported in 
the medium, in the approximation quadratic in the field, by 
photons whose frequency is equal to that of the external 
field. An equation of this type was obtained in Refs. 4 and 5. 

The solution of (17) can be written in the symbolic 
form 

w=wc+ we, w,=Kow,, (18) 
where the integral operator KO with kernal Ko(r,, r,) satis- 
fies the equation 

Ko=Qo+QoKa. (19) 

The function Ko(r,, r,) determines the excitation of an 
atom at a point r, by a scattered field generated by coherent 
pumping at a point r,. For a system of finite size it does not 
reduce, generally speaking, to a function of the coordinate 
difference. We refer to KO hereafter as the excitation propa- 
gation function at the frequency w = 0. 

We proceed to now derive the Maxwell equation in the 
approximation cubic in the field. We estimate the contribu- 
tion of the fluctuation operators fj and fj, which enter in 
Eq. (8) for the mean values. To this end we must calculatefi 
and j'i in the approximations linear and quadratic in V, ,  
respectively. We obtain from ( 10) 

2 
3, (0) = - G,~. ( a )  G,:, ( -0 )  V~;PO~.(-O) + . . . , (20) 

j,j; 

Gjjv ( a )  =6jjr/(o+v) +D,jf ( 0 )  / (o+v) 

We have written out here only the terms that contribute to 
the mean values (...), contained in Eq. (8). 

Accurate to the oscillating terms, the contribution of 
the fluctuations to a, is determined by the quantity 

= -- 2i vj*E vjrzJ do .  ~~~f ( a )  D~;, (-a) 
nIvIZ j' ( o h )  ((0-2.')2 = O1 

since all the poles of the integrand are in the same half-plane. 
In the approximation cubic in the field the fluctuations 
therefore do not contribute to (9) ,  which takes then the form 

The solution of (2 1 ) can be written with the aid of the linear 
approximation ( 12) in the form 

which facilitates the averaging. Averaging of the nonlinear 
term in (22) leads to terms of three types: 

In the approximation assumed here we can put ( Y j  ) -- u ( r )  
and ( ( I Y, 1,) ) - wS ( r ) ,  with the latter quantity entering in 
(23) with double the weight. The cause of this statistical 
factor is that in averaging of a product of three fields 
2;Ti I 7, 1' the quantity appears in twice as many pairings for 
the scattered field than in the calculation of ( 1 Y, 1 ,). The 
last term of (23) has an anomalous form since it contains not 
the intensity of the mean field but the square of its amplitude. 

The result is the following Maxwell equation with cubic 
nonlinearity: 

{ v ~ + o ~ ~ + ~ I I u ~ ~ x ~  [ I-Z(we (r) f 2 ~ s  (r) ) I ) ~ ( r )  

-- 800%' u* (r) j dJr'Ko (r, rf ) u2(r') =O. (24) 

I v I 2  

The last term of this equation makes a finite contribution 
only for a mean field of the standing-wave type. In the case of 
a traveling wave, u2(r) oscillates and this term can be omit- 
ted. The Maxwell equation takes then the simpler form 

In this equation, the part nonlinear in the field describes the 
saturation due to both the coherent pump field (w, ) and to 
the scattered field (w, ). These contributions do not add up 
to the total excitation probability w, which is determined by 
the Holstein-Biberman equation ( 17). 

If the light beam has a large enough transverse dimen- 
sion x l 2  1, the nonlinear susceptibility of the medium be- 
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comes a nonlocal quantity. The nonlocal interaction can 
therefore be significant in propagation of intense light 
waves. 

4. NONLINEAR EFFECTS IN THE TRANSPORT OF 
EXCITATIONS IN A MEDIUM 

We derive in this section an expression for the excita- 
tion distribution in a medium, in the form of an expansion in 
powers of the field up to terms of fourth order. We confine 
ourselves for simplicity to a traveling wave. 

In the approximation considered, the atom-excitation 
probability takes the form 

- ---- j 2  2 1  V i ' 4  +& 1 m E  Dj:.(fji(t) f l  ( t )  ),. (26) 
I V I ~  1v14 Y I .+,  

The first two terms describe excitation of the atom by the 
mean and scattered fields at the pump-field frequency, while 
the last term contains the shifted resonance-fluorescence 
spectrum components. 

For macroscopic averaging of I V ,  1 4 ,  the linear approxi- 
mation for the field, V,  =: 7', ( 12), is sufficient. ( 1 6 1 ') is 
calculated with the aid of (22) for a field with cubic nonlin- 
earity. This leads to the appearance of terms of fourth order 
in the field, of the type (Y*D 1 YI2Y). 

The product of the fluctuations, averaged over the 
vacuum, is calculated with the aid of (20). In the "ladder" 
approximation it suffices to retain in the resultant sums over 
the atoms only the diagonal (non-oscillating) terms propor- 
tional to IDj, 1 2 ,  SO that 

where p (o ) is the known spectrum of the resonant fluores- 
cence for the shifted components7: 

In the macroscopic averaging of (27) we can put 
(ID 1'1 V 1 4 )  = (ID 1 2 )  ( 1  V 1 4 ) .  We get then the propagation 
function for the excitations of frequency w: 

which satisfies the integral equation 

K(rir2. o )  =Q (r,-n, o )  + j d 3 r ~  (r,-r, o )  K (rr,, o )  , 

x ( o )  =2xko Im ~ ( o )  

The functions KO and Qo considered above coincide with K 
and Q considered above coincide with K and Q at w = 0. 

The macroscopic excitation-distribution function 
W(r) = ( Wj ) takes ultimately the form 

= J d3r'K (rr', o )  (2n6 ( o )  [ w, (r') -4% (rf) ] + p ( o )  % (r') ) , 
(31) 

%(r) =( 1 VJ~4)/~v]'=w~+4wcw9+2ws2. 
The quantities w, and w, in these equations are expressed by 
Eqs. ( 17) and ( 18) in terms of the mean field u( r )  that 
satisfies the nonlinear Maxwell equation (25 ) . 

The problem of the passage of resonant radiation and 
the migration of excitations in a medium reduces thus to the 
solution of the nonlinear Maxwell equation (25) and of Eq. 
(30) for the excitation propagation function K(r,, r,, w). 

Those effects in the excitation distribution (3 1 ) which 
are nonlinear in the intensity are described by the terms that 
contain 6. The terms with unshifted frequencies are in this 
case small corrections. Principal interest attaches to the last 
term of (3  I) ,  which contains the shifted components of the 
scattered-field spectrum. The appearance of photons with 
greatly differing mean free paths alters substantially the 
character of the excitation diffusion in the medium. At larg- 
er A, for example, the medium may turn out to be transpar- 
ent to the pump photons, and its excitation will be deter- 
mined by the resonant photons of frequency w = - A. This 
can be easily seen in the case when x (w ) I <  1 for all frequen- 
cies. The probability of exciting atoms outside the pump 
wave can then be written in the form 

The second term becomes dominant if x (  - A)w,/ 
2x, = 21u I2/y2 > 1. For pump fields that are not too weak 
( y  < u g h )  the excitation diffusion has thus a nonlinear de- 
pendence on the field intensity and is determined by the 
shifted components of the scattered radiation. 

The function I ( r ,  w) in (31) has the meaning of the 
spectral density of the scattered radiation. It can be shown 
that 

I(., o )  = ( J dt<u1+ ( t )  U,  (0) ),ei*t) , 

U,(t) =P, ( t )  -u (r) .  

For a small scattering volume, I(rw) is proportional to the 
spectrum of the resonance fluorescence of a single atom. 

5. DISCUSSION 

Thus, when a strong electromagnetic field passes 
through a resonant medium of sufficiently large optical 
thickness the nonlinear susceptibility of the gas becomes 
nonlocal because of the dragging of the scattered radiation. 
This can manifest itself in various nonlinear optical effects. 

By way of example we consider the interaction of two 
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light beams propagating at a distance p between them. The 
scattered field generated by one of the beams (of thickness 
a)  excites atoms in the region where the other beam passes 
and produces there an effective susceptibility [see Eq. 
(2511: 

The spatial inhomogeneity of this susceptibility leads to at- 
traction (at A > 0)  or repulsion (at A < 0 )  of the second 
(test) beam. We note that beam attraction and self-focusing 
occur at the same sign of the detuning. The deviation angle of 
the test beam can be estimated from the relation 8- (TI / 
p )  . Rexefl (I is the length of the light beams). Under condi- 
tions of noticeable saturation (w, - 1 )  and absorption 
(a-p-l- l /x) the value of 0 can become of the order of 
Rexo- lop3. 

Another property of the nonlocal susceptibility is due to 
the fact that the scattered field depends strongly on the spa- 
tial structure of the pump wave. In particular, for a standing 
wave the Maxwell equation (24) contains an anomalous 
nonlinear term, which leads to an effect of the wave-front- 
reversal type. The reversal of a test signal from a region 
where the atoms are acted upon by a strong pump wave is 
well known.9 It can be seen from (24) that the test signal can 
be reflected also from a region containing not a coherent 
standing wave but only scattered radiation produced by this 
wave. In other words, propagation of excitations in a medi- 
um cause transport of not only the intensity but also of the 
square of the amplitude, so that the scattered radiation re- 

tains some memory of the correlation properties of the pump 
wave. 

The amplitude of the inverted signal builds up to a value 
of the order of the test-signal amplitude over a length 
I - ko Re xOws For the wave-front inversion to be substan- 
tial, it is necessary that this length be shorter than the ab- 
sorption length I/%. This can be achieved under conditions 
of noticeable absorption xR - 1 (R is the width of the stand- 
ing wave) and at a sufficient intensity of the standing-wave 
amplitude: Ay < us, 2<A2. 

The nonlinear effects in radiation dragging can thus in- 
fluence significantly the propagation of radiation through a 
resonant medium. 
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