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It was shown that the effects of resonant optical pressure created by a biharmonic field induce 
undamped coherent perturbations of the Wigner distribution function in a rarefied collisionless 
gas and these perturbations are manifested in particular by a traveling periodic density wave 
propagating across the gas. When one of the fields is weak, coherent structures may appear when 
the parametric resonance condition is satisfied, i.e., when the difference between the frequencies 
of the two fields is matched in a particular way to the amplitude of the strong field. A spatial 
grating of the density appears also in echo regimes representing the response of the medium to a 
sequence of radiation pulses separated on the time scale. The processes analyzed have a long phase 
memory not limited by radiative relaxation. This is due to parametric phenomena during the 
action of radiation and after such action the memory of the radiation is retained directly in the 
distribution function perturbed by recoil effects. 

1. INTRODUCTION 

The coherent kinetics of a medium in a resonant electro- 
magnetic field is manifested most clearly in such thoroughly 
investigated phenomena as the decay of free polarization, 
optical nutation, or photon echo,' which are associated with 
the coherent volume excitation of the macroscopic polariza- 
tion of an ensemble of particles. It is interesting to consider 
the possibility of coherent optical perturbation of transla- 
tional degrees of freedom of a large ensemble of neutral non- 
interacting particles, which may be manifested by-for ex- 
ample-matched periodic pulsations (in space and time) of 
the density, directional motion, etc. The methods of reso- 
nant radiation pressure2.3 provide a range of ways for mani- 
pulating neutral atoms and, in principle, they can be used to 
induce coherent structures in a rarefied gas if the transfer of 
momentum from radiation to the gas is organized in a suit- 
able manner. For example, it is reported in Ref. 4 that coher- 
ent beams of particles can be created in separate standing 
waves by the Kapitza-Dirac resonance effect5 which pro- 
duces periodic gratings in the distribution of atoms under 
spatial echo conditions. 

We shall show that coherent perturbations of a rarefied 
resonant gaseous medium can be induced by parametric pro- 
cesses in two-level atoms excited by a biharmonic electro- 
magnetic field. Such perturbations give rise to temporal echo 
processes in the amplitudes of the resultant periodic spatial 
density gratings. The phase-memory time is then not limited 
by radiative relaxation. 

We shall consider a collisionless gas of two-level parti- 
cles interacting with a quasiresonant biharmonic (bichroma- 
tic) field in which the main components are a strong plane 
wave and a weak wave with a shifted frequency and active as 
the controlling component. The action on a rarefied gas of 
one high-power monochromatic traveling wave which satu- 
rates a spectral line profile (dE,,/fi>ku,, y, ) is relatively sim- 
ple after the end of transient processes. In the quasiclassical 
limit when the photon momentum is considerably less than 
the thermal momentum in an ensemble of atoms (fikikp,) it is 

found that after times exceeding the spontaneous relaxation 
time t>y-' the action of such a monochromatic field re- 
duces to a directional drift of particles induced by the reso- 
nant radiation pressure force Foziiky/2 complicated by 
quantum fluctuations that result in slow heating of the gas.' 
We shall show that the situation changes radically when the 
main field is supplemented by a component shifted on the 
frequency scale, because parametric processes6 then create 
undamped beats of the amplitudes of the polarization and 
population difference and, consequently, of the directional 
momentum." In general, the amplitude of these oscillations 
is low ( p ,  (iik ) and it is manifested in higher orders when the 
density matrix is expanded in reciprocal powers of the strong 
field. However, for certain values of the intermode interval 
in such a two-level system we can expect a parametric Rabi 
resonance7.' (this term was introduced in Ref. 7) in which the 
amplitudes of the harmonics of elements of the density ma- 
trix reach their extremal values. In the problem under consi- 
deration a parametric resonance of the amplitude of oscilla- 
tions of the directional momentum in an ensemble of 
particles occurs when the frequency difference between the 
interacting fields is equal to the frequency of nutations in the 
strong field. An important feature is the dependence of the 
resultant perturbation of the Wigner distribution function 
F = Tr( p) on the phases of the interaction fields, so that for 
yt)l a coherent structure is established in the form of a 
traveling periodic wave with a slowly varying amplitude. 
The main consequence of this perturbation7is the existence 
of a nontrivial first-order moment representing a traveling 
wave moving across the gas: 

u= ( p , l M )  sin (Got-QR+@), (1) 

wherep, -fik; Sw is the detuning between the field frequen- 
cies; M is the atomic mass. Similar oscillations of the spatial 
density are higher-order effects found on expansion in terms 
of reciprocal powers of the strong field during the action of 
radiation. However, in the case when the radiation (field) is 
removed abruptly, perturbation waves similar to the Van 
Kampen waves in the plasma echo theory9-" are generated: 
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which give rise to periodic spatial density oscillations that 
are damped out as a result of mixing of the phases. Informa- 
tion on the initial perturbation is nevertheless retained in the 
distribution and can be retrieved by the application of a sec- 
ond radiation pulse: it is then manifested by echo oscillations 
of the density due to the interaction of the perturbations 
induced by the first and second pulses. In this sense the resul- 
tant two-pulse echo can be regarded as belonging to an over- 
all system of all known forms of the echo phenomena,12 
which are possible if the dephasing is not irreversible and the 
nonlinearity reverses the evolution of the oscillation phases. 

2. INITIAL EQUATIONS. MATHEMATICAL MODEL 

We shall assume that a rarefied gas of two-level atoms 
with the frequency of a quantum transition w,, is in a reso- 
nant bichromatic field of the type 

1 

E = E, exp j (k.~-o,t) + c.c- (3) 
m=O 

In accordance with the comments in the Introduction, the 
partial amplitudes of the fields obey the inequality 

IEOl~lEl l .  (4) 

We shall write down the kinetic equations for the density 
matrix considered in the Wigner approximation p(p, R, t ) 
(see, for example, Ref. 6) using the resonance approximation 
and assuming a dipole interaction of the atoms in the gas 
with the field: 

where Z is a column vector2': 

Z=col (p21, p12, q ,  1) 7 

and the following operator matrices are introduced (m = 1, 
2): 

The square matrices A ,  and Dm have the dimensions (4 X 4) 
and (2X2), respectively, and they are written down intro- 
ducing momentum shift operators in accordance with the 
rule 

as well as quantities fi, described by the relations 

Qm=xrn exp j (k,R) , X,=dE,lh, 

a,= (Q,/p),  Q1=Ql exp ( i sa t ) ,  

where d is the matrix element of the dipole moment; ,u is a 
formally small parameter ( ,u( I), the meaning of which will 
be explained later; Sw is the frequency difference between the 
two fields, which we shall represent by a sum of "rough" and 
"fine" detuning: 

60=oo-w,=A,,',u+6. (10) 

Moreover, Eq. (5) contains a diagonal matrix governed by 
the frequency shift of the strong field 

i = d i a g  (-A', A', 0, O ) ,  A'/y=-A=ozl-oo (11) 

as well as the spontaneous relaxation matrix 

where y an? y, are the longitudinal and transverse relaxa- 
tion rates: R, is an integral operator defined in terms of the 
probability of spontaneous emission of photons in the direc- 
tion of n (Refs. 2 and 3): 

8oU(P)='/2Y[ u(p) - j  u (p+hkn) @ (n) dn] , k = ~ , , / e .  

The method of introduction of the dimensionless parameter 
,u(l corresponds to the inequality (4) and to the following 
relationships between the principal physical parameters of 
the problem3': 

Therefore, in the initial formulation the Rabi frequency of 
the strong field is comparable with the frequency shift and 
intermode interval, but is considerably greater than the rates 
of the processes due to relaxation, controlling field, and mo- 
tion of atoms. An allowance for all these circumstances 
makes it possible to consider a parametric resonance. 

We shall ignore the reaction of the resonant medium on 
the fields by assuming that the gas is sufficiently rarefied. 

3. ASYMPTOTIC EXPANSION OF THE DENSITY MATRIX 

We shall now specify the nature of a pulse of the strong 
component of the resonant radiation assuming that this radi- 
ation is applied instantaneously: 

E,=E,(t--n,R/c), n,,=k,/)k,), 

E, ( t)  =0, KO.  (15) 

We shall also assume that the state Z,  of the gas is specified 
at the instant n, . R/c = t of arrival of the strong field pulse 
at the plane. We shall introduce a delayed time t ,  = t 
- n,R/c and the Fourier transformation in respect of the 

variable p in order to remove the finite differences in the 
initial equation (5): 
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1 
Z(p ,  R, t )  = P ~ . ~ ( z )  = J -,Z erp[-j (up) ]d30.  

(16) 

( a n )  

Z satisfies then the following evolution equation: 

yhere th%matricesA, and are obtained from the matrices 
A ,  and r by transforming to the delay time and replacing 
the difference operators with the functions 

The small parameter p occurs in Eqs. (5) and (17) in a singu- 
lar manner and it is responsible for the fast motion of the 
system with a characteristic time scale-p/Ifiol, which is 
considerably less than the times of the processes induced by 
the weak field, relaxation, Doppler frequency shift, and re- 
coil effect. We shall separate the fast and slow components of 
the density matrix by the method of multiscale asymptotic 
expansions (see, for example, Ref. 13). With this in mind we 
shall introduce fast variables describing a singular depen- 
dence of the solution onp  and related to the spectrum in the 
limiting case p = 0 (regularization of the spectrum of the 
limiting operator14): 

I, I, 

A 

where A,,, are nonzero eigenvalues of the matrix (Jo + jA) 
= B, given by 

and the variable t, allows for the rapidly oscillating time 
dependences of the coefficients in Eq. (17). A solution of the 
more general problem described in terms of the variables t, 

az - - 
p - + BZ=BZ+pB,Z, Z I t,=o=Zo, 

at ,  
a d 

0 = z h i ( t , )  --+ jAo-, (20) 
r=3 a t ,  at ,  

can be sought in the form of a regular asymptotic expansion 

We then obtain a sequence of linear problems 

In accordance with the comments made in the Intro- 
duction, the greatest interest lies in the case of a parametric 
resonance when the beat frequency Sw is tuned to a reso- 
nance with the nutation frequency in the strong field:4' 

Ao=G. (23) 

Equation (23) leads to resonance relationships which, intro- 
ducing arbitrarily a variable to = 0, can be written in the 
form 

mt, ( t , ) f  t j ( t , )  =t i ( t , ) ,  iZj, (24) 

where the indices j and i assume the values 0, 3, 4, and m 
(integer) and correspond to the resonance sets m ( j ,  i): 1 (4,O); 
- 1 (3, 0); 1 (0, 3); - 1 (0, 4); 2 (4, 3); - 2 (3,4). The Fred- 

holm alternative15 ensures solubility of each of the problems 
described by Eq. (22) in the form of linear combinations of 
exponental functions of fast variables (mt, + ti ) provided the 
arguments of the resonance components on the right-hand 
sides are replaced in accordance with Eq. (24) (this procedure 
makes it possible to avoid the appearance of diverging terms 
on return to the initial time variable). The conditions of solu- 
bility of the problem in the nth approximation (n> 1) elimi- 
nate the indeterminacy of the solution of the previous 
(n - 1)th approximation, found with an accuracy of a solu- 
tion of the corresponding homogeneous problem that in- 
cludes four unknown functions of the slow variable t,. 

A general solution of the problem in the zeroth approxi- 
mation [corresponding to the first equation in the system 
(22)] is 

Here pi (a ,  R, t,) are linearly independent eigenvectors of the 
matrix B = (20 + jh) ,  the explicit form of which is given in 
the Appendix; a i (u ,  R, t,) are scalar functions describing 
slowly varying components of the density matrix. They can 
be determined by considering the first approximation 

where the right-hand side is formed from the column vector 
(B, - d /dt,)Z 'O'allowingfor the resonance relationships (24) 
and Yiexpti includes a sum of all the components corre- 
sponding to all possible sets of the + l(i, j) type. Solubility of 
the problem (26) is ensured by the orthogonality conditions: 

Linearly independent eigenvectors b, , where k = 1-4, of the 
conjugate matrix B + (see the - Appendix) correspond to the 
eigenvalues 2, : XI , ,  = 0, A, = jG, 2, = + jG. Bearing in 
mind the structure of the operator B,, we can readily see that 

240 Sov. Phys. JETP 62 (2), August 1985 I. V. Krasnov 240 



Eq. (27) describes four differental evolution equations for 
unknown functions ai (i = 1-4) with the initial conditions 
governed, in the case when the [p,, b, ) system vectors is 
selected, by biorthogonal vectors ((n, , p, ) a S,, ) in ' accor- 
dance with the relationships that follow from Eq. (25): 

The higher approximations are obtained in the same way. A 
series found for 

1 ( 

describes an asymptotic expansion of the density matrix in 
terms of the small parameter: 

z= P,,:; (z'o') +PP,:, (z'") +. . . . (29) 

4. COHERENT QUASISTATIONARY PERTURBATIONS OF 
THE WIGNER DISTRIBUTION OF ATOMS 

We shall show that under the parametric resonance 
conditions in a system of translational degrees of freedom of 
an ensemble of atoms we can expect coherent perturbations 
which are not affected by radiative spontaneous relaxation 
processes. We shall consider only the zeroth approximation 
i np  and write down the explicit equations corresponding to 
Eq. (27) and describing the evolution of the slow variablesE, 
in the case whenp,/Mcgfik /p,: 

- -- 419201 . . 
G 

1 sln pi  (G,'E,-G,E,) +y [I-R, (o) exp (jAkoo) J 

cos pi-j sin p i )  ar ,  

where 

XIXO'  A'  A'  GI =--(I - F ) ,  Qo=Qi+koF, 
1x01 
R,(o)yA'" G" 

yl (u)=  -+ exp (jRkoo), ao2 = - 
ao2 G 41Qo12 ' 

r . ( o ) = ~ + (  1 + g ) y ~ , ( O ) e x p ( j & , u ) ,  
a, 

A" 7 1 l z n 1  (') exP (ihkao). r + ( o ) = ~ ( ~ - + F i ) +  2 
G2 

In the usual situation the de Broglie wavelengths of the 
particles composing a gas are considerably less than the radi- 
ation wavelength (fikgp,). It is well known that in this case 
the evolution of the distribution of the particles acted upon 
by the resonant radiation pressure is described in a wide 
range of realistic conditions by the Fokker-Planck equation. 
This reduction of the problem to the Fokker-Planck equa- 
tion and its subsequent solutions have been considered in 
several papers1,2*1"20 and the reduction procedure itself has 
been analyzed from various points of view (the most detailed 
analysis can be found in, for example, Refs. 16 and 18). The 
system of equations for slow motion (30) can also be simpli- 
fied similarly for fik<p, on the assumption that the sponta- 
neous relaxation time T,  - y-I and the characteristic time of 
changes in the dependence differ greatly from the duration 
of the pulses of the slow components of the density matrix 
rP - (fik '/2M )- ' = w; l .  We shall use the inverse Fourier 
transformation to introduce the functions 

and we shall employ the differential approximation for the 
finite differences [in the system (30) this is equivalent to ex- 
pansion of the right-side in terms of a (compare with Eq. 
(18)]. Then a, and a, satisfy a system of equations obtained 
from the system (30) by the substitutions 

t?/do-.jp, y, (o) +y,-y,'fikoa/ap, ya=ya(O), 

a (fik12 a 
1-R, (o)  erp (jAkoo) - 6 1  - - - Erni, ---- , 

3~ 2 i,j a p i  dpj  

mi? = 1 nin,8 (n) dn. 
Then, eliminating a,, a,, and a, in the same way as is done in 
the case of the component of the Bloch vector (see, for exam- 
ple, Refs. 16-1 8), we obtain the Fokker-Planck equation for 
a,(p, R, t,) in agreement with the physical meaning of this 
variable which is proportional to a sum of the Wigner distri- 
butions with shifted momenta in the states 1 and 2: 

In the case of a weak spatial inhomogeneity 
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where the shift coefficient Fo acts as the force due to the 
spontaneous resonant radiation pressure, D: are the diffu- 
sion coefficients due to fluctuations of the momentum and 

AkoA'Z 
VR = - Y 

~ M G "  Pi+ I Gi 1'2' ' 

It should be noted that in allowing for the influence of 
transient processes we can correct a, by an exponentially 
rapidly decaying (in a time- y- ') function a, - 0 (Wc /po), so 
that the initial condition of the system (32) fora, is simplified 
by omitting an unimportant small term fik /po,(. 

If t,>y-' and T,, , where the latter is the characteristic 
time of a possible delay of the arrival of the weak-field pulse 
in the region of the gas under consideration, the variables a , ,  
a,, and a, follow adiabatically the changes in a, (we are now 
assuming that the amplitude of the controlling weak field 
behind the leading edge of a pulse is stationary): 

The structure of the dependences of Fo and D: on the mo- 
menta and their magnitudes F,-Wcy and Dp -(fik),y are 
such that the time evolution of the variable a, (p, R, t,) is 
characterized by all the principal elements of the evolution 
of the distribution in the case when a single traveling wave 
acts on a rarefied gas19920: the drift of the momentum space, 
monochromatization of the pulses occurring at times t ,  2 rP 
-61, ', and diffusion spreading of the pulses which appear 
at tl)rp. 

We shall consider the specific case of unidirectional 
(along the x axis) waves of the same polarization when we 
can ignore the difference between the photon momenta 
Ifik, - fikol/Wc(l: 

(The expression for Fo is simplified by dropping a small cor- 
rection Wc /po due to the dependence of the diffusion coeffi- 
cient on the momentum.) 

The most important circumstance is that after a long 
time t >  y-' the dynamics of the translational degrees of 
freedom is not limited to the slow evolution described by the 
Fokker-Planck approximation of Eqs. (32) and (34), because 
the Wigner distribution function has fast coherent compo- 
nents. In fact, using Eqs. (29), (25), (A.l), (34), and (8), we 
obtain the following expression which describes the distribu- 
tion during the quasisteady stage of the evolution: 

f ( p ,  R, t )  =a: [ (2'0) - T + ( " )  (M3 ,a2 )  ej(Bm'-QR)+ C.C. 1, (364 

where 

Therefore, after the passage of the leading edges of the 
pulses of the resonant radiation at times ( t  - ni . R/c)>y-', 
T,,, , the Wigner distribution of the gas includes a coherent 
component representing a periodic perturbation wave with a 
slowly varying amplitude, a wave vector Q = k, - k,, and a 
frequency Sw = w0 - w ,. The phase velocity of the wave cph 
varies, depending on the geometry of the resonant fields, 
between cph z c  (for unidirectional waves with no = n,) to 
cph = c6w/(wo + w,)(c (opposite waves n, = - no). The 
evolution of the wave amplitude is a much slower process 
than the radiative relaxation processes and it is governed 
entirely by the dynamics of the variable a,(p, R, t,) calculat- 
ed from the Fokker-Planck Eq. (32). We can readily see that 
the calculated coherent component 3 is associated with a 
first-order moment which is not identically zero ("direction- 
al" or hydrodynamic velocity), which in the case of a suffi- 
ciently cold gas (kp,,/M(y) can be written in the following 
form: 

- < f p / M > ,  2Ak0 
u =  -- - 

(f > P  M  
Rc j f iJ3 ,  exp ( j  ( G o t - Q R )  ) , 

The zeroth-order moment off (density perturbation) is iden- 
tically equal to zero: (T), = 0, so that a perturbation of the 
particle density appears in the first order of the expansion in 
p. It can be found without calculating completely the value 
of Z"', because linearization of the equation of continuity 

dN/a t+d i v  ( N u )  =0, N=(  f),, u = ( p f > , / M N ,  

which follows directly from Eq. (5), yields the following 
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expression if we allow for Eqs. (37), (32), and (36), assume 
that the gas before irradiation is spatially homogeneous and 
has the density No, and ignore the edge and transient effects: 

2fikoQ 
N=N,+p --No Re jM,, exp j (Got-QR) 1-0 (p2). (38) MG 

Consequently, a coherent perturbation of the density is 
also a harmonic traveling wave with wave characteristics 
and amplitude dependent on the relative orientations, ampli- 
tudes, and phases of the interacting electromagnetic fields. 

We note in conclusion that the significance of Eq. (36c) 
forfgoes beyond the Fokker-Planck approximation and its 
structure remains the same in the case of an ultracold gas, 
when p,-fik and the quasiclassical condition is no longer 
obeyed. Simplifications of the type represented by Eq. ( 3 1 )  
are no longer possible because the differential approxima- 
tion is inadmissible in the case of finite differences and the 
relationship between a,,, and a, is strongly nonlocal, i.e., 
the quantity M,, in Eq. (36c) should be regarded as an inte- 
gral operator 

However, because of atom-momentum fluctuations 
that result in the heating of the gas, the evolution of this 
operator in the case when (y t  ) ' I 2  > 1 reaches rapidly a stage 
corresponding to the Fokker-Planck approximation. 

5. ECHO EFFECTS 

We shall show that a coherent response of a resonant 
gas to the action of biharmonic optical field pulse separated 
in time is manifested by spatial periodic pulsations of the gas 
(echo). These pulsations are associated with the leading term 
of the asymptotic expansion (29), and in contrast to the oscil- 
lations described by Eq. (38), represent a zeroth-order effect 
in respect of the parameter p. 

We shall assume that two exciting rectangular bihar- 
monic field pulses of the type described by Eq. (3)  enter a gas 
in succession and that 

\ O<t,<T,, 

Eo ( t l )  = T,<<tl< ( T , + T ) ,  t i>  (T i+T+T2) ,  (39) 

I E.,, (T ,+T)<t ,<  (T,+T+T,) .  

The delay between the arrival of the weak and strong field 
pulses at a given point in the gaseous medium can be ignored 
in the formulation of the initial conditions for Z [see Eq. (17)] 
provided the following inequalities are obeyed: 

1 Q , ( T d < l ,  y T d a 1 ,  (40) 
where T,  is the minimum possible delay time that depends 
on the radiation geometry. We shall also assume that the gas 
is sufficiently cold and that the diffusion of the pulses in 
spaceis not significant during the action of the radiation, i.e., 

f ik<<p ,<(y lk )  M, fiky'"T,<po. (41) 
These limitations are not of fundamental nature from the 
point of view of the physics of the investigated processes, but 
they do simplify greatly all the calculations. If we assume 
that before the irradiation with the optical field pulses the 
gas is unexcited and spatially homogeneous with a distribu- 
tion N, f,(p), ignore the effects of the first and higher orders 

in p, use Eqs. (36), (32), (40), (41), and ( 5 ) ,  and allow for the 
smallness of the thermal velocities of the particles compared 
with the velocity of light (po /Mc<l ) ,  we find that in the 
interval I (y - '< t ,  < T I ) ,  we now have 

and the function f ' l ' (p ,  R, t , )  is defined by Eq. (36). In the 
interval I1 [TI < t ,  < (TI + T ) ] ,  ignoring a small correction - (fik /P) ,  due to the radiative relaxation after the passage of 
the first radiation pulse, we have 

f = f ( " ( p ,  R, t l )  =f '"(p ,  R - v ( t l - T I ) ,  T i ) ,  (43) 

where v = p/M. Similarly, in the interval I11 [(TI + T 
+ y- ' )< t ,  < ( T ,  + T + T2)1, we find that 

--. ( 3 )  hkO 
R- (v-v. ) ( t , - [ T , + T ] )  ; T , + T )  

2 ' 
and in the interval IV ( t , ) ( T ,  + T,  + T ) ] ,  the corresponding 
expression is 
f=j(4'.(p,  R, t )  = p 3 )  (p, R - v [ ~ ~ - ( T ~ + T + T ~ ) I ,  T , + T + T ~ ) .  

(44) 
Here and henceforth a superscript in parentheses represents 
the number of the interval in which the function of the phys- 
ical parameter is calculated. 

The force F, is given by the following expression in the 
case of an arbitrary orientation of the vectors k, and k,: 

Using Eqs. (42)-(44), we can readily calculate the den- 
sity N = (f ), . In the interval I, we obviously have N ( R ,  
t , )  = No. In the interval 11, we find that 

where 

In the interval I11 there is a change in the expression for the 
phase of spatial fluctuations of the density: 

@ l + @ , = @ , + ~ : i ) ~ ( t , - [ ~ , + ~ ]  ), 

The amplitude of the density perturbation J H  ( t , )  1 is bell- 
shaped with H ( T I )  = 0 and IH (t ,) l  + 0 in the limit t ,  + co , 
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i.e., the coherent response to the action of a biharmonic radi- 
ation pulse is manifested more strongly after a time t * from 
the passage of the radiation (Fig. 1). We shall consider the 
specific case when 

O-n f - - % P ~ - ~  exp [- ( P - P * )  2 / ~ 0 2 1 t  

f o = e x ~  ( japl -p ,"02/4) ,  

the maximum of the amplitude is reached at t * = TI 
+ (2"*M/p,~ y)), and the decay at t, - TI > t * - TI is ex- 
ponentially rapid: 

The reason for the delay of the quasiperiodic perturbations 
of the density is the light-induced spatial modulation of the 
directional (hydrodynamic) velocity which (immediately 
after the passage of the radiation) contains, as indicated by 
Eq. (37), the component 

Near its nodes R, [u(R,) = 01 the initial periodic bunching 
or antibunching of the particles takes place along the Q'," 
direction with the period ( 2 / Q  y)) and it disturbs the homo- 
geneity of the gas. It follows from Eq. (43) that the appear- 
ance of a spatial grating of the density is directly related to 
micro-oscillations of the distribution of a freely evolving gas: 

(this should be compared with the Van Kampen waves in the 
theory of a plasma-wave echo in Refs. 9 and 10). If (t, - T I )  
> (Q Y'pdM ) - I ,  then the phases of these oscillations are 
mixed thoroughly and this destroys the macroscopic re- 
sponse, but dephasing is not irreversible and the application 
of a second pulse may result in an interaction of perturba- 
tions caused by the first and second pulses, which may lead 
to renewed phase matching. 

In the interval IV the density can be represented by 
N ~ 4 ' = N o + N I + N 2 + N 3 + N , ~ .  (50) 

The terms N, and N, represent the "wake" of the decaying 
perturbation induced by the first pulse and distorted by the 
second pulse. The amplitude of the corresponding oscilla- 
tions are small if 

( T + T 2 )  ( Q ~ ' " ~ , I M )  >I, 

(N ,<No  e x p [ - -  ( t 1 - ~ i ) 2 ( ~ l ( i ' p o / 2 M ) 2 1 )  
so that they can be ignored in the interval IV. The term N3 is 
the primary response to the action of the second radiation 
pulse, found allowing for the deformation of the noncoher- 
ent component of the distribution caused by the first pulse, 
and N,,, is the interference term associated with reversal of 
the phase evolution. 

We shall introduce the notation 
( 3 )  q R = ~ d i ' ~ I + ~ o  T ~ ,  

a -2 
-f 

b 7; T3 
echo 

T,+t* TJ+~** t, ( t p  T+ 5) 

FIG. 1 .  Echo of resonant optical pressure: a) sequence of excitation pulses; 
b) relative amplitudes of a light-induced density grating. 

(1) 
I$, = ~ r ~ ( f ,  ( q +  ( t , )M3i3'  ~ 3 " ) ' } ,  ~ k o ~ : ~ )  /2M=uR , 

~ k , Q , ' ~ ' / 2 M = o d ~ ' ,  ( f i k o / 2 )  q,=p, .  

Then, N3 and Nech are found from the expressions 

~,2 '=8 I M ~ ' M ~ ~ ' *  I I f ,  (q,) sin p, sin [ (a:'  &oA" ) 

x ( t i - T , )  I I 
xcos ( [ Q l ( " f  Q ~ ( ~ )  ] R F @ * ) ,  

(54) 
~ , = b ( ~ ) T ~ f  b ( i ) ~ , ~ 0 + ' ( o i 3 '  +mi1 )  ) 

qR11+ 
x( t l -T3)  +p++&+ -. M 

The oscillation amplitude N,, representing the primary 
response to the second radiation pulse, rises from zero to the 
maximum value in a time t ** - 2 " ' ~  /POQ 13) and then de- 
cays exponentially at times 

tI>T3+t", IN2 1 <No  e x p ( -  ( t , - - ~ , ) ~  ( Q ~ ( ~ ) ~ ~ / ~ M ) ~ ) .  

The preferential condition for the appearance of echo oscil- 
lations of the density N,,, after decay of the primary re- 
sponse (Fig. 1) is, as indicated by Eq. (54), collinearity of the 
vectors QY' and Q?. The echo growth time t ,  is then given 
by the following relationships (which should be compared 
with the plasma echo described in Refs. 9-12) 
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where the echo amplitude is of the same relative order as the 
primary responses if the interval between the radiation 
pulses and the duration of the second pulse are selected in 
such a way that 

We shall now consider a specific example when (fiko/M ) = 6 
(1) - 3 x 1010 cm/sec, y = lo-' sec- ', no = - n,, (a(:) - w, ) - 

Hz, k = lo5 cm-', po/M = 100 cm/sec; we then obtain (t  7 
- T,)=.(t :* - T,) =. lo-' sec and the period of the spatial 

grating i s 4  =. 3 x lop5 cm. The amplitude of the echo oscil- 
lations with the spatial period A,,, -- 3 cm reaches its maxi- 
mum value in 0.25 sec if T=. T,=. lop6 sec. The relative am- 
plitudes of all the responses are maximized by the optimal 
selection of the parameters of the interacting fields IG,12 - - - y, y,, I A ' / ~ ~ , I  - 1.3 and are of the order of fik,Jpo. 

It should be noted that the factors complicating the ap- 
pearance of an echo are collisions between particles and the 
boundary effects (collisions with a wall, free expansion of a 
gas, etc.). The phase memory is then destroyed as a result of 
interatomic collisions and diffuse reflection from the walls, 
but is retained in the case of specular reflection from the 
walls. Moreover, interference between perturbations that 
appear in different orders in respect o f p  is also possible. 

APPENDIX 

Eigenvectors of the matrix (KO +j;i)  = B 

The matrix B has a simple structure and a double eigen- 
value, identically equal to zero, and two complex-conjugate 
eigenvalues /2 ,,, = f jG. The linearly independent system 
of eigenvectors pi is 

cpz = col { j -  2'0, j y, (sin p - t x e x p j p  4 1 , 
- j (cos 8 + %exp jp)}, L=O, 

~3=col{-'/&', (so-do), -'/,g,'(so+do), 2 cos p, 2j sin p), 
$=+ iG, (A.1) 

cpc=col {'/zg, (so+do), (so-do), 2 cos p, 2 j  sin P), 

A,=-jG, 
where 

The linearly independent eigenvectors of the conjugate ma- 
trix B + 

B+bk= Xkbk, Xk=Ad, k=1-4,  ( A 4  

for a biorthogonal system with pk are determined uniquely 
by the normalization conditions adopted in the present 
study 

"We shall formally define the directional momentum as the first-order 
moment of the Wigner distribution function f = f (p, R, t ), which is local 
in respect of the spatial coordinates. 

"The symbol "col" is introduced for a column vector written down on a 
line. 

3'A small parameter appears in a natural manner as we go over to dimen- 
sionless variables, provided the conditions (4) and (14) are satisfied. 

4)It should be noted that, generally speaking, the function G may be slow 
in time on thep/G scale (this does not affect the asymptotic expression). 
Then, the conditions for parametric resonance are ensured by varying 
the frequency of the controlling field. The value A, = - G also exhibits 
resonant behavior. 
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