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The wave functions, energies, and widths of high-lying autoionizing states are calculated and 
systematized for strongly correlated electron motion in two- and three-electron atoms. The ener- 
gies of the states are "molecular" and the Auger decay widths decrease exponentially with in- 
creasing excitation. The autoionizing states have a simple interpretation as quasistationary states 
in a potential well formed by a spherically symmetric barrier, whereas such a representation is not 
possible if one-electron wave functions are employed. 

1. INTRODUCTION 

Our understanding of the electron shell structure in 
multielectron atoms is based on the assumption that the elec- 
trons can be regarded as independent in the lowest order of 
approximation. This requires that the electron-electron (e- 
e) interaction be weak enough so that perturbation theory 
applies. The opposite is encountered for the electron states 
when the e-e interaction is strong and the shell structure may 
be expected to break down. Such states are by no means 
rare-they occur when the orbital velocity of the electrons is 
low, and in high-lying states containing at least two elec- 
trons, and are observed for the outermost electrons in the 
ground states of multielectron atoms, electrons in excited 
autoionizing states, etc. It  is known that the properties of 
doubly excited helium cannot be correctly described if one 
starts from the assumption that the electrons are indepen- 
dent.''' In this case the e-e interaction is not weak, and the 
lack of a shell structure makes it necessary to adopt other 
schemes for classifying these It was suggested in 
Refs. 4-6 that the energies and quantum numbers for doubly 
excited states of two-electron atoms can be found by drawing 
an analogy with a linear rotating triatomic molecule consist- 
ing of two electrons separated by an atomic nucleus. This 
molecular interpretation is also supported, e.g., by numeri- 
cal calculations7 of the wave functions for several autoioniz- 
ing states in He and He-like ions, where such an electron 
localization was observed. There is much current interest in 
the possible existence of a new class of autoionizing states in 
two-electron atoms in which the electrons are localized on 
opposite sides of the nucleus (this work has been reviewed in 
Ref. 8).  For three-electron systems, symmetry consider- 
ations suggest that states should exist in which the electrons 
are localized near the vertices of an equilateral triangle. This 
idea is also strongly supported by the recent ~olu t ion '~  of the 
classical Lagrangian equations of motion for the three-body 
problem9; these solutions predict that localization of the 
above type should occur when a nucleus and two or more 
moving electrons interact via the Coulomb force. However, 
the quantum mechanical techniques proposed thus far for 
solving two- and three-electron problems are for the most 
part phenomenological. In the present paper we find for the 
Schrodinger equation for two- and three-electron atoms and 
ions solutions which describe such a collective electron mo- 

tion. A method is proposed for calculating and systematiz- 
ing the wave functions, energies, and widths of the states. 

2. METHOD 

We consider a two-electron atom with both electrons 
highly excited. The electron velocities are assumed small 
and nearly equal. In this case the e-e interaction is strong and 
must be treated exactly, and the electrons in the stationary 
states tend to lie on opposite sides of their orbit. The center of 
mass (CM) of the two-electron system must lie near the 
nucleus of the atom, and since the electron orbits are large, 
the CM will either move more slowly than the electrons (like 
the center of mass of a long dumbbell) or move adiabatically. 
Let the coordinates of the mass center of the e-e pair and of 
the relative motion be R = (r, + r2)/2 and r = r, - r,, re- 
spectively, where r, and r, are the coordinates of the elec- 
trons. In these variables the wave function of the entire 
three-particle system satisfies the equation 

where Z is the charge of the nucleus (which lies at the coor- 
dinate origin) and we employ atomic units. We fix R and 
introduce a complete set of states whose wave functions 
&")(r) are solutions of the equation 

We can then express the solution of ( 1 ) as a sum 

Y (R, r) = cpg) (r) C,, (R) .  
? 

If we assume that the CM moves adiabatically, we get the 
lowest-order equation 

for the coefficients Cn (R)  by the standard method. We will 
use the assumption that (R(  is small to  calculate^, (R); then 
up to terms - ( R  /r)4 we find that 

233 Sov. Phys. JETP 62 (2). August 1985 0038-5646/85/080233-05$04.00 @ 1986 American Institute of Physics 233 



We can now apply perturbation theory to the unperturbed 
equation (2) with R = 0: 

a2 42--1 ) 9:"' (r) --En (0) ql:.' (r) (-=-7 
Here n-n, I, m are the principal quantum number, the orbi- 
tal momentum, and its projection on R, respectively. Then 

We have a, > 0 if 3m2 > 1(1+ 1 ), which we will assume in 
what follows. To lowest order, the equations of motion of the 
CM for the two-electron system have the same form as the 
equations for a three-dimensional oscillator. The energies of 
the high-lying two-electron states are thus "molecular" (see 
Refs. 6, 8)  : 

where N is the principal quantum number of the oscillator. 
The state wave functions are expressible as products C, (R)  
q, P' ( r ) ,  where C, is the wave function for the oscillatory 
motion of the CM near the nucleus [Eq. (4)  1, and q, F' 
describes the relative motion of the electron pair in the Cou- 
lomb field of a nucleus of charge 4 2  - 1 [Eq. (6)  1. We note 
that the zero-order functions &j"'(r) are regular, just as in 
Ref. 11, where two closely spaced nuclei in a diatomic mole- 
cule were considered. We can therefore take the quantiza- 
tion axis of the orbital momentum in ( 6 )  to lie along R, 
which ensures that the potential (7) is binding. The three- 
center problem (2)  can be solved numerically to calculate 
more accurate wave functions and "terms" E, (R).  

3. ANALYSIS OF THE APPROXIMATIONS 

We first give some elementary arguments to support the 
approximations which we have made above. 

1. The condition a, > 0 for the existence of a binding 
potential in (7),  needed for the motion of the CM of the 
electron pair to be bounded near R = 0, is satisfied if 
3m2>1(1 + 1). 

2. The condition for the CM of the electron pair to lie 
near the nucleus, viz., ( R 1 ' 2 g a n ,  where 

is the rms deviation of the CM from the equilibrium position; 
a, -2n2(4Z - I ) - '  is the size of the Coulomb orbit for 
I-n>l. We have a, -(4Z)4/4n6 for Imlzl-n>l,  since 
4 2  - 1 - 4 2  forZ22 (hereafter Im I zl -n> 1 always means 
I - I m J ( I - n ~ l ) .  We thus get the condition 

for R to be small. 
3. We expect that the CM of the electron pair will move 

adiabatically if its velocity 

is much less than the velocity (VZ)lJ2 z ( 4 2  - 1 )n -', of 
the relative motion in the Coulomb field. This again leads to 
inequality (9)  for Im 1 =I-n) 1. Thus in any case we must 
assume that n X 10 in order for our treatment to be valid. 

4. There are also further constraints due to the finite 
depth of the potential well E, (R)  in which the CM of the 
electron pair moves. Our simple treatment requires that N be 
small in order for the potential E, (R)  to remain harmonic. 
However, this constraint is found to be weaker than (9).  

Now that we have seen that our analysis requires at any 
rate for Im 1 -1 - n> 1, we can proceed to a more rigorous 
justification of the following two assumptions: a )  Eq. (2)  
can be solved by perturbation theory; b)  the equation for the 
coefficients C, (R)  in expansion ( 3 ) can be solved in the 
adiabatic approximation. We note at the outset that the de- 
tailed behavior of the matrix elements for I m I -1- > 1 is cru- 
cial for the validity of these assumptions. 

a )  Expansion (5)  is valid for (R,)lJ24an , where (9) 
holds. The matrix elements of the perturbation 

can be expressed as a product of radial r;? and angular a,,, 
parts: 

where 

rin3p = (r) , r-3q,'n' ) (I) ) , 

!An,=:! (4d.5) "( lm 1 Y,, I I'm'). 

According to our choice of {q, F'(r)} as the regular zero- 
order basis set, the Z axis points along R. We have a,,. #O 
fo r I '= I , I+  2andm1=m.For1-nandl- IrnI(1wehave 

and the remaining radial matrix elements can all be neglect- 
edforn>l,I-n.Forexample,for In -nlI = Anxnwehave 

etc. Therefore, 

where the right-hand side is the spacing of the levels for the 
unperturbed Coulomb case (6) (the reduced mass is equal 
to 0.5 atomic units). We can thus solve Eq. (2) by perturba- 
tion theory if we take the q, g ' ( r )  in (6) as the zero-order 
basis set. Indeed, as in Ref. 11, the perturbaton ( 10) has the 
property that V, ,,,; ,,, * ,,, = 0 because r ,,,;,,, , , = 0, while 
the other elements are small so that the perturbation theory 
corrections to q, F' ( r )  are small. Finally, the highest-order 
terms of the expansion in powers ofR /r, not accounted for in 
( lo),  give a negligible contribution; for instance, (R/S, , .  
5 l/n4, etc. 
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b) In order for the adiabatic approximation to be valid 
we must have1' 

B ,,& ,--l(C,,,(R) jh,,,~IC,;~~(R)>I~IE,~-En~~~l, (12) 

where n f n', Nand N '  are arbitrary, the C,, ( R )  are solu- 
tions of Eq. (4), and 

( n ' )  ,inn- = Jdvry.g' (r) { ~ . ~ p .  (r)+2(vBT;" (r)) vR}. 
We have already seen that the solutions 4g' of Eq. (2)  ap- 
pearing in this formula can be found by perturbation theory: 

cp;' (r) =cpy' (r) -8ZR" 

This leads to the result 

so that the inequaltiy that ensures the validity of the adiaba- 
tic approximation is satisfied. We have thus used the specific 
properties of the states with Iml-l-n)l to show that the 
adiabatic approximation is valid if the CM motion is slow 
compared to the relative motion of the electrons in the Cou- 
lomb field, rather than the frequencies of the motions (this 
result is similar to the conditions that the perturbation the- 
ory considered in Ref. 13 be applicable to highly excited 
states). We emphasize that even though the oscillator mass 
(2 a.u.) is not much greater than the reduced mass (0.5 
a.u.), the parameters in the potential (7) are such that the 
oscillator (CM) velocity is much less than the relative veloc- 
ity in the Coulomb field. 

4. SYSTEMATIZATION, WAVE FUNCTIONS, AND ENERGY 

In order to find the two-electron states with a pre- 
scribed total momentum K and projection M, we use spheri- 
cal coordinates to rewrite (4)  as 

1 d (K -L )  1 [ - - - ( ~ 2 ' ~ ~ ( ~ )  ) - - - C , , ( R ) ]  
4 R 2 d R  d R  R2 

where L is the angular-momentum operator of the relative 
motion (6). In accord with the analogy between the adiaba- 
tic approximation used in Sec. 2 and the corresponding ap- 
proximation in the theory of diatomic molecules, we write A 
for the projection of the total angular momentum on the 
moving axis R and let A = m be the projection of L on R. 
According to the theory of diatomic m~lecules, '~ the wave 
functions of the high-lying autoionizing states with specified 
total angular momentum K and its projection A and Mare  
given by (see Ref. 6) 

( n l m  2K+1 '" 
B ( R , r ) = h  (r)p . i . . r i (H) iK(T)  DmMK(r.O.O). 

(15) 

Herep is the radial part of the oscillator-motion wave func- 
tion (14), n, is the corresponding radial quantum number, 
and the D are the Wigner squared angular momentum func- 
tions. Since I -  n) 1 in our case, we can assume that the oper- 

ator has for the functions ( 15) a definite value: 

and since K> Im I we have P '221. The energies correspond- 
ing to the states ( 15) are given by 

We can thus describe the high-lying autoionizing two-elec- 
tron states in terms of the wave functions (15), energies 
(16), and quantum numbers n, I, m, n,, K, and M, where 
n) 1, I-n, I - Iml <I, K> Im 1, - K<M<K. Condition (9) 
can then be rewritten as 

which [like (9)]  imposes constraints on the values 
N = 2n, + P, and hence also on n, and on the total angular 
momentum K, at a fixed n % 1. 

5. PROBABILITY OF AUGER DECAY 

Perturbation theory cannot be used to calculate the Au- 
ger decay probabilities because the e-e interaction is not 
weak. However, we can use the above technique to describe 
the autoionizing states in a simple way as quasistationary 
states in the well produced by a spherically symmetric bar- 
rier. To do this we continue the expansion ( 10) up to terms - (R / r )  6; we then find that 

zn (R) =E,, (0) +ma,RZ-p,,R, (18) 

where for Iml--l-n)l 

The "term" E,  (R)  thus represents a well with a barrier 
through which the CM of the electron pair penetrates when 
an Auger transition occurs and escapes to infinity. If we mul- 
tiply the probability of penetrating through the barrier by 
the incident particle flux, we find the estimate 

for the widths of the autoionizing states. Under the assump- 
tions for which our treatment is valid, the other quantum 
numbers have little influence on r, . The Auger decay prob- 
ability thus drops as n increases. 

6. COLLECTIVE THREE-ELECTRON STATES 

We will find for the Schrodinger equation for a three- 
electron atom solutions that correspond to the motion of 
three electrons localized near the vertices of an equilateral 
triangle centered near the atomic nucleus. We let ri , i = 1,2, 
3, be the position vectors on the electrons and define the 
operator T as TJ, where To is a 60" rotation about a fixed 
spatial axis passing through the coordinate origin (i.e., 
through the nucleus); I is the inversion operator about the 
plane normal to the rotation axis. The change of variables 
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leads to the expression with y, we get the equation 

for the kinetic energy operator of the electrons. The poten- 
tial 

+ 7--P--a I - '  1 2 2  

describes the interaction between the electrons and the nu- 
cleus, of charge 2. The e-e interaction operator is given by 

T 1 T  + -y+-y+--a--a+ - p  1: 3 3 6 2 I - '  

For definiteness we consider an equilateral triangle which is 
oriented in space so that the first three changes in (20) lead 
to 1x1 (IzI and ly) 4 JzJ; this is the analog of the condition for 
R/r to be small in Sec. 2. In addition, we assume that the 
vectors a and Q are nearly parallel to the fixed rotation axis, 
and that y nearly lies in the plane of rotation, i.e., 

We will discuss these approximations and their limitations 
more fully below. If we expand the potential energy 
W = V + U (regarded as a function of a ,  Q, y )  in powers of 
the small quantities a /y  and p /y [cf. (5)  1 ,  we get 

9 - 3 - 
a=3(32-I%), b =- (32-13), c = - (32-13). 

4 4 

We can now solve the exact three-electron equation 
3 a Z  a2  a. 

3 - - -- + W (a ,  3,y) - E ]  V! (u, p ,  7 )  =O 

(26) 

by proceeding as in Sec. 2. First we fix a and Q and find a 
complete set of solutions of the equation 

in terms of which we can write 

Under the assumption that a and P vary slowly compared 

3 a2  d 2  -----+ en (a ,  p )  - E ]  C. (a ,  P) =O (29) 

for the coefficients C, (a$) in the standard lowest-order 
adiabatic approximation. Equation (27) can be solved by 
applying perturbation theory to the unperturbed Coulomb 
equation 

which follows from (27) by setting a = Q = 0. Here n=n, I, 
m are the same Coulomb quantum numbers as in Sec. 2, and 
the perturbation 

A W= W (a ,  p ,  7 )  -W (a=O, p=O, y )  = W ('a, p ,  y) +aly 

is given by (25). Since the orbital quantization axis for (30) 
is parallel to a/a =: B/pand the regular zero-order functions 
are the same as in Sec. 2, we find that 

E ,  (a ,  B )  =en (0, 0 )  +p.P2+ qna2, (31) 

where as in (7) 
1 16 ba3 (3m2-1'-1) 

P =-4n=- " 3 9 n3(1+1) ( L + ~ I = )  z(2z+3) (21-1) 
. (32) 

The solutions of (29) with the potential (3 1 ) are expressible 
as products of the solutions of the equations for two three- 
dimensional oscillators: 

3 a= (-rw + qna".EI) An ( a )  -0, 

Here E, and E2 are the oscillator energies. The energies of 
the three-electron states are therefore given by 

where N, and N2 are the principal quantum numbers of the 
oscillators (33). The corresponding wave functions of the 
three-electron states are products of the wave functions of 
the unperturbed Coulomb problem (30) and the wave func- 
tions of oscillators (33). 

We will now discuss the above approximations. An 
analysis shows that the conditions 

will ensure that p, and qn in (3 1 ) are positive, that the ex- 
pansion (25) is valid, that (27) can be solved by perturba- 
tion theory, and that the adiabatic approximation can be 
assumed in (28) for the coefficients C,  (a#) .  These rela- 
tions are the same as were found in Secs. 2 and 3. Consider- 
ing in addition the specific assumptions made in solving the 
three-electron problem, we note that for I m 1 =: I -  n > I and 
IM - m I< 1 m I, the Wigner D-functions for each oscillator 
[see ( 15) ] contain the factor cosP ( 8  /2), where p -n and 
8<r. Here cosn (8/2) -exp( - n8 '/4), i.e., the axes a and 
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p lie in a narrow cone of angle 0- 1/2n'I2 and are therefore 
parallel in this approximation. To the same accuracy, the 
Coulomb orbits (30) are localized in the plane normal to a; 
this is because the angular parts of the wave functions con- 
tain the factor sing e,, whereq-n (for Im I -1-n), 0, is the 
angle between y and a, and 

The vector y is therefore almost perpendicular to a/ 
a -- p/B, so that the approximations (24) are valid. To with- 
in the same approximation, it is immaterial whether a/a or 
p/P is chosen as the quantization axis for the orbital mo- 
mentum in (30); this is because a rotation of the quantiza- 
tion axis from a to p will change the angular part of the wave 
function (30) by1' AP- AI '128 / I  ' 1 2 < ~  for 
l m l ~ l - n > l .  

We have shown that the Auger decay probability drops 
as the degree of excitation of an atom in a highly correlated 
state increases, so that population inversion may occur. The 
three-electron states are equally likely to decay with ejection 
of a single electron or with ejection of a pair of highly corre- 
lated electrons. Since an ejected electron pair can be regard- 
ed formally as a Bose particle, induced (stimulated) elec- 
tron-pair emission should be possible. 

7. CONCLUSION 

The results derived above become exact in the limit 
n+w. Our analysis thus shows that even though the elec- 
tron orbits have large radii in highly excited states (n 2 lo),  
they can by no means always be regarded as moving indepen- 
dently. In fact, in states with large I and m, when the elec- 
trons move along circular orbits and "in a single direction," 
the e-e interaction determines the character of the motion. 
The motion constitutes small deviations from rotation of a 
long dumbbell with center near the atomic nucleus in the 
case of two electrons, and small deviations from rotation of 

an equilateral triangle centered near the nucleus for a three- 
electron system. However, if the motions of the electron 
mass-center system are not small, the behavior can be treat- 
ed qualitatively by assuming that the electrons move inde- 
pendently. 

The wave functions found above describe strongly cor- 
related electron motion and can also be used to calculate 
multiparticle decays of autoionizing states. l6 Like the corre- 
sponding so l~ t ions '~  for classical mechanics, our computa- 
tional scheme can be generalized to apply to high-lying 
states of n  electrons. 
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