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The total cross section for transitions from a Rydberg state can be described by a normalized Born 
approximation when the velocity of the external charged particle is higher than the average 
velocity of an atomic electron. The discrepancy with experimental data at lower velocities can be 
eliminated by a more complicated approach based on strong-coupling methods. The methods 
which have been developed predict that transitions with )I  - I,[ > l(1, and I are the angular 
momenta of the initial and final states) will play a dominant role at low velocities. An approxi- 
mating expression is derived for the total cross section for transitions. Calculations are carried out 
by the strong-coupling methods for the transitions 28d-28J 28d-28g, and 28d-28h in the Na 
atom. 

1. INTRODUCTION 

The advances in experimental research on Rydberg 
atoms have made it possible to detect excited states with very 
high values of the principal quantum number n (n =: 600 ac- 
cording to Refs. 1 and 2). For such states, the cross sections 
for the scattering of charged particles are typically extreme- 
ly large, considerably larger than the orbital area of an atom- 
ic electron ra;n4, where a, = 0.53 . lo-' cm is the atomic 
unit of length. In order to describe transitions between such 
states it is necessary to take an approach by which it is possi- 
ble to find the transition cross sections for arbitrary n. This 
requirement severely limits the possibilities of the conven- 
tional methods of the theory of electron-atom collisions, 
which have been developed primarily for low-lying excited 
states. 

Our pupose in the present paper is to study the cross 
sections for the transitions nl, -+ nl in collisions with 
charged particles, where I, and I are the angular-momentum 
quantum numbers of the atomic electron in the initial and 
final states, respectively. The Born approximation3v4 can be 
used at high velocities of the charged particles, vsv,, where 
v, = 2.19. 10' cm/s is the atomic unit of velocity. An 
expression for the cross sections for transitions with 

I I, - I I = 1 was derived in Ref. 5 by semiclassical methods. 
At present the only experimental data available are on the 
total cross sections for transitions from nd levels in the Na 
atom.6 At velocities v > u, (v, = v,Jn is the average velocity 
of an atomic electron), the total cross section is dominated 
by the transition d -+J and in this case there is a satisfactory 
agreement between the results of Refs. 5 and 6. At lower 
velocities, the results derived in Ref. 5 are lower than the 
experimental results. 

In the present paper we show that a modification of the 
Born approximation to incorporate a normalization 
also leads to a satisfactory agreement with experimental data 
at velocities v > v, . More complicated methods become nec- 
essary at velocities v < v, . 

Below we report the results of a solution of the strong- 
coupling equation with a dipole potential for a large number 
of levels. The total cross sections (for all I) agree with the 

experimental results over the entire energy range. Further- 
more, it follows from our results that transitions with A1 > 1 
become progressively more important in the total cross sec- 
tion with decreasing velocity of the charged particle, becom- 
ing the dominant case at velocities u 5 0.5~1,. From the 
standpoint of studying the basic physics of the collision pro- 
cess, we are particularly interested in approximate models 
which conserve the basic qualitative features but which al- 
low us to make substantial progress toward an analytic solu- 
tion of the problem. In particular, it turns out that the total 
cross section in the energy range of interest here can be de- 
scribed adequately by considering only three levels. 

We make no claim that the three-level model is capable 
of describing transitions with various values of AI. Demkov 
and Ostro~skii '~  have derived an expression for the transi- 
tion probability for the hydrogen atom in terms of a finite- 
rotation matrix of rank n. In the present paper we examine 
methods which are based on models with an infinite number 
of 1 levels. A distinctive feature of this problem (which con- 
trasts it with, for example, processes involving a change in n)  
is the lower limit on I. This "semi-infinite" system of equa- 
tions has been used to derive analytic expressions for the 
probabilities of transitions with A1 > 1. [We will use atomic 
units, expressing the energies in rydbergs (Ry ) . I  

2. BORN APPROXIMATION 

The q representation is the most convenient for this 
analysis of scattering in the Born approximation. In this rep- 
resentation (see Ref. 8, for example) the cross section for the 
transition nl, + nl is 
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Here A E  is the transition energy, P,, is the radial wave func- 
tion, M and Eo are the mass and energy of the incident parti- 
cle, and j, (qr) is the spherical Bessel function. The general 
expression for R, (qr) is quite complicated, but for the case 
in which we are interested here, with n) 1 and x = Al, which 
dominates the sum over x ,  the following expressions were 
derived in Ref. 4 by means of an asymptotic Tricomi expan- 
sion for the hypergeometric functions" and the Poisson rep- 
resentation for j, (2) : 

rr,,(q) =ezmjm (qn2) J7,(qn2), 

R2,+, ( q )  =&zrn+i jm ((in2) Jm+i!qn2) ,  (2)  
k -  I 

where J,,, is a Bessel function. These expressions incorporate 
the equations of Ref. 12 as the limiting case for Ign. Numeri- 
cal calculations show that expressions (2)  are accurate with- 
in a few percent over the important region of qn2 even at 
n > 3, for nearly all I except I - n. Using expressions (2) ,  we 
can write the cross section at u2 > AE as 

AL=l: 0(10, l o t i )  max(lo, lo+l) ei2 
= 6 -Z, (0,5an2-q,  

nrl& 2L0+1 v" 

0 ( 1 0 ,  lo+Al) (3) 
Al>1: = 8(2A1+1) [2(1,+-A1) + f ]  

nn" 

where 

and a and KA, are constants found from the numerical cal- 
culations: a = 0.586, K,, = 0.454, 0.422, 0.441 and 0.405 
for AI = 2, 3,4, and 5, respectively. It follows from (3)  that 
the cross section falls off rapidly with increasing Al, and the 
total cross section for transitions from the nlo level is domi- 
nated by the dipole cross section, AI = 1. Since the only ex- 
perimental data available at present are on the total cross 
sections, we will focus below on the dipole transitions, with 
A1 = 1. Figure 1 compares the total cross section 

from expression (3) calculated for the Na atom1' (this cross 
section is actually determined by the dipole transition, as we 
have just seen) with experimental data from Ref. 6. We 
might note here that calculations from expression (3)  yield 
results which are essentially the same as the dipole Born 
cross sections calculated in Ref. 3. We see that the Born cross 
section overestimates the result and that, as expected, for 
transitions between highly excited states the Born approxi- 
mation is good only if the dimensionless velocity of the per- 
turbing particle satisfied x = u/u, > 1. 

To pursue the analysis we also need an expression for 
the Born cross section for a dipole transition in the impact- 
parameter representation5" [as usual, we assume a rectilin- 

FIG. 1 .  Cross sections for transitions from the 28d state of Na according 
to perturbation theory ( x  = nx/u,). The points are experimental data 
from Ref. 6 on the total cross section for 28d -+ 281 transitions with I> 2. 
0-Ar+; 0-Ne+; A-He+. Dot-dashed line-Semiclassical calcula- 
tion5 of the cross section d +A dashed line-Born approximation, ( 3 ) .  
Normalized Born approximation: Solid line--q representation, ( 6 ) ;  
dashed line-p representation, (41, ( 5 ) .  

ear trajectory for the perturbing particle,R(t) = p + vt] : - 

where KO and K, are modified Hankel functions; w is the 
frequency of the transition between the levels I,, lo + 1 and 
I, = max{lo, I, + 1). 

The Born approximation is valid for weak interactions: 
at large values ofp in thep representation or at small values 
of q in the q representation, at which the transition probabil- 
ity is small. If we wish to apply the Born approximation to 
the cross section as a whole, the region of weak interactions 
must obviously dominate the cross section for the process. 
According to the Born approximation, the region of strong 
interactions frequently makes disproportionately large con- 
tributions because the Born transition probability satisfies 
WE > 1. Consequently, we can significantly expand the 
range of applicability of the Born approximation if the re- 
gion of the parameters p(or  the momenta g)  in which the 
interaction is strong ( WE > 1 ) is eliminated from considera- 
tion, or if we arbitrarily set the transition probability in this 
region at a value less than 1. In the p representation, for 
example, we can determine the transition probability from 

K ( p 7  v)=WB(p, " ) / [ I f  WB(p, u )  1. (5)  

In the q representation, an analogous procedure is carried 
out as follows ( I  = I, + AI) : 
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TABLE I. Cross sections for 28d -+ 281 transitions and the total cross section u, in the Na atom 
for transitions caused by collisions with charged particles 

Note. x = nu/u,. (8)-system of equations with m components; (9),  ( 10)-"average" system, 
incorporating the d,f, g, and h  levels. 

For the case A1 = 1, the normalized cross sections calculated 
from (5) and (6) can be written in the form a = N# , where 
fl is given by (4), and N can be approximated by 

ul= (a/2) nZAE, u,= (2/a) (d /nz )  . 
The overall error of approximation ( 7 )  for both representa- 
tions of the region is less than 20%. 

Figure 1 shows Born cross sections for the transition 
from the 28d level, normalized in the p and q representa- 
tions. We see that these cross sections give a satisfactory 
description of the experimental data at velocities down to 
U-u,. 

1 1 1 1 1 1 1 1 1 1 1  
20 60 700 

f /nz 

FIG. 2. Probabilities for transitions from the 28d state of Na. Strong 
coupling: a-x = nu/u, = 1; b-x = 0.5. Total probabilities for transi- 
tions from the 28d level: 1--Complete system, (9), ( lo ) ,  with 26 levels; 
2-(dashed line) three-level system, ( 11 ); 3-analytic solution, ( 12), 
( 13 ); open circles-normalized Born approximation, (4), (5 ). Probabili- 
ties for the transitions 28d + 281 [according to (9) ,  ( lo),  with 26 levels] : 
M - J 5 6 + g ; b d + h .  

3. STRONG-COUPLING METHOD 

Let us examine the strong-coupling method for the 
transition of an atom from the nl,, state to the nl state ( I  > I,,). 
We use the p representation. The cross sections for these 
processes are dominated by the region of large distances 
between the perturbing particle and the a t~m:~,n ' .  We will 
thus consider only the dipole interaction, which is dominant 
at such distances. Since the energy splitting of the levels de- 
creases rapidly with increasing I, we will ignore the energy 
difference between the level I, + 1 and the states I> I, + 1. 
The strong-coupling system is then2' ( w  is the frequency of 
the transition between the I,, level and the other levels, I > I,) 

( I ,  mIsIl'm'>=- yv 
2 

System ( 8 )  should be solved under the initial condition 

and then averaged over m,. Even at small values of n, there 
are many equations in (8).  The dependence on m is not of 
major importance in this problem. We will accordingly 
study the system of equations "averaged over m": 

iilo ( t )  =e-'"tVlo, lo+ialo+l ( t )  , 
ici,,+i ( t )  =ei"'V,,+,, ,,al,(t) +VI,+,, ,+2a,+z ( t )  7 (9) 
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with the initial condition la, ( - co ) 1 = Silo and the "aver- 
age" potential 

V,, ,,, ( t )  =d(p+ut) (pZ+v2tZ) ( 1 0 )  

where 2 is defined by ( 4 ) .  This expression for the potential 
gives a qualitatively correct description of the interaction at 
large distances, and a first-order perturbation-theory treat- 
ment of system ( 9 )  with potential ( 10) gives the exact Born 
expression for the transition probability. To illustrate the 
situation, we show in Table I the cross sections for transi- . 
tions from the 28d level of Na which have been calculated 
from the complete system ( 8 )  and from average system ( 9 ) ,  
( 10) for four values of I. The difference between the results is 
seen to be insignificant for the total cross section and for the 
cross section for the transition d +f, while for d -+ g and 
d -+ h system ( 9 ) ,  ( 1 0 )  still describes the basic qualitative 
features. Below we will use the average system ( 9 ) ,  ( l o ) ,  
which is simpler. 

Figure 2 shows the probabilities for 28d --+ 281 transi- 
tions versus the impact parameterp for velocities v = v, and 
v = ( 1/2)u, of the external particle according to a solution 
of system ( 9 ) ,  ( 10) for all I>d(26 levels). We see that in the 
region of impact parameters which dominates the cross sec- 
tion the normalized Born approximation for the d + f tran- 
sition actually describes not the transition d -+ f but the 
total probability for transitions from the d level. At large 
values of p, as expected, the probability for the transition 
d -+ f which is found from system ( 9 ) ,  ( 10) agrees with the 
Born probability. We also see that in the region p 5 30n2, 
where the dipole interaction is still dominant, the probability 
for transitions with Al> 1 exceeds the probability for the 
direct transition d --+$ It should be noted that the relative 
importance of transitions with A1 > 1 in the overall probabil- 
ity increases with decreasing v. 

Figure 3 shows the cross sections for the transitions 
d -+f, d --+ g, and d + h for n = 28 versus the velocity, in 
comparison with the total cross section from experiments. 
Over the entire energy range which has been studied experi- 
mentally, the total cross section calculated from system ( 9 ) ,  
( 10) agrees with the data of Ref. 6. At low velocities, how- 
ever, the total cross section is dominated by transitions with 
A1 > 1.  In particular, at v = 0.5~" the cross section for the 
transition d + g is greater than that for the transition d -+f. 
Shown for comparison in Fig. 3 is the Born cross section for 
the transition d --+ g; we see that it can be ignored. 

We can also show that the total transition probability 
(for all Al) down to velocities x>0.3 can be described by 
simply a three-level system, and we will give an approximate 
analytic solution for this system. Let us consider a system 
consisting of the three levels lo, lo + 1 ,  and lo + 2. Diagona- 
lizing the interaction with respect to the levels lo + l and 
1, + 2 by means of the transformation 

FIG. 3. Cross sections for transitions from the 28d state of Na (strong 
coupling). Total cross section for transitions 28d + 281 with I > 2, experi- 
mental data of Ref. 6: 0-AR+; 0-Ne+; A-He+. Calculations from 
(9) ,  (lo), with 26 levels: X-Total cross section; A*,,,,.; W-cr?,,; 
k,, , . Solid line-Total cross section from ( 12), ( 13); dashed hne- 
normalized Born approximation, od,, . 

Vlm + ,, + , , we an rewrite ( 9 )  as follows, introducing the 
dimensionless distance T = ut /p and the parameter A = 2 / 
pv: 

i du  ( T )  =2-"'V(r) {-a- ( T )  exp [-i@- (a)  ] 

+a+ (7)  exp [-i@+ (7 )  I ) ,  
id+ ( 7 )  =2-"'V ( r )  exp [i@+ ( T )  ]ao ( r )  , ( 1 1  ) 
id-(T) =-2-'hV ( r )  exp [io- ( T )  ]ao ( r )  , 

This system describes the interaction of the 10) level with the 
levels I + ) and I - ), which do not interact with each other. 

The total probability for transitions from the 28d level 
found through a numerical solution of system ( 1 1  ) is shown 
in Fig. 2. In thep region which dominates the cross section, 
this probability is essentially equal to the corresponding 
probability found from ( 9 ) ,  ( 10). 

An approximate analytic solution of system ( 1 1 )  using 
an asymptotic expansion in the parameter il was derived in 
Ref. 14. It can be described by 

W,=W,+W,, W,,,=w,(I-w,)lP, 

and ignoring the difference between Vlo, lo + , and where W, is the total probability for transitions from the d 
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level, and the probabilities w ,  are the two-level probabili- 
ties for the interaction of only two states. It is a rather diffi- 
cult matter to evaluate the integrals in ( 1 2 )  for potential 
( 1 0 ) .  An approximate analytic expression for w ,  which 
gives results for W, which agree satisfactorily with the nu- 
merical calculations, ( 1 1 ), can be written in the form 

Here W ;  is the Born probability [see ( 4 )  1 ,  where f l  is re- 
placedbyfl, = [@+_ y/2)2+2(y/2)2]112,whereyisapa- 
rameter of the approximation ( y ~ 0 . 6 4 ) .  If yA >P, we can 
set fl- = 2'I2fl AS can be sen from Fig. 2, the total transi- 
tion probability found in this manner reproduces quite well 
the probability found from ( 9 ) ,  ( l o ) ,  ( 11).  As a result, the 
corresponding cross section is essentially the same as that 
found from complete system ( 9 ) ,  ( l o ) ,  and it gives a satis- 
factory description of the experimental data (Fig. 3 ) .  

4. MODELS WITH AN INFINITE NUMBER OF LEVELS 

In this section of the paper we consider an analytic ap- 
proach to the description of the cross sections for transitions 
with large angular-momentum transfer (A1 > 1 ), based on 
models with an infinite number of levels. Presnyakov and 
U r n ~ v ' ~  were the first to propose a model of an unbounded 
system of equidistant levels, with an interaction potential 
independent of the level index, for describing transitions 
between Rydberg levels involving a change in the principal 
quantum number. In the case of nl, + nl transitions the sys- 
tem of levels which are interacting in the collision process 
has a lower limit on I ,  since the energy differences between 
the levels decrease rapidly with increasing I .  We first consid- 
er a "semi-infinite" system for levels with identical energies: 

iak( t )  =V( t )ak - ,  ( t )  +V(t )ak+,  ( t ) ,  k>l, 
( 1 4 )  

iril ( t )  = V ( t )  a, ( t )  . 

System ( 14) can be solved in the following way. We add 
to ( 14) the complement needed to form the unbounded sys- 
tem: 

The solution of system ( 1 5 )  with the initial condition 
ak ( - co ) = akk, (see Ref. 14, for example) is expressed in 
terms of the generating function Z:  

a. ( t )  = & e-"'2, (u ,  t )  du, 

Z,(u, t)=esp[ikOu-iq (t)cos u ] ,  q  ( t)=2 J V ( t l )d t ' .  ( 1 7 )  
- rn 

It is not difficult to see that if we set 

then we find a solution of Eq. ( 1 5 )  in which we have 
a,(t)=O and which is thus simultaneously a solution of Eqs. 
( 1 4 ) .  

The solution of system ( 14) with this initial condition is 

therefore 
2n 

1  
a, ( t )  = - 1 e-tku [ z ,  (a ,  t )  -ZkU ( u ,  t )  ] du,  ( 1 8 )  

2n " 

Z (u ,  t )  =2i a. sin ka,  

with 

We now set V,, , + , = Vlo, + 1 = V in our "average" sys- 
tem (9).  Using ( 19) for the case o = 0,  and setting k, = 1 ,  
we find the following expression for the amplitudes: 

More realistic is a model of a semi-infinite system in which, 
by analogy with ( 9 ) ,  one level is separated from the others 
by a distance 

Using the generating function 
t 

z ( u ,  t )  =2i sin u  I dtrVab ( t r ) e rp{ i lq  ( t . ) r l  ( t )  leas u)b  ( t f )  9 

- co 

( 2 2 )  

we can reduce system ( 2 1 )  to an Volterra integral equation, 

ak ( t )  = 3 Vab ( t ' )  X k  ( t f ,  t )  b ( t r )  dt', ( 2 3 )  
- co 

X k ( t ' ,  t )  =2kJk[q ( t ' )  -(rl ( l ) ]  / [q  ( t ' )  -q ( t )17  Ib (koo)  

Attempts to solve Eq. ( 2 3 )  analytically run into serious dif- 
ficulties, but Eqs. ( 2 3 )  reduce the infinite system to an inte- 
grodifferential system, but for only two levels. For the analy- 
sis below it is convenient to rewrite ( 2 1 )  in terms of the 
function R ( u ,  t )  = Z ( u ,  t ) / b ( u ,  t ) :  

a R ( t )  
i  - = 2 v  ( t ) R  cos u-Vab ( t )  2 sin u-iK -- 

d t 
2n 

b ( t )  ' ( 2 4 )  

so that the normalization condition 
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FIG. 4. Probabilities for transitions from the 28d state of Na. Models with 
an infinite number of levels, x = 0.5: a-The d + f transition; &the 
d + g transition; c-the d + h transition. Filled circles-(25); open cir- 
cles-(26); solid lines-(9), ( l o ) ,  with 26 levels. 

holds independently-regardless of the approximation used 
in the solution of system (24). In first-order perturbation 
theory in V ( t ) ,  we can ignore the term containing b /b;  we 
find an expression for a, in closed quadrature form: 

co 

If we set 17 (f  ') = 0 in the integral over t ' in (25), we find the 
following expression for the transition probability from 
(25): 

where W, (p, u )  is the Born probability in (4),  normalized 
in accordance with (5). Figure 4 shows the probabilities for 
the transitions d + I, 1 > 2 (corresponding to k = I - 2) ac- 
cording to (26), in comparison with probabilities found 
through a numerical integral of (25) and in the finite strong- 
coupling system, (9), (10). We see, in particular, that at 
large values ofp expression (26) leads to an agreement with 
the results of a solution of system (9) ,  ( lo),  while at small 
values ofp the qualitative oscillatory behavior of the prob- 
ability is preserved. The corresponding cross sections from 
(26) are smaller than those from (9),  ( 10) by 5-25%, for 

FIG. 5. The total cross section for transitions from the 28d level of Na as a 
function of n. Open circles-Experimental data of Ref. 6; solid lines- 
mean square experimental dependence6; filled circles-present calcula- 
tions, normalized to the experimental values of the signal6 at n = 25 [Eqs. 
( 3 ) ,  (7), and (27) l .  

the most part. The cross sections found from (25) are char- 
acterized be the same error, but of the opposite sign. 

The probabilities la, ( co ) l 2  from (26) obviously satisfy 
the normalization condition explicitly; the total probability 
for transitions from the b state is W, (p, u). Accordingly, if 
we use a more accurate result [e.g., that which follows from 
( 12), ( 13) 1 as the total probability we can thereby refine 
each transition probability la, ( co ) 12. 

5. DEPENDENCE OF THE TRANSITION CROSS SECTIONS ON 
n 

At charged-particle velocities above the average veloc- 
ity of an atomic electron, u > u, , the total cross section for 
transitions from the nl, level is, as we have shown above, 
described by the normalized Born cross section 5(n,  I,;n, 
1, + 1 ) [see (3), (7)  1. Figure 5 compares the theoretical 
and experimental results on the n dependence of the cross 
sections in the interval 21-28. Then dependence of the cross 
sections was approximated in Ref. 6 by a function nu,  where 
a = 5.41 k0.13, 504 f 0.16, and 5.15 f 0.17 for charged- 
particle energies of 400, 1000, and 2000 eV, respectively. We 
see that, within the experimental error, we can assume 
u a n21n(Cn) in this energy range (CZU*/S, where S is the 
quantum defect of the d state), in accordance with (3)  and 
(7).  The difference, however, becomes important in a wider 
range of n: At n = 32, for example, at an energy of 400 eV, 
the cross section deviates from the power-law approxima- 
tion by a factor of about 1.3. 

The situation at low energies is more complicated. We 
would obviously like to carry out calculations by the meth- 
ods developed in Section 3 for each new value of n. In this 
connection we offer an approximate equation constructed 
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from (7) and the numerical calculations in accordance with We wish to thank L. A. Vainshtein, L. P. Presnyakov, 
the three-level model for ~ 2 0 . 1 :  and D. B. Uskov for a discussion of this study. 

cr=nao2n4D ln [ I +  (~/6)~(1+x,,,/x) /(D-t-1) 1, "The quantum defect of the d levels of Na is 0.01 1. 
(27) *'The potential Vl. ,. has a pole. This singularity, which is unimpor- 

1, n" n8 tant in the velocity interval under consideration here, leads to a doubling 
D=3 -- 1,5 -, 1,>>1, 

21,+1 x2 x2 of the cross section at high velocities (see Ref. 12, for example). 

where S is the quantum defect of level lo and x,,, = (nS) 'I2 
is the estimated position of the maximum of the cross sec- 
tion. At low velocities, x(x,,, , the error of (27) is within a 
factor of 1.5 or 2, while that near the maximum of the cross 
section (x-x,,, ) is about 20%. At high velocities, expres- 
sion (27) becomes the Born cross section. 

6. CONCLUSION 

In sum, the total cross section for transitions from the nl 
level at high charged-particle velocities can be described by 
the normalized Born approximation. The discrepancy with 
experimental data at low velocities is eliminated by a more 
complicated approach based on strong-coupling methods. 
The methods developed here predict that transitions with 
Al> 1 will be dominant at low velocities and that the total 
cross section will fall of (for the d levels of Na, at v < 0 . 5 ~ ~  ). 
There is accordingly much interest in seeing further experi- 
ments at energies as low as possible and, especially, studying 
transitions nlo -+ nl between Rydberg states with an identifi- 
cation of the angular momentum of the final state. 
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