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A two-dimensional exactly solvable model of a conformal quantum field theory is developed 
which is self-dual and has ZN symmetry. The operator algebra, the correlation functions, and the 
anomalous dimensions of all fields are calculated for this model, which describes self-dual critical 
points in 2,-symmetric statistical systems. 

INTRODUCTION 

There are good grounds for believing that fluctuations 
of the macroscopic fields ("of the order parameter") at a 
second-order phase-transition point possess conformal as 
well as scale invariance. ' From this viewpoint, the principal 
task in the theory of second-order phase transitions-the 
classification of all types of universal critical behavior--can 
be formulated as the problem of finding the conformally in- 
variant solutions of quantum field theory. Polyakov2 sug- 
gested constructing these solutions by combining the re- 
quirement of conformal invariance with the Ansatz that the 
field operators form an algebra. This problem has recently 
been found3 to admit at d = 2 an exact solution in many 
cases; this comes about because the conformal group of two- 
dimensional space is infinite-dimensional, and the fields that 
form an operator algebra can be classified in terms of the 
representations of the Virasoro algebra, for which a well- 
developed theory An infinite set of exactly solvable 
"minimal"conforma1 field theory models (related to the 
strongly degenerate representations of the Virasoro algebra) 
was found in Ref. 3; in these models, the space of fields form- 
ing the operator algebra contains a finite number of irreduci- 
ble representations. Each of these models is described by two 
relatively prime numbers p, q and corresponds to a central 
charge. 

in the Virasoro algebra. It was shown in Ref. 6 that only the 
"principal series" (q = p + 1, p) 3) of minimal models sat- 
isfies the positivity condition." The mathematical structure 
of the minimal models in the principal series is by now fairly 
well understood; in particular the correlation function and 
structure constants of the operator algebra have been calcu- 
lated.' 

The four simplest models in the principal series (p = 3, 
4, 5, 6) turn out to describe the critical points of the Ising 
(p = 3) (Ref. 3) and Z3 Potts (p = 5) (Ref. 8) models, in 
addition to the corresponding tricritical models (p = 4, 6) 
(Refs. 6, 9). In Ref. 10, the anomalous dimensions corre- 
sponding to all the principal-series minimal models were 
found to coincide with the exponents at the "ferromagnetic" 
critical points of the exactly solvable RSOS model recently 
discovered in Ref. 1 1. 

The minimal models certainly do not exhaust the class 
of all solutions of conformal field theory for d = 2. For in- 
stance, a series of exactly solvable models with superconfor- 
ma1 ~ ~ m m e t r y ~ . ' ~  and conformally invariant solutions of the 
Wess-Zumino models13 are known to exist. In these cases the 
conformally invariant field theory also possesses a more gen- 
eral type of infinite symmetry which is generated by local 
currents and is described by the Neveu-Schwarz and Kac- 
Moody algebras in the first and second cases, respectively. 
Reference 14 examines some other types of infinite symme- 
tries generated by local currents. 

In this paper we consider a conformal field theory with 
an infinite symmetry generated by nonlocal currents with 
fractional spins ("parafermions" ) . Conserved parafermion 
currents were discovered by one of us (V. F.) in the minimal 
models with p = 5, 6. In general, the parafermion currents 
form closed operator algebras which are associated in a natu- 
ral way with commutative groups. We will investigate a se- 
ries of very simple exactly solvable models corresponding to 
the cyclic groups Z, with N >  2. These models are confor- 
mally invariant and have central charge 

in the Virasoro algebra. In addition to their explicit ZN sym- 
metry, the operator algebras for these models are also self- 
dual (they possess "order-disorder" symmetry). Thus, for a 
given N  there exist N  - 1 fields a,, k = 1, 2, . . . ., N - 1 
(order parameters) with anomalous dimension 

and N  - 1 "dual" fields p, ("disorder parameters") with 
the same dimensions as in ( 1.3), and all the correlation func- 
tions are invariant under the interchange a ~ p .  The opera- 
tor algebra also contains ZN-neutral fields &'", j = 1, 2, 
. . . . , <N/2 of dimension 

2Dj=2j ( j + l )  l ( N f  2 ) .  (1.4) 

We note here that the dimensions given by ( 1.3 1, ( 1.4) coin- 
cide exactly with the exponents characterizing the "antifer- 
romagnetic" critical points of the RSOS model."*'0 More- 
over, the solutions that we construct for N =  2, 3 also 
coincide2' with the minimal theories p = 3, 5 and describe 
critical points of the Z, Ising and Z3 Potts models, respec- 
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tively. We propose that our solutions for N> 3 describe the 
self-dual critical points of the ZN Ising models; we will dis- 
cuss this hypothesis more fully in Sec. 6. 

2. SELF-DUAL SYSTEMS WITH IN SYMMETRY AND 
PARAFERMION CURRENTS 

We consider a two-dimensional lattice statistical sys- 
tem with cyclicZ, symmetry (theZN Ising model, the sim- 
plest example of such a system, is discussed in Sec. 6). We 
can describe the ZN degrees of freedom by associating 
"spin" variables a, to each node r d  in a (square) lattice L; 
thea, taketheNvaluesmq (q=O, 1,2,.  . . , N -  l),where 

It is helpful to immediately define the N - 1 (dependent) 
variablesa,,, = (ar ),, k = 1, 2, . . . , N - 1, which take the 
value mkq ; we will write a,- ,,, = UL. Assume that the sys- 
tem has a critical point at which the correlation radius of the 
'6 spins" a,,, becomes infinite. In such a theory the long- 
range correlations of the spins ak can be described by contin- 
uous conformal fields a, (x) ,  x€R2 (uN- , = ak+ ) with 
anomalous dimensions 2dk, where d, = dN - , . The critical 
theory will then be ZN-symmetric if and only if the correla- 
tions are invariant under the transformation 

for arbitrary integral m. We will say that the field a, (x)  has 
ZN-charge equal to k; of course, the ZN-charge is only de- 
fined modulo N. 

Z,-symmetric systems possess order-disorder duality 
(Kramers-Wannier symmetry).1s-18 We will assume that 
the ZN-system is self-dual (i.e., invariant under the 
Kramers-Wannier transformation) at the critical point in 
question. This means that in addition to the conformal fields 
a, (x) (order parameters), the theory also contains dual 
conformal fields p, (x) ,  k = 1, 2, . . . , N - 1 (disorder pa- 
rameters) with the same anomalous dimensions 2dk. The 
main properties of the dual fieldsp, (x)  are'as follows (see, 
e.g., Refs. 19 and 20 for the details of the definition). The 
correlation functions (CF) 

are in general N-valued functions of the coordinates xi,  
yi eR2; if we analytically continue the CF (2.3) with respect 
to xi,  say, along a path enclosing the point yi counterclock- 
wise as shown in Fig. 1, the CF acquires a phase factor m - 
Fields a, (x)  and p, (x)  with this property will be called 
mutually semiloca13' with exponent ykl = - ~ I / N .  TWO 

fields A (x)  and B (x)  are said to be mutually local if y,, is an 
integer. The field A (x)  is semilocal (local) if it is semilocal 
(local) with respect to itself. For example, the fields a, (x)  
and a,. (x ) [as well asp, (x) and p, . (x ) ] are mutually lo- 
cal. 

In self-dual systems all correlations are invariant under 
the interchange a, e p , .  In addition toZN-symmetry (2.2), 
the theory possesses the dual zN-invariance 

FIG. 1.  Path along which the correlation function is continued with re- 
spect to the variable x i .  

The fields p, (x ) thus have 2, -charge equal to I. In general, 
we will say that the field (x)  has ZN ~ 2 ~ - c h a r ~ e  {k, 
I) if it transforms as 

under (2.2) and (2.4). Thus, the fields ak (x)  and p, (x)  
have charge {k, 0) and {0, k). We observe that the ZN-  
theories #(,,[) (x) and #(,.,,., (x)  are mutually semilocal 
with exponent 

We will assume that our ZN xZN theory is C- and P-invar- 
iant, and that these inversions transform the fields as 

For the case of Z2-symmetry (Ising model), the most 
singular terms in the operator expansion of the product 
cr(x)p(O) (where a = a,,  p = p,) are given by (see, e.g., 
Ref. 3) 

where we have introduced the complex coordinates of RZ: 

and $ ( z )  and $(TI are the "right- and left-hand" compo- 
nents of the free Fermi fieldz2 satisfying the massless Dirac 
equation a2 $ = = 0. For N >  2 the most singular terms 
in the operator expansions of a, (x)pk (0)  and 
a, (x)pk+ (0) can be written in the form 

where we have used the symmetries (2.7). Here $, and qk 
are certain conformal fields, and the parameters A, and x, 
are the nonnegative "dimensions" of these fields. Since the 
mutual-locality exponent of the fields a, and p, is equal to 
- k '/N, we have 

k2 Ah-&=- - ( 
N 

mod Z) . 

We assume that there exist self-dual critical points of the 
ZN-models with N >  2 for which xk = 0 as in (2.8), and that 
the fields $, and qk satisfy the equations 
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so that we may write $, = $, (z), qk = qk ((z). The param- 
eters A, in (2.10) are then equal to the spins of the fields 
$, (z) and are given by 

where the m, are integers. The fields $, and qk are semilo- 
cal with ZN ~2,-charges equal to {k, k} and {k, - k), 
respectively. Unlike local fields, they can have fractional 
spins and it is natural to refer to $, (z) and $, ( 2 )  asparafer- 
mion currents. 

The simplest expression for A, that satisfies (2.12) and 
the requirement A ,  , = A, is 

We will henceforth assume that the spins A, of the parafer- 
mion currents $, are given by (2.13). 

3. THE PARAFERMION CURRENT ALGEBRA 

We will concentrate on the parafermion currents $, (z) 
(k = 1,2,. . . , N - 1) bearing in mind that all of our results 
are also valid for & (2) .  It will be convenient to adjoin the 
identity operator I to the family {$, } (we set $,,=I) and 
write $k+ = $N- ,. 

We consider the operator expansion of the product 
$, (z) $,. (z') . Since the mutual locality exponent of $, and 
$, , is equal to - 2kk '/Nand the spins (2.13) satisfy 

we have for this operator expansion 

where the fields qFi , ,.,, have ZN xZN charge {k + k ', 
k + k '1. (Here and below, we understand the sums k + k ' to 
be modulo N. ) The field , ,,, (z) has spin A, + , , and 
coincides with the parafermion current $, + , . (z) . We call 
the scalars c,,, , the structure constants of the parafermionic 
current algebra; they depend on how the fields $, are norm- 
laized. We put 

i.e., c,,_, = 1. The remaining structure constants c,,,. 
must be found from the associativity condition for the opera- 
tor algebra (3.2) (see below). 

We pause to discuss expansion (3.2) with k + k ' = 0 
(mod N) more fully. In this expansion \VF' is equal to the 
identity operator I and the field q , ,  (2) has spin 1. If such a 
field existed in the theory then it would generate the symme- 
try group U(  1 ), which is bigger than ZN . Since we are inter- 
ested in the Z ,  -symmetric critical theory described in Sec. 2, 
we require that 

It is natrual to identify the fields (z) of spin 2 with the 
corresponding component of the energy-momentum tensor 

of the theory: 

Y ( z )  = ( ~ A A / c )  T ( z )  . (3.5) 

The scalar factor 2Ak /c is necessary for conformal invar- 
iance3; c is the central charge in the corresponding Virasoro 
algebra of conformal generators, and is defined by the opera- 
tor expansion 

c 2 T ( z 1 )  1 
T ( z )  T (2') = + ----- + a,,T ( z ' )  + O ( l ) .  

2 ( z - z ' )  (z-2 ' )  Z-z 

(3.6) 

The operator expansions defining the algebra of the par- 
afermion currents $, in the Z,  xZN theory have thus the 
form 

Q~ ( 2 )  gk,+ ( Z r )  =Ck, (z-z') -2h(N-k ' ) /N  [$h-h' ( z ' )  

+O(z-2')  I ;  k'<k, (3.7b) 

A k  1 
T ( z ) $ ~ ( z ' )  = -j-qy $h(z')+- Z-z  d z . $ k ( z f ) + 0 ( l ) .  (3.8) 

Equation (3.8) means simply that the fields $, (z) are con- 
f ~ r m a l . ~  

The operator expansions (3.7) can be used to explicitly 
calculate any correlation function 

We first consider the 2n-point function 

If we multiply (3.10) by 

we get an analytic function of the variable z, which (due to 
the mutual semilocality of the fields $,, $,+, see Sec. 2) is 
single-valued in the entire complex plane and has second- 
order poles at the points q,, q2, . . . , 7,. This function is 
uniquely determined by its residues at these poles, because 
the condition for $, (z) to be regular as z-co is3 

We can use the expansion ( 3 . 7 ~ )  to evaluate the residues. 
We find that 
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which expresses the 2n-point function (3.10) in terms of 
(2n - 2)-point functions. We can now use (3.12) to evalu- 
ate (3.10) by successively decreasing the order of the CF. Of 
course, any CF (3.9) can then be evaluated from (3.10) by 
using (3.7). The same CF (3.9) can be evaluated in many 
different ways; the result will be the same in all cases (i.e., 
the operator algebra defined by the relations (3.7) will be 
associative) only if the structure constants c,,, , have the 
form 

2 I'(k+kl+l)r(N-k+l)I'(N-k'+l) 
ck,kr= (3.13) 

r(lc+l)r(k1+l)I'(N-k-lc'+i)r(N+1) ' 

In addition, the parafermion current algebra (3.7) is consis- 
tent with the conformal Ward identities3 defined by (3.6), 
(3 .8)  if the central charge c in (3.6) is equal to 

We note that the parafermion current algebra con- 
structed above is not the only possible associative algebra. 
Appendix A describes an alternative associative ZN -algebra 
for which the fields @, have different spins. 

4. THE SPACE OF FIELDS IN THEZ~X&-THEORY AND 
REPRESENTATIONS OF THE PARAFERMION CURRENT 
ALGEBRA 

The operator algebra of a conformal field theory was 
formulated in Ref. 3 in terms of a complete set of mutually 
local fields. For our purposes it will be helpful to enlarge this 
space by considering a complete set {F} of mutually semilo- 
cal fields, i.e., one which is closed with respect to the opera- 
tor algebra. It is natural to assume that the components T(z) 
and T(2) of the energy-momentum tensor are local with re- 
spect to all of the fields {F}. In this case the classification in 
Ref. 3 in terms of the representations of the Virasoro algebra 
remains valid. The operators L, and En,  n = 0, + 1, + 2, 
. . . , operate on the space {F}; they are associated with the 
fields T(z) T(T) and satisfy the commutation relations 

C [L,, L,] = (n-m) L,+,+ - (n3-n)6m+m.0 
12 (4.1) 

(the also satisfy (4.1 ) and commute with L,  ). There 
exist several (possibly infinitely many) semilocal conformal 
fields #,E{F} which are characterized by two nonnegative 
numbers (di , ai ) ("dimensions") and satisfy the equations 

Although the sum di + Zi and difference di - ai are equal 
to the usual anomalous scaling dimension and spin of the 
field #i, respectively, the spins of the semilocal fields can in 
general take arbitrary fractional values. All the other fields 
in {F} can be obtained by repeatedly applying the operators 
L, , with n < 0 to the conformal fields #i. 

In the ZN xZN-invariant theory described in Secs. 2 
and 3, the field space {F} splits naturally into a direct sum of 
subspaces with specified 2, ~2,-charges {k, I), 

where we have expressed the charge {k ,  1 )  in the more con- 
venient form [q, ij] = [k + I, k - I]. The right and left 
charges q and ij are defined mod 2N and take arbitrary in- 
teger values such that q + ij is even. It is convenient to ex- 
tend the summation in (4.3) over all I - N < q, ij<N, each 
value of the ZN ~ 2 ~ - c h a r ~ e  then occurs twice, which ac- 
counts for the factor 1/2 in (4.3). With these conventions 
the parafermion currents qk ($, ) have charge [2k, 01 ( [O, 
2k]) and 

It is clear that an arbitrary field I~{F1k,z has spin 

2s Ik ,  E,= ( k Z - k 2 ) / 2 N ( m o d  Z ) ,  (4.4) 

and that the mutual locality exponent of any two fields 
and 4 [,, is equal to 

In particular, all the fields in {F~,,,] and {PI,, - ,, ) are 
local, and I, T ( z ) ,  and T(T) belong to {Flo,oI }. 

It turns out that the fields spanning the space (4.3) can 
be classified by the associated representations of the parafer- 
mion current algebra ( 3.7). Let 4 [ ,  i; ,€{I;; ,, i; be a field of 
dimension (d, a) and consider the operator expansions 

m 

where the exponents in (4.6) are given by (4.5), and A4 and 
A +# are fields in { F }  with 

1-k - 
A - ~ ~ - ~ ~ E ~ { ~ - , ~  d + m  N~ 4 (4.7b) 

(the dimensions of the fields are given on the right). The 
expansions (4.6) define the operators A ,  and A with 
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I-k 
p= (mod Z)  ; 

they act on the space {F}  as follows: 

A ( : - ~ ) / N + ~ :  { F [ k , ~ ] )  -f { F 1 k - l , ~ l ) .  (4.8b) 

The fields in the expansion (4.6) can also be represented 
conveniently in the form 

Proceeding in the same way with the currents q , ( z )  and - 
$: (3, we can define operators xc and 2 F+ with 

l+k 
y= - I - k  

N (mod Z) , p= --- (mod Z) ; 
N 

they act on {F)  but differ from Eqs. (4.6)-(4.9) only in that 
z and k replaced by - 5 and x. We have considered only the 
currents $,, $:, $,, and $:, because according to (3.7) 
the full algebra of the parafermion currents $, , 3, is unique- 
ly determined by the algebra generated by the operators, A ,  
A +,A,A+. 

We find the commutation relations defining the opera- 
tor algebra A,  A + by considering the double integral 

where the exponents are chosen so that the integrand is sin- 
gle-valued in z,, z,. The integration paths C ,  and C, are 
shown in Fig. 2. The integral (4.10) can be evaluated by two 
different methods. We can first integrate overz, and then use 
Eqs. (4.9) to do the z, integration. In the second method we 
must first deform the contour C ,  in Fig. 2 so that it lies inside 
C,. In this case account must be taken of the contribution of 
the pole z, = z, to the z,-integral; the residue is given by Eq. 
( 3 . 7 ~ )  in terms of the field T(z). Equating the results of both 
methods, we find that 

FIG. 2. Paths of integration with respect to z, and z,. 

where the binomial coefficients are given by 

We have used (2.13) and (3.14) for the parameters A,  and c 
in deriving (4.1 1 ) . Similarly, we find by considering the in- 
tegral 

that 

The operators A + of course satisfy the same "commutation" 
relations, with k replaced by - k. 

We recall that according to (4.7) the fields A,+ and 
A,+ have dimensions ( d  - Y ,  d) and (d  - p ,  7) if 4 has 
dimension (d, d). The requirement that the dimensions of 
the fields be bounded from below therefore implies that there 
exist fields which are annihilated by all operators A, ,  A 
with Y ,  p  > 0. We use the equations 

with n>O to define N scalar fields (order parameters) 
a, E{F[,, }, k = 0, 1, . . . , N - 1, for the Z,  xZN theory. 
If we apply Eq. (4.11 ) with n = m = 0 to the fields a, and 
use (4.14), we immediately find the dimensions 

Similarly, the dual fields p ,  E C F ~ , ,  - ,, ) (disorder param- 
eters) can be defined by the equations 

with n>O. Their dimensions are of course also given by 
(4.15). 

All the fields spanning the space { F }  can be obtained by - - 
successively applying the operators A ,  A +, A ,  A + to the 
fields a,. The independent fields obtained in this way from 
a, generate an irreducible representation [a, 1, of the para- 
fermion-current algebra (4.1 1 ), (4.13 ), and the space {F}  is 
represented by the direct sum 

N-I 

{F)=  @ [oh]*. (4.17) 
k=O 

In general, the number of irreducible representations of the 
Virasoro algebra in (4.17) is infinite. An exception occurs 
when N = 2 or 3; these cases are related to the minimal mod- 
els in the principal series with p = 3, 5 (see the Introduc- 
tion). 

The dimensions of the fields generating {F}  can be de- 
scribed as follows. Each "spin" field a, corresponds in a 
natural way to a series of fields +[:, , (q = - k,  - k + 2, 
. . . , 2 N  - k - 2) defined by 
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FIG. 3. Diagram describing the system of fields Q,, for the Z,  model. 

(k) 
@(h+zr,kj=A(A-t+zt)/~-iA(~-1+z~--z)/~-i. . . A ( ~ + ~ ) , N - I ( J ~ ;  

1 (N-k-1) (4.18a) 
= I , . .  . , N-k (d ,  + N 

Here we don't care how the fields are normalized and set 
q5i:)+zN, , =q5i;,), The expressions in parentheses in 
(4.18) indicate the dimensions of the fields. The system of 
fields q5f:,), can be represented conveniently as points on the 
diagram in Fig. 3; the vertical axis gives the values of the 
"principal quantum number" k while the horizontal axis 
shows the "right" charge q, and we assume identity 
q + 2N =q. Note that the fields #it,), , depicted by the points 
in Fig. 3 coincide with the "spin" fields a, themselves; the 
dual are fields q5f 2 ,, , = p, (crosses in Fig. 3), and the 
fields q5f:', , , = q5[:)+ ,, , (open circles in Fig. 3) coincide 
with the parafermion currents $I,. 

Applying the operators and 2 + in analogy with 
(4.18 ) we can construct the system of "principal" semilocal 
fields q5;::, (q, ij = k mod 22 )  of dimension (d  iq', d iq) ) .  
According to (4.181, the quantities 
d p ' ,  k = 0 ,  1, 2 , .  . . , N- 1, aregivenby 

We note that all the fields q5f:,b are mutually local (in 
particular, they are local with respect to the "spins" a, ). Of 
particular interest among them are the ZN xZN-neutral 
fields. They exist for even k = 2 j: E"' = 4fzA and have di- 
mensions (D, , D, ) where 

The Dj clearly describe the "thermal" exponents for a self- 
dual critical point of the 2,-theory. 

A1 the other fields in { F )  have dimensions that differ by 
integers from (4.19). 

5. OPERATOR ALGEBRA AND CORRELATION FUNCTIONS 

As in the "minimal models" of Ref. 3, the correlation 
functions for the "principal" fields in the described 
ZN X ZN -theory all satisfy linear differential equations of a 

particular form. In principle these equations can be derived 
directly by using Eqs. (4.2), (4.1 I ) ,  (4.14), and (4.18). 
However, it is more convenient to exploit the following re- 
markable fact. The algebra defined by (3.7), (3.13) for the 
parafernion currents $, (z) is closely related to the Kac- 
Moody su(2) algebra (current algebra)23,4' in which N 
plays the role of the central stage. The 2, xZ,-theory can 
be regaged in the standard way as a "reduction" of an 
h 

su(2) ~su(2)-invariant field theory; the latter theory de- 
scribes a conformally invariant solution of the two-dimen- 
sional SU(2) XSU(2)-chiral Wess-Zumino model13 and 
will be called the WZ theory. The field dimensions, operator 
algebras, and correlation functions for the two theories are 
related in a very simple way. The fundamental formulas for 
the WZ theory are given in Appendix B. 

We now introduce the free massless Bose field $(z, 2 )  
satisfying the equation a, a, q5 = 0, i.e., 

where the "right" and "left" free fields q5 and 4 are uniquely 
defined by their two-point functions 

<cp(z)cp(O))=-2logz;  (q l (T)ql (O)>=-2logT;  

( c p  ( z )  ql ( 0 )  ) =O (5.2) .  
(5.2) 

The components 

T(O) ( z )  = (d,cp ( z )  )Z, T(O) ( z )  = (alq (z) ) (5.3) 

of the corresponding energy-momentum tensor generate a 
Virasoro algebra (3.6) with central charge 

We consider a conformal field theory which splits into 
the ZN XzN-theory described in Secs. 2-4 plus a free field 
(5.1) which does not interact with the Z, xZN-fields. We 
define new fields by 

where : : denotes the usual normal ordering. The arguments 
of the exponentials in (5.5) are chosen so that all three "cur- 
rents" Ja (a = 0, + , - ) have dimensions ( l ,  0). One can 
readily verify the operator expansions 

where qaB and f given by Eqs. (B.2). The total energy- 
momentum tensor of this "composite" theory is 

TI0' ( 2 )  =T ( z )  +T(O) ( 2 )  , (5.7) 

where T(z) is the energy-momentum tensor for the 
ZN xzN-theory defined by Eq. (3.712); Ttot satisfies theVir- 
asoro-algebra relation (3.6) with 

[here we have used (3.14) and (5.4) 1 .  A straightforward 
verification reveals that Ttot is related to the currents (5.5) 
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by 

( N +  2 )  T f o f  ( z )  =qGR:P ( z )  J y z )  : . (5.9) 

Comparison of Eqs. (5.6) and (5.9) with (B.11 and (B.6) 
shows that the currents (5.5) generate the su(2) Kac- 
Moody algebra, and the "composite" and WZ theories coin- 
cide. 

The simple formula 

can be derived without difficulty; it expresses a simple rela- 
tion between the invariant fields Qg', of the WZ theory (see 
Appendix B) and the "principal" ZN xZN -theory fields 

defined in Sec. 4. The dimension (Dj , Dj ) of @'j' is the 
sum of the dimension ( d  ijm', d i;")) of the field Q [ ~ ~ , , ,  
and the dimension of the exponential in (5.10), i.e., 

in agreement with (4.19) and (B. 11 ). Equation (5.10) im- 
plies the formula 

which relates the correlation functions for the WZ and 
ZN xZN -theories. We can use (5.12) to immediately de- 
duce all the structure constants of the operator algebra and 
some of the correlation functions of the ZN xZN-theory 
from the corresponding results for the WZ theory (see Ap- 
pendix B ) . 

The 3-point function of the "spin" fields, normalized by 

has the form 

<ok, ('1, j1) Ok, ('2, '2) ('3, '3)) 

wherez,, = z, - z,, etc.; the structure constants are given by 

The surprising similarity of (5.15) to Eq. (3.13) is 
noteworthy. The function 

where 

is another interesting 3-point function that includes nonlo- 
cal fields. 

Here the fields $, and a, are assumed normalized by 
(3.3) and (5.13), respectively; the fields pk are normalized 
by the same formula ( 5.13 ). With this normalization, Eq. 
(2.10) must of course also contain the constant Q, . 

We also state some results for some of the 4-point func- 
tions of the theory: 

where 

are the standard projective invariants and 

x F( ' )  ( k ,  x )  F ( L )  ( k ,  5) 

x F(') ( k ,  x )  F(2 )  ( k ,  Z) (5.20) 

Here F"' and F"' are hypergeometric functions: 

The 4-point function describing the mutual correlations 
of the fields p, and a, is given by 

<pi ( z , ,  51) ( ~ 2 ,  ~ 2 )  ok(~33 zS)O~+ (z&? TI) ) 

= ( ~ ~ ~ 2 ~ 2 )  (2312.3~) -2d*Ht. k(x,  9 (5.22) 

where 

X %(') ( k ,  X )  F'" ( N - k ,  Z) 

x F") ( k ,  X )  F ( ' )  ( N - k ,  r )  }. (5.23) 
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Finally, we have 

where 

E(x, i f )  =[ (1-X) (1-5) ]-2/N+2 ( ~ ( 3 )  (x)F(3) (2) +(xz) ( N + ~ ) I ( ~ + ~ ) ~ F ( ' )  (x) F(O (z) ) ,  (5.25) 

Here dl)(z, Z) is the first of the neutral fields (4.20) with 
standard normalization. The other CFs are expressible gen- 
erally speaking in terms of the multiple integrals introduced 
in Ref. 7. 

In conclusion, we note that the close relationship to the 
WZ theory discussed in this section can also be used to prove 
that the positivity condition6 is valid for the ZN ~2~ theor- 
ies. 

1 The dual transformation for the model (6. I ) ,  (6.3) is 
carried out by the standard te~hnique. '~- '~ The "spins" or 
are replaced by the "dual spins" pi associated with the nodes 
I. of the dual lattice 2, and the dual-spin interaction is again 
described by Eqs. (6.1) and (6.3) with 

6. DISCUSSION The system is self-dual if 

In this paper we have constructed a conformal field the- 
ory which is ZN-invariant and possesses order-disorder 
symmetry (self-duality). We now consider the problem of 
describing the statistical models with this type of critical 
behavior. As noted in the Introduction, the dimensions 
(4. IS), (4.20) coincide with the exponents characterizing 
the "antiferromagnetic" critical points of the RSOS mod- 
els."." In addition, it seems plausible that our solution 
might describe the self-dual critical points for the generaliza- 
tions of the Ising model to ZN . Although these Z,-models 
have been widely discussed in the l i t e r a t ~ r e , ' " ' ~ , ~ ~ - ~ ~  it . will 
be helpful to examine them here in the context of the above 
formalism. 

We associate with each node r in a square lattice L a 
variable ur that takes on the values wq , q = 0, 1, . . . , N - 1, 
where w is defined by Eq. (2.1 ). If we assume that only near- 
est neighbors interact, we can write the partition function in 
the form 

where e, = el, e, are basis vectors ofL, and the "pair Hamil- 
tonian" H ( u ,  a') must be chosen so that the theory is ZN-  
symmetric and C-invariant: 

The function W(a, a') can then be expressed as 

with real nonnegative coefficients satisfying w, = wN-, 
(we set w, = 1). The interaction in this system (2, Ising 

One can show that Eqs. (6.5) define a hyperplane of dimen- 
sions int (N/4)  in the parameter space {w,}. 

For N = 2, 3 the model (6.1 ), (6.3) coincides with the 
standard Z, Ising and Z, Potts models, and in this case con- 
dition (6.5) defines the critical points. Figure 4a shows a 
phase diagram of the Z4 Ising model, which is a special case 
of the Ashkin-Teller model." The self-dual Z4-models are 
described by the line 

and the model can be solved exactly for these parameter val- 
u e ~ . ~ ~ * ~ ~  All the points on segment AB of the line (6.6) are 
critical, and the exponents vary continuously along AB. One 
can show that AB contains a point C, defined by 

sin (n/16) 
WI = w2=1-2wi, 

sin (3n/ 16) ' 
at which the critical theory is described5' by ZN ~2,- theory 
with N = 4. Figure 4b shows a phase diagram for the Z5 
Ising model. The "self-dual line" FB, defined by the equa- 
tion 

model) is thus described by real parameters w,, k = 1, 2, 
FIG. 4. Phase diagrams for the Z,  (a)  and Z,  models ( b ) .  FB is the self- 

' . . , GN/2, whose number int (N/2) stands for the integer duality line. Phases I, 11, and 111 correspond to the following values: I )  
part. (a)  # O ,  01) = 0; 11) (a )  = 0, (p )  #O;  111) (a)  = 01) = 0. 
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contains two symmetrically located "bifurcation points" C 
and C * which in all probability are critical.,' 

The self-dual ZN Ising models were shown in Ref. 26 to 
be completely integrable if 

k-1 

sin (nl/N+n/4N) 

w'=' s in (n i l+ l ) /N-n /4~)  . (6.9) 
1=0 

Our hypothesis is that the points (6.9) in the phase diagrams 
of theZN -models are critical and described by the conformal 
ZN xZN-theories constructed in this paper. Of course, this 
hypothesis requires verification. In particular, it would be 
interesting to carry out a numerical renormalization-group 
analysis of the neighborhoods of the points (6.9). If our hy- 
pothesis is correct, the corresponding "thermal" exponents 
should be as given by Eq. ( 1.4). We note here that the num- 
ber of "energy" operators dJ' in the ZN xZN-theory is 
equal to the dimension of the phase space for the ZN Ising 
model. 

APPENDIX A 

We consider a conformal theory with parafermion cur- 
rents $, (z), k = l ,  2, . . . , N - l, of dimension (A,, 0 )  
where 

A k = A N - k .  (A. 1) 

We assume that the operator algebra for the currents $, is 
consistent with ZN-symmetry and is described as in (3.7) by 
the expansions 

Here the coefficients dZ $ and T(z) are specified by the con- 
formal symmetry requirement,, c is the central charge of the 
Virasoro algebra, the Z.,,, , are the structure constants, and 
$,+ = $,-, . We see from (A.2) that the mutual locality 
exponent of the fields $, and $, . is equal to 

Yk, h '=Ak+h ' -  Ah-- Ak. (A.3) 

which is consistent with the operator algebra (A.2) pro- 
vided the dimensions A, satisfy 

Using (A. 1 ), we find that the general solution of (A.4) is of 
the form 

wherep and M, (k = 1,2, . . . , N - 1 ) are arbitrary integers 
subject to MN-, = M,. The simplest solution (p = 1, 
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M, = 0 )  was examined in the main part of this paper. Here 
we will present another solution of the associativity algebra 
(A.2) for which 

With this choice the solution contains a single free param- 
eter A; the structure constants are given by 

where the c,,, , are defined by (3.13), and the central charge 
is given by 

4(N-I) (Nfh-1)h 
c =  

(N+2h) (N+2h-2) ' 
(A.8) 

The study ofthe representations of this algebra (and in parti- 
cular, of the positivity condition6) lies beyond the scope of 
this paper. We merely note that for A = 1/2 the algebra 
(A.2), (A.5)-(A.7) coincides with the "even" subalgebra 
of the Z,,-algebra (3.7) (Z.+,. = c,,,,,. ), while forA = 1 it 
coincides with the "square" of the ZN-algebra (3.7) 
(C,,,. = c;,, . ). Finally, for N = 3 and /Z = 1/4 this algebra 
arises in the minimal model withp = 6 ("tricritical Z,  Potts 
model"). 

APPENDIX B 

Here we will derive the funda2ental foArmulas for a con- 
formal theory invariant under the su(2) ~ s u ( 2 )  current al- 
gebra. Because this theory describes a conformally invariant 
solution of the two-dimensional Wess-Zumino 
we will call it the WZ theory. Some additional details may be 
found in Ref. 13. 

The WZ theory contains local fields ("currents") 
Ja (z), Ja (5 )  ( a  = 0, + , - ), for which the operator ex- 
pansions 

hold, where the f ;o are the structure constants of su (2)  and 
the tensor qao is given by the associated Killing form. The 
nonzero components are given by 

fW'--f+ +- +- O--fO:=f-"I, 

The parameter Nin (B. 1 ) is called the central charge of the 
current algebra and takes positive integer values, since oth- 
erwise the algebra (B. 1 ) would not have any suitable unitary 
representations. 

Let { A )  be a complete space of mutually local fields 
describing the WZ theory. The action of the operators 
JE, n = 0, + 1, * 2, . . . , on { A )  is then determined by 

where cP is any field in { A }  and the integration path encloses 
the point z = 0. The expansion (B. 1)  implies that the J," 
obey the commutation relation 

N 
[lna, I,B] =fTa81A, + - nqaB6,+m,o 

2 
(B.4) 
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and therefore form a Kac-Moody algebra. The operators 7: 
are defined just as in (B.3) [with P (z) replaced by (Z)] 
and also satisfy (B.4); moreover, 5and J commute. The op- 
erators J," and 5," thus generate a global SU(2) xSU(2)  - 
symmetry of the WZ theory; the corresponding Casimir op- 
erators are 

where qaBp = 6; are called the "right" and "left" isoto- 
pic spins, respectively. 

The component pWZ' (z) (Fm' (Z)) of the energy- 
momentum tensor of the WZ theory can be expressed qua- 
dratically in terms of the currents J" (z) (J" (Z) ) : 

where the product of fields on the right-hand side is regular- 
ized in the standard way by subtracting the singular term of 
the operator expansion.13 The corresponding operators 
L AWZ' are given by 

and generate a Virasoro algebra (4.1 ) with central charge 

The symbol : : in (B.7) denotes the standard normal order- 
ing in which operators J,, with n < 0 appear on the left. 

The space {A) contains invariant fields @"', j = 0, I/ 
2, 1, 3/2, . . . , satisfying the equations 

Each invariant field @"'E{A) is an SU(2) xSU(2)  tensor - 
with (2j + 1)' components Qz', (m, m = -j, -j + 1, 
. . . , j) that can be found from the equations 

(j) 0 m m -  m @ , L  m m r  ~ , o @ : ! ~ ~ = f i @  ,,=. (B. 10) 

The fields have the same dimension (D, , D, ) regard- 
less of m, ;, where 

The @( I' can be orthonormalized as follows: 

<@;!:A, (z, Z) @::!iii2 (0,O) ) 

Taken together, the independent fields obtained from a giv- 
en invariant field Q"' by successive application of the oper- 
ators J:, 5: with n < 0 form a subspace [F'j '  ],E~A) which 
corresponds to the highest weight of the su (2) Xsu (2) cur- 
rent algebra. 

The correlation functions of the invariant fields in the 
WZ theory satisfy the linear differential equations 

i ' t i  

x (o(Jl) (z,, TI)  . . . @ ( I n )  (z,,, T.) )=O, 

where the (2jk + 1 ) X (2jk + 1 ) matrices S = S zk,mir act 
on the "right" tensor indices m, of the field @y:kk and cor- 
respond to the su (2)-algebra representation of spin j, : 

[ S k u 7  St]=f a T ~ k T l  q U B S k a S k P = j k ( j k + l ) .  (B. 14) 

The equations that follows from (B. 13) by replacing z by Z 
are of course also valid; in this case the matrices S, act on the 
"left" indices i, of the fields @"". 

One can show that for a fixed central charge N in (B. 1 ), 
the space {A) contains exactly N + 1 invariant fields @(" , 
j = 0, 1/2, 1, 3/2, . . . , N/2, where the field @'O' coincides 
with the identity operator I. Moreover, { A )  is the direct sum 

NIZ 

{ A ) =  @ [@(j'IJ, 

and the fields on the right-hand side generate a closed opera- 
tor algebra. For example, the product of two invariant fields 
is expanded in the form 

@'j" m,, - m, (z, 2) 0: ,, (0, 0 )  

where at j1>j2 the sum over j contains terms with 
j = j , - j 2 - k ,  k = 0 ,  1, . . . ,  min (2j2, N - 2 j , ) .  The 
square brackets [acJ' 1, in (B. 16) denote the contribution 
from all fields in the corresponding subspace; the field @;f;; 
occurs with multiplicity I, while the coefficients multiplying 
the 0th: fields in [@"' 1, are uniquely specified by the 
A 

su(2) Xsu (2) symmetry requirement. The numerical con- 
stants C are called the structure constants of the operator 
algebra. With the normalization (B. 12), Cis symmetric un- 
der permutations of all three subscripts (rows) and coin- 
cides with the normalization factor in the three-point func- 
tion: 

D .  - I ) .  - D .  D .  -D.  -D .  x (zl3Fl3) I' 33 ( ~ 2 ~  Zz3) j1 J2 23. (B. 17) 

The structure constants for the WZ theory can be found ex- 
plicitly (the calculations will be presented elsewhere). The 
result is 

where the first two factors are the Wigner 3j-~ymbols,~' 
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X 
112 ((j+j2+j3+1) 112 (j,+jz-is) M2 (jl+j3-j2) 112 (jZ+j3-ji) 

11'(2j~) h i i , )  11~(2i,) 

(B. 19) 

and rI denotes the function 

"In statistical physics the positivity condition must hold for systems de- 
scribable by a self-adjoint transition matrix. There are interesting models 
(e.g., random walks without self-crossings) for which the positivity con- 
dition fails. 

"Actually, our solution with N = 3 coincides only with the "even" section 
of thep = 5 minimal model. The physical significance of the fields com- 
prising the "odd" sector remains unclear. 

''Fields with this locality property were used to advantage by Sato, Miwa, 
and Jimbo in their research into holonomic quantum field theory; see, 
e.g., Ref. 21. 

4'The algebra (4.11 )-(4.13) has been studied in the mathematical litera- 
ture'' in connection with the representations of the Kac-Moody algebra. 
In the form employed here, this relationship was suggested by A. A. 
Belavin 

5'We are grateful to S. V. Pokrovskii for carrying out this verification. 
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