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A new mechanism is proposed for the spontaneous breaking of chiral symmetry of strong interac- 
tions in the instanton vacuum of quantum chromodynamics. The mechanism is based on the 
collectivization of zero-fermion modes of individual instantons in a pseudoparticle medium. The 
quark propagator in an instanton medium is found, and it is shown that the massless pole of the 
free propagator cancels out, with the quark assuming a momentum-dependent effective mass. 
The parameters of the instanton medium found previously are used to obtain the value of the 
chiral condensate (?$) and the effective mass of the quark, which are in good agreement with 
phenomenology. 

1. INTRODUCTION 

One of the most outstanding phenomena in quantum 
chromodynamics (QCD) is the spontaneous breaking of the 
chiral or y, invariance of the theory. It is precisely this that 
leads to massless baryons, whilst pseudoscalar mesons be- 
come light Goldstone pseudoparticles (see, for example, 
Ref. 1 ). It would be exceedingly important for the physics of 
strong interactions to have an understanding of the mecha- 
nism responsible for the breaking of chiral invariance and to 
be able to calculate from first principles the value of the 
quark-antiquark condensate (&), the pion coupling con- 
stant f,, and so on. This problem has recently become even 
more interesting in connection with the suggestion that bar- 
yons are solitons in the y, phases of the chiral condensate.' 
This means that the physics of not only pseudoscalar mesons 
but also baryons is determined to a considerable extent by 
the dynamics of chiral symmetry breaking (in this connec- 
tion, see the review literature3). 

There have been published attempts to deduce the spon- 
taneous breaking of chiral invariance from a quark-anti- 
quark gluon exchange model4 and from gluon exchange, im- 
proved by the summation of principal logarithms.' This 
work has shown that the condensate (?$) is produced only 
if the strong-interaction coupling constant a, is large 
enough, i.e., of the order of unity. However, perturbation 
theory, used to deduce the required result, then becomes 
invalid. The conclusion that appears to ensue from all this 
work is negative: either the Coulomb interaction between 
the quark and antiquark is insufficient to ensure a bound 
state with a negative mass, which precipitates into the con- 
densate, or this occurs outside the framework of perturba- 
tion theory. 

On the other hand, in chromodynamics, there are essen- 
tially nonperturbative fluctuations of the gluon field, i.e., 
instant on^,^ and, when these are taken into account, the re- 
sult is a radical change in the situation as compared with the 
usual perturbation theory. In particular, we have to face the 
problem of spontaneous breaking of chiral invariance. The 
discovery of instantons was immediately followed by the rec- 
ognition of the fact that, if instanton-type fluctuations in the 

gluon field are significant in the QCD vacuum, many of the 
features of strong interactions can be naturally explained. 
This includes the solution of the U,  the appear- 
ance of the nonperturbative gluon condensatelo ( P i , ) ,  a 
degree of justification for the bag model,8." and the possibil- 
ity of spontaneous breaking of chiral in~ar iance .~* '~- '~  Apart 
from the fact that the last four of these papers made use of a 
symmetry-breaking mechanism that, in our view, was incor- 
rect, they were not based on any kind of rigorous theory of 
the instanton vacuum (because there is no such theory), and 
any attempt to obtain spontaneous chiral symmetry break- 
ing without such a theory seems premature. 

The difficulty in constructing the instanton vacuum is 
rooted in the infrared divergence of the integrals with re- 
spect to the instanton dimensions p (the instantons tend to 
inflate).8 Allowance for the long-range dipole-dipole inter- 
action between instantons,I6 which has also been investigat- 
ed,8 merely enhances the infrared catastrophe because the 
dipole-dipole interaction effectively leads to attraction, i.e., 
still greater inflation of the instantons. 

At the same time, the recent analysis reported by Shur- 
yak''," has extended still further the range of known proper- 
ties of the strong-interaction theory that can be naturally 
explained on the assumption of the dominance of instanton 
fluctuations in QCD vacuum. Moreover, Shuryak used 
phenomenological considerations to establish the basic 
characteristics of the instanton medium to which he referred 
as the "instanton liquid": the mean separation between pseu- 
doparticles is R- (200 MeV)-' and their average size is 
p- (600 MeV)-'. He showed that an instanton vacuum 
with these properties could explain the gluon and quark con- 
densa te~ '~  and the mass of the pseudoscalar nonet," to ob- 
tain a reasonable value for the mass of the excited T' (Ref. 
16), and so on. 

Thus, for some time now, we have had sufficient indica- 
tions that the instanton QCD vacuum is consistent with the 
required properties of strong interactions, but a theory of the 
instanton vacuum has not been available. 

In view of this situation, we have suggested that the 
instanton vacuum might be constructed by using a modifica- 
tion of the Feynman variational principle.I8 The idea was to 
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calculate the QCD partition function on a trial Ansatz in the 
form of a superposition of gluon configurations of the instan- 
ton-anti-instanton type. Quantum fluctuations around the 
trial Ansatz were also taken into account. The resulting par- 
tition function was maximized with respect to the param- 
eters (functions) of the trial Ansatz. 

We foundI9 an effective repulsion between instantons 
and anti-instantons, which became stronger than the dipole- 
dipole attraction even for pseudoparticle separations that 
were a few times greater than their dimensions. This leads to 
the stabilization of the pseudoparticle liquid (and to the re- 
moval of the infrared catastrophe), and the ratio of the mean 
separation R to the mean sizep is found to be equal to the 
value required by the phenomenlogical analysis,I6 namely, 

4213. The dimensional variables of the theory, the non- 
perturbative gluon condensate (F:, ), the mean instanton 
size p, and so on were found as renormalization-invariant 
(and invariant under the choice of the regularization 
scheme) combinations of the cutoff and the coupling con- 
stant at the two-loop level. Moreover, variation of the instan- 
ton "profile function," used to find the best subbarrier tran- 
sition with allowance for the pseudoparticle medium, led to 
a glueball mass gap even at the classical level. 

Thus, the use of the variational principle leads to a rea- 
sonable instanton vacuum, and we have the possibility of 
studying the more complicated question of spontaneous 
breaking of chiral invariance when light quarks are intro- 
duced into this vacuum. The present paper is devoted to this 
question. 

The logic of our paper is as follows. The Yang-Mills 
sector of QCD generates singular topological configurations 
of the instanton and anti-instanton type (the variational 
principle has led us to the recognition that such configura- 
tions must appear if only because they reduce the energy of 
the vacuum as compared with perturbation theory). The 
properties of the medium consisting of topological singulari- 
ties such as the mean separation R and the mean dimensionp 
over which the field falls with distance from the singulari- 
ties, are largely determined by the gluon sector of the theory. 
When light quarks are introduced into the instanton medi- 
um, their high-frequency component produces some modifi- 
cation in the properties of the medium and participates to- 
gether with the gluon part in determining the statistical 
ensemble of instantons, whereas the low-frequency compo- 
nent with frequencies 5 l/p (which is dominated by zero 
fermion modes) is responsible for the appearance of the 
chiral condensate (&) and must be considered in a given 
statistical ensemble of pseudo-particles. The reaction of the 
low-frequency component to the properties of the medium 
reduces to only a reduction in the chemical potential for the 
pseudoparticles. 

Although, for simplicity of calculation, we shall confine 
ourselves to a simple Ansatz in the form of the sum of the 
instantons and anti-instantons used in Ref. 19 [see ( 1 ) 1, our 
results will actually be more general: the essential point in 
our analysis is that the QCD vacuum be populated by topo- 
logically singular fields with mean separation R and mean 
dimension p. We shall show that a medium consisting of 
topological singularities necessarily gives rise to the quark- 

antiquark condensate (&) which produces the breaking of 
the chiral invariance of the theorv. We shall then calculate 
the value of this condensate in terms of R andp. Parametri- 
cally, (?$) - 1/x  'p. 

The new mechanism for the formation of (@) that we 
have proposed is based on the phenomenon of delocation of 
zero fermion modes of individual instantons in a pseudopar- 
ticle medium. This is fundamentally a collective effect. It 
arises - only in the thermodynamic limit: N-co , V-t co , N / 
V = R  - 4  = const, where N = N+ + N -  is the total number 
of pseudoparticles in the four-dimensional volume V. It is 
important to emphasize that, in contrast to other mecha- 
nisms, chiral breaking in topologically nontrivial fields does 
not require a coupling constant of the order of unity, al- 
though the scale of the breaking, for which the condensate 
(&b) can be used as a measure, is large. 

The first sections of this paper are devoted to the formu- 
lation of the problem and to an approximate (but physically 
clear) estimate of the condensate. The Green function for a 
quark in the instanton medium is found in the second part. 
We then show that the exact quark propagator remains finite 
in the chiral limit (the quark mass tends to zero), and the 
massless pole of the free propagator cancels out, with the 
quark assuming a momentum-dependent effective mass, 
which can also be expressed in terms of R and?. The correla- 
tors for the meson currents in the instanton medium, the 
mass of the pion, and the pion coupling constant f will be 
determined in a subsequent paper. 

2. PARTITION FUNCTION FOR QCD WITH LIGHT QUARKS 

We shall consider Nf flavors of quarks $ in the gluon 
field A, (x)  which we shall divide into the classical and 
quanta] parts (x, y )  and B, ( x ) ,  respectively. The field 

(x, y)  will be taken in the form of the superposition of N+ 
instantons (I) and N -  anti-instantons (7) (the symbol y, 
will represent the set of collective coordinates characterizing 
the I-th pseudoparticle, the position of the center, the di- 
mension, and the unitary orientation matrix will be denoted 
by z,, , pI , and U, , respectively) : 

1 ( ~ - ~ r ) v  prZ 
A,' = -- UI(-c,-.t,+-.tv-.t,+) U I + -  

(x-z,)  (x-zI )  2+p12 
7 (2) 

2i 

where 7: are Nc X N, matrices (N, is the number of colors), 
whose top left-hand corner contains the matrices (T, f i) ( T  

is the Pauli matrix), and all the other elements are equal to 
zero. Expressions (2) and ( 3 )  constitute, respectively, an 
instanton and an anti-instanton in the singular gauge for an 
arbitrary group SU(Nc ) . 

The QCD partition function is (we are using the Euclid- 
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ean formulation) 

1 
Z= JDB. erp {- --;-- J d b  z ~ r  F,,.' (H+B) } J D+D*+ 

2 g  (MI 

(a  more accurate definition, including a fixed gauge and the 
extraction of collective coordinates, is given in Ref. 19). 

This expression must be regularized and normalized. 
Following 't Hooft,' we shall use the Pauli-Willars regular- 
ization, dividing (4) by the expression in which the quantum 
fields B,, and $ have mass M-+cc, and will normalize to the 
perturbative partition function in which the classical field is 
not present: = 0. In this paper, we shall confine our at- 
tention to quanta1 fluctuations of B,, and $ in the single-loop 
(Gaussian) approximation. The regularized (index r )  and 
normalized (index n )  partition functions (4)  can then be 
written in the form (see Refs. 8 and 19): 

d e t ( i ~  (y)+im)det ( i ^ a + i ~ )  
X - 

det (ia^+im)det ( i ~  ( y )  +iM) ' 
(5) 

where J(y, ) is the (factorized) Jacobian of the transforma- 
tion to the collective coordinates of the I-th pseudoparticle, 
evaluated in Refs. 7 and 20: 

dyIJ (TI )  'd4zldU1 (dpl/pIS) ( P A P  -v.) '"3Nr 

4,66 exp (- 1,68N,) 8nZ 
C - 

" c -  ( N - 1  ( N - ) !  ' P(pl)=gm 

The exponential factor in (5) represents the classical action 
defect and the nonfactorization of the determinants, and 
leads to the stabilization of the pseudoparticle medium. It 
was found and investigated in Ref. 19. 

We now turn to the regularized and normalized fermion 
deteminant in the partition function (5). We shall introduce 
an intermediate mass M, and factorize the determinant ratio 
in (5)  into "high-frequency" and "low-frequency" parts:" 

det (i?+im) det (i^d+iM,) det(i^V+iM,) del( i^a+i~)  

det(i;+im) det(iV^+iM,) det(i;+iM,)det(i~+iM) 

= Det,,,Deth,,h. (7) 
If the partition parameters M, is large enough, Det,,,, in- 
cludes large eigenvalues of the Dirac operator, so that it can 
be factorized with good precision into the product of the 
corresponding determinants evaluated in the field of the in- 
dividual instantons. The nonfactorization correction can be 
monitored semi~lassially~~ and is small if the packing pa- 
rameter of the instanton medium is p/R( l .  We have 

N++N-  

where the function F(M,p) is known for M g >  1 (Ref. 23) 
andMp(1 (Ref. 13): 

If there are Nf quark flavors, the right-hand side of (8)  must 
be raised to the power of Nf. Substituting (6), (7),  and (8)  
in (9),  we obtain 

N++N.  

We thus see that the problem reduces to the evaluation 
of the fermion determinant Det,,, over the low frequencies 
[it is defined in (7)  ] and to the averaging of this determinant 
over the statistical ensemble of pseudoparticles, given by 
(10). 

We note that, according to (7),  the partition function 
(10) should not depend on the partition parameters M,. 
However, we shall evaluate Det,,, approximately by includ- 
ing in it only the off-diagonal zero modes, which will lead to 
a degree of dependence on MI. This dependence will actually 
be exceedingly weak in a wide range of variation of M,, and 
this will be used as a check on the precision of our calcula- 
tions. 

3. DlAGONALlZATlON OF ZERO MODES 

It is well known that, in the instanton field, the massless 
Dirac operator has a zero mode for each type of quark, 
which is specified by a right-handed (for the instantons) or 
left-handed (for the anti-instanton) Weyl  inor or.^ When the 
quark masses are introduced, the zero eigenvalues shift by an 
amount equal to the mass, and the fermion determinant 
turns out to be proportional to mNNf (in the limit of the infi- 
nitely rarefied instanton medium) where N = N+ + N- is 
the total number of pseudoparticles (for simplicity, we have 
confined our attention to the case of equal mass quarks). 
This result leads to the well-known paradox that the quark 
condensate, which is a derivative of the logarithm of the par- 
tition function with respect to mass, behaves as N / V m  in the 
chiral limit ( m - 4 ) .  

For several years, it was believed8*12 that the resolution 
from this paradox lay in the so-called 't Hooft determinant 
intera~tion.~ However, the 't Hooft many-quark "interac- 
tion" is not a new vertex arising in the theory, but merely a 
Green function in the instanton field; it does not vanish in 
the chiral limit and can in no way be used to obtain a Gor- 
kov-type equation for the anomalous mean, in the present 
case (@). Another approach13*14 (again erroneous, in our 
view) is based on the introduction of an effective momen- 
tum-dependent quark mass into the Lagrangian and the use 
of the "self-consistent" equation for this mass in the field of a 
single (!) instanton. However, the Lagrangian mass of the 
quark is zero, and the self-consistent equation of Refs. 13 
and 14 cannot be deduced from the functional QCD integral. 

206 Sov. Phys. JETP 62 (2). August 1985 D. I. D'yakonov and V. Yu. Petrov 206 



In our view, the essence of the situation is that, when the 
instanton medium is present, the zero modes become collec- 
tivized in the field of the individual pseudoparticles and 
cease to be strictly zero modes. It is precisely this delocaliza- 
tion of zero modes that is the effect that leads to the appear- 
ance of the condensate @$). This mechanism is qualitative- 
ly different from that considered in Refs. 8 and 12-14. We 
emphasize that Det,,, never reduces to the product of deter- 
minants and must be evaluated in the field of all the pseudo- 
particles simultaneously. In particular, it must not be under- 
stood as the effective two-particle interaction between the 
pseudoparticles. 

For simplicity, we begin by considering a fermion in the 
field of a single instanton A, ,  and a single antiinstanton A,,, , 
separated by a l ~ g e j u t  f i~ i te  distance R. As R+m, the 
Dirac operator id + A ,  + A 2  has two solutions fl and & 
which are the zero eigenfunctions of the operators, i.e., 

When the separation R between the pseudoparticles is 
finite, we can seek the eigenfunctions of the Dirac operator 
in the form of the superposition $ = c , f l +  c,&. Combin- 
ing the Dirac equation 

with $: and $:, and using ( 11 ), we obtain 

and hence A = + 6, where 6 is the overlap integral of the 
zero modes fl and &. The corresponding eigenfunctions 
have the form$* = (& +i f l ) / d .  

As expected, the doubly-degenerate level with zero 
eigenvalue splits into two with eigenvalues A = f 6, where 
the eigenfunction corresponding to A = - 6 is obtained by 
operating with the matrix y, on the function corresponding 
toA = + A .  

The overlap integral S can readily be evaluated, using 
the explicit form of the zero modes ( i  is the spin index and a 
the color index) : 

( x ,  p )  =p[n ( ~ X ~ ) ' ~ ( X ~ + ~ ~ ) % ] - ~ ,  

where z,,, are the centers, p l z  the dimensions, U ,,, the uni- 
tary (N, XN, ) instanton (1) and anti-instanton (2) orien- 
tation matrices, and E~~ the 2 X 2 antisymmetric tensor. 
When p,,,  ( R  = lz, - z,l, we find that (a more general 
expression is given in the Appendix) 

The zero modes can also be readily diagonalized in the 
case of an arbitrary number of instantons and anti-instan- 
tons. In fact, let $, be the zero mode in the field of the I-th 

p~udo~ar t i c l e ,  i.e., suppose that it satisfies the equation 
(id +A, )$I = 0. We zhall s y k  the eigenfunctions of the 
total Dirac operator (id + BIAI )$ = A$ in the form of the 
superposition $ = Bc, $ I .  Substituting this expansion into 
the Dirac equation, canceling with $T, and neglecting the 
overlap integrals of the form $ P A ,  $I with I # J # K, which 
contain small terms in the instanton density, we obtain 

We note that, because of the helical properties of the zero 
modes, the matrix TJI contains zero modes belonging to 
"like" pseudoparticles, whereas S,, contains modes belong- 
ing to "unlike" pseudoparticles. We shall retain in SJI only 
the diagonal terms, since all the other terms are small with 
respect to the density of the instanton medium. The eigen- 
values of the Dirac operator are thus the eigenvalues of the 
zero-diagonal N X N  matrix T (N = N+ + N- is the total 
number of pseudoparticles) consisting of the overlap inte- 
grals ( 15). Since N- it is meaningless to speak of the 
individual eigenvalues A, ; it is more appropriate in this 
problem to use the density of states v(A). 

4. EIGENVALUE DENSITY OF THE DlRAC OPERATOR 

We now retain in the low-frequency part of the fermion 
determinant Det,,, [see (7)] only those eigenvalues that 
arise during the diagonalization of the zero modes, i.e., we 
retain only the eigenvalues of the matrix T ( 15). Nonzero 
eigenvalues appear in Det,,,, when the partition parameters 
M ,  is small enough. We have 

N 

where y ( A )  is the spectral density or the density of states. In 
the limit of infinitely rarefied clouds of pseudoparticles, 
v(A) = NS(A ), since all the eigenvalues are equal to zero. In 
a real instanton medium, this 8-function smears out and ac- 
quires a certain width which is related to the mean overlap 
integral of the zero mode ( 15). To find the expression for 
y(A), we extend the chain of equations ( 16): 

where we have used the fact that& are the eigenvalues of the 
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matrix T, which consists of the overlap integrals ( 15 ) . The 
density of states is therefore given by 

where the bar represents averaging over the statistical en- 
semble of instantons. The following general formula is valid: 

(19) 

All the leading terms in the density can readily be collected 
together in this series. To obtain a rought estimate for v(A), 
we retain only the first nonzero term in ( 19). This is given by 

(is)' 1 - 1 
N exp ---- - s p  T2-N exp( - s 2 x 2 )  . 

2! N d 

Substituting this in ( 18), we obtain 

As can be seen, the erstwhile zero eigenvalues are now 
smeared out to a width x (20). To obtain the required 
Det,,, , we must substitute the above function v(A) into the 
general expression ( 16) and then integrate with respect to A. 
We note that the result is finite as m 4 .  

Let us now calculate the width x of the smeared-out 
eigenvalues. According to ( 20) and ( 15 ) , 

we now average in this formula over the positions, orienta- 
tions, and dimensions of the instanton and anti-instanton. 
We shall use the symbol (dp, ) to denote averaging over the 
dimensions of the pseudoparticles with a 6-shaped weighting 
functionp(p) obtained in Ref. 19. For the purposes of esti- 
mates, we replace all the dimensions p, by the average di- 
mension p of the pseudoparticles in the medium. Using the 
Fourier transforms of the zero modes and the expression for 
TIT (p) given in the Appendix, we obtain 

where we have used the formulas for integration with respect 
to the Haar measure normalized to unity: 

As expected, x 4  in the infinitely rarefied medium ( N /  
V-0, R- w ) and the density of states (21 ) tends to the 6- 
function: v(A ) = NS(A ) . 

5. QUARK-ANTIQUARK CONDENSATE 

By definition (4), in the chiral limit the quark-anti- 
quark condensate (?$) is the derivative of the logarithm of 
the partition function with respect to the quark mass m as 
m-+O (we are confining our attention to the case of one 
quark flavor, Nf = 1 ). We recall that the connection 
between the condensate in Minkowski space and the Euclid- 
ean condensate is 

It follows from this definition that the necessary condi- 
tion for the appearance of the spontaneous condensate in the 
chiral limit is that the logarithm of the partition function 
depends nonanalytically on the mass, i.e., on the perturba- 
tion that explicitly breaks the symmetry: 

Since the dependence on the current mass m appears only in 
Det,,, ( 16), we have 

1 m 1 
<k)=- - V S dhv (A)--  I =- -nv (0) sign m, (27) 

h2+m2 ,,, V 

which is in accordance with (26), where c, = ~ ( 0 ) .  
It is striking that the current mass m of the quark ap- 

pears in ( 16) only as m2, which is a manifestation of y, invar- 
iance. For any finite number N of pseudoparticles, this fact 
signifies the conservation of chiral invariance. However, in 
the thermodynamic limit (N--t co , V-+ w , N /  V = const), 
the density of states v(A) is finite for A = 0, the partition 
function begins to depend nonanalytically on m, and the 
symmetry is broken. Thus, the necessary and sufficient con- 
dition for a nonzero chiral condensate is that the spectral 
density of the Dirac operator v(A) be zero for m = 0. It is 
clear that this is a general result. 

If the QCD vacuum contains a finite density of topolo- 
gically singular gluon configurations with 
$ 2 ~ r ~ , , ~ ~ , , d x  = + 329 ,  the Atiyah-Singer index theorem 
shows that the Dirac operator has a zero mode for each topo- 
logical singularity. When the medium consisting of singular- 
ities is taken account of, the result is a spreading of the zero 
modes over a certain range of eigenvalues, the width of 
which is of the order of the mean overlap integral x of the 
zero modes corresponding to the individual singularities. 
The quantity v(O), in terms of which the condensate is ex- 
pressed, can then be immediately estimated as the total num- 
ber N of the previous zero modes divided by x .  It is interest- 
ing to note that, if, instead of the instanton-anti-instanton 
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Ansatz ( 1 )-(3), we take a more general Ansatz (minimiz- 
ing the vacuum energy by choosing the best shape of the 
subbarrier transition), in which the last factor in (2) and 
(3) is replaced by some function f (x2,p2), where f (0) = 1 
(Ref. 19), we find that our results are numerically only 
slightly different. Actually, the zero fermion modes in the 
field of an individual "frem~n"'~ will be somewhat different: 
the solution of the Dirac equation will now be the functions 
( 13) with p(x, p )  replaced with 

const 3f ( x r 2 ,  p 2 )  dx f2  

x2 2Xf2 
} (28) 

For the instanton, f (x2, P2) = 1/( 1 + and 
(28) is replaced with ( 13). The striking feature is that the 
behavior of x(x, p )  for x+O, w is universal: 
p(x-00 -x -~ ,  since f (x2, p2) should decrease as x+m, 
and p(x-0) -x-', which is guaranteed by the topological 
character of the singularities in the gluon Ansatz 
[ f ( 0 )  = 1 1. Since the zero modes must also be normalized 
to unity, we arrive at the conclusion that the mean overlap 
integral of the zero modes (22), which determines the entire 
physics of spontaneous breaking of chiral invariance, will be 
only slightly different numerically when gluon configura- 
tions more general than instantons are examined. 

We must now examine the value of the condensate 
($$). Substituting the expressions for v(A) given by (21 ) 
into the general formula (27), with the width x taken from 
(22), we obtain 

The pseudoparticle density N/V is directly related to 
the nonperturbative gluon condensate. The numerical result 
is1' N/V=: (F,, 2/32?) =: (200 MeV14. Substituting this 
and R / p ~ 3  (see the Introduction), we obtain for N, = 3 

We note that, since the instanton density is theoretically pro- 
portional to the number of  color^,'^ the quark condensate is 
also proportional to N,, as assumed. We must now agree 
that the quantity g819($$) will be a renormalization-invar- 
iant combination at the two-loop level. The estimates given 
in the present paper correspond to the normalization point - l /  p =: 600 MeV. 

The results of the last two sections can readily be gener- 
alized to the case of several quark flavors. Consider Nf fla- 
vors with mass matrix of the general from (m, and m, are 
N X Nf matrices) : 

1-y5 9' ( imL 1+T) + im. --) 10. 
2 2 

It is readily shown that Det,,, in ( 16) then generalizes 
to the following expression: 

where il and M: are Nf X Nf matrices proportional to the 
unit matrix. We shall now expand v(A) for small A, and 
retain only the term v(0) since we are interested only in 
terms proportional to the condensate. Integrating (32) with 
respect to A, we obtain the following contribution to 
In Det,,, : 

ca 

=nv (0) [ T r  (m,mR) '"-N!M,2]  

Thus, for an arbitrary mass matrix (31 ), the depen- 
dence of the QCD partition function on the masses is [cf. 
(26) 1 

In Z=const+ nv ( 0 )  Tr (mLrnR)"+O (m:,,) . (33) 

As expected, this expression is nonanalytic in the quark 
masses. By differentiating it with respect to the masses, we 
establish they, phases of the condensate. For example, in the 
case of one flavor and mass matrix of the form 

9% (mi+im2y5) P 

m,=m cos a, m,=m sin a 

we have Tr (m, m, ) ' I2 = (m: + m; ) 'I2, and hence 

1 d1n.Z 1 {qj$)=- -- - - 
V nv (0) cos a,  V dm, 

1 d l n Z  1 {$iy5+)=- -- =- - 
v nv ( 0 )  sin a,  

V am, 

as should be the case since the y, phase of the mass fixes the 
y, phase of the condensate. Analogous relationships arise in 
the case of several quark flavors. 

To conclude this section, we make a remark about the 
joining of the high and low frequencies into which we divid- 
ed the fermion determinant by using the fictitious parameter 
MI [cf. ( 7 )  1. Dethigh depends on MI  through the function 
F(M, p )  in (9) ,  and Det,,, is given by ( 16). It is clear that, 
in the parametrically wide region x < M, < l/ p [we recall 
that x-  ( l / p )  ( ~ / j ) ~ ( l / p ,  see (22) 1, the product Det, 
i,h Det,,, is a slowly-varying function of M,. Actually, in 
this region, we must use the second formula in (9) ,  and the 
main dependence on M, in the determinant product cancels 
out because .fv(il)dil = N. The MI-dependent corrections 
are expanded into a series in (MI and x2/M: for Dethigh 
and Det,,, , respectively. The corrections are small in the 
indicated range of M,, and their sum has a very flat maxi- 
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mum which ensures that Det,,,, and Det,,, are satisfactori- 
ly joined (see Ref. 21 and further details). 

The diagonalization of the zero modes is thus seen to 
ensure that the fermion determinant does not vanish as 
mNfN, as in the infinitely verified medium, but has the finite 
limit - xNfN as m-0. 

6. QUARK GREEN FUNCTION IN THE "PSEUDOPARTICLE" 
REPRESENTATION 

Having explained the basic function of the physics of 
spontaneous breaking of chiral invariance in a medium con- 
sisting of topological singularities of the gluon field, we now 
proceed to a more systematic theory based on the evaluation 
of Green's functions in the medium. This is necessary, above 
all, to enable us to derive a more accurate expression for 
(&) and, later, to obtain the observed hadronic current 
correlators. 

We must first define the quark Green function: 

where i and j represent the set of spinor and color indices. 
This function satisfies the equation 

The free Green function then has the form 

S," ( p )  = j d ' ( x - y )  ( q i  ( x )  h' ( y )  )o . - i ( p~ ' z - y"=  ( -- z:j )ij. 

Let us construct the Green function in the external 
gluon field in the form of a superposition of instantons and 
antiinstantons: A, = B I A  i. We have 

This series can be regrouped by summing all the powers 
of the external field produced by one instanton, then two 
instantons, and so on. The exact Green function then takes 
the form of a series over the exact Green functions SI in the 
field of the individual instantons: 

S=So+ r, (St-So) + r, (St-So) So-' (S,-So) 

+ r, (~r~o)so-'(S,-So)So-'(S,-So)+ ... . (37) 
I f J ,  J P K  

In principle, the exact Green function SI in the field of 
an instanton in the limit as m 4  is unknown:24 it has a part 
that is singular in the mass and is related to the zero modes, 
whereas the nonsingular part transforms into the free Green 
function for momenta 2 l /p ,  where p is the instanton di- 
mension. Since we are now interested in the physics of chiral 
symmetry breaking, and this, as we have seen, is related to 
zero modes, we shall now adopt a model for SI-So, in which 
only the contribution of the zero mode is retained. Our re- 
sults will be numerically uncertain in momentum space by 
the amountp- l /p .  Thus, we put 

where $I is the zero mode of ( 13 ) . We now substitute this 
into the exact formula ( 37 ) : 

$ J ~ + ( Y )  +... . 4- d4z$1k+ ( z )  (-ii-im) ( z ) ~  
I=+ J  

-im -zm 

Neglecting the less singular terms containing the mass in the 
numerator (we are interested in the chiral limit!), we note 
that only "unlike" pseudoparticles can participate in the re- 
maining matrix elements. This means that, in (39), we can 
sum without the restriction I # J, and so on (it is satisfied 
automatically). As a result, the series (39) becomes a geo- 
metric progression -d we obtain 

where the matrix TIJ represents the overlap integral of the 
zero modes, which we already know [cf. ( 15) 1 : 

TI., (zr-z,, P I ,  P J ,  U I ,  U J )  

To obtain the quark propagators for the instanton me- 
dium, we must average (40) over the statistical ensemble of 
pseudoparticles. Since the "extreme" pseudoparticles I and 
J appear twice in (40) [in the zero modes and in 
( T  - im) -I], it is convenient to extract them and consider 
the Green function in the pseudoparticle representation by 
introducing the functions 

1 
61J - DIJ (z, - Z J ,  U I ,  U j ) ;  I ,  J - "like" 

- PIJ (2,  - z J ,  U , ,  U , ) ;  I, J - "unlike" 

(42) 

The bar in this expression indicates averaging over the posi- 
tions and orientations of all the pseudoparticles encountered 
in the geometric progression, with the exception of the ex- 
treme I and J. The possibility that the "internal" pseudopar- 
ticles will coincide with I and/or J will be taken into account 
separately (see Section 7). A more explicit expression for the 
above functions is 

+ . . . (T - odd), 

Our immediate problem is to evaluate these fundamental 
functions of the theory. We shall do this under the following 

( S I - ~ O )  i j  (x, y )  = - lp~ i (x )  $ ~ j +  ( y )  Iim, (38) approximation. We shall assume that the pseudoparticles 
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FIG. 1 

are uncorrelated. The inclusion of correlations gives the next 
correction in the packing parameterp/i? of the medium [ac- 
tually ( F / R ) ~ ] ,  which will be assumed small. The dimen- 
sions of the pseudoparticles will be replaced by the average 
dimensionp. It is shown in Ref. 19 that the distribution over 
the dimensions p is narrow and tends to a 6-function when 
the number Nc of colors is large. Finally, we shall assume 
that Nc ) 1. Corrections of the order of l/Nc are amenable to 
systematic inclusion and appear to be very small in the real 
world (N, = 3 ) .  

To facilitate the evaluation of F and D, we shall formu- 
late a diagram method. We shall use a circle, a shaded circle, 
and a line joining such circles to represent an instanton, an 
anti-instanton, and the overlap integral T, (41 ), respective- 
ly. We associate the factor l/im with each circle. Dashes 
entering these circles will represent averaging over the posi- 
tions and orientations of the pseudoparticles. Whenever a 
given pseudoparticle is encountered only once in the geomet- 
ric progression (43), we shall indicate this by dashes leaving 
the corresponding circle and then reentering it. Whenever 
the same pseudoparticle is encountered several times, we 
shall join all the circles representing the pseudoparticles by 
dashes. 

In this notation, the expression for, say FIJ (43) as- 
sumes the form shown in Fig. 1. This series can be summed 
with the aid of a special Dyson equation (Fig. 2), in which 
thick lines joining the pseudoparticles represent the required 
functions F and D. In contrast to Fig. 1, each inner circle in 
Fig. 2 is assigned the factor im since the functions Fand D in 
the graphs of Fig. 2 have the factors l/im "at the ends" [cf. 
(43) 1 .  For the same reason, the first inner circle is assigned 
the factor 1. 

We note that graphs with intersecting dashed lines 
(such as the last graph in Fig. 2) are of the order of l/Nc as 
compared with "planar" graphs because of the complicated 
averaging over the pseudoparticle orientations, but they also 
contain an additional small numerical quantity due to inte- 

gration with respect to the angles. Nonplanar graphs will be 
neglected. Planar graphs, on the other hand, can readily be 
summed. 

In fact, introducing the notation DKK =y for the quan- 
tity DKL (z, - z, , UK, U, ) at K = L, we find that the Dy- 
son equation assumes the form 

x[ l+imy+ (imy) '+.  . . ]D,<,(z, - Z J ,  U,, U,). (44) 

The factor N/2 Vis due to averaging over the positions of the 
antiinstanton K and summation over all the antiinstantons, 
the number of which is N- = N/2. An analogous Dyson 
equation (but without the free term) is obtained for the 
function DIJ : 

We note that (44) and (45) are nonlinear equations because 
y is found from DIJ. To solve these equations, we must first 
establish the structure o f F  and D as functions of the orienta- 
tion U. This can readily be done after the first iterations in 
(44) and (45). Transforming to the momentum representa- 
tion for S and D 

F ( D )  ,, ( p )  = ) d4 (zJ-z I )  C' (P . ' J -~I )F  (Dl I J  ( 2 1 - Z J ) ,  

we seek the solution in the form 

Fri(p) =Tr(Uip+Ul+)f ( p 2 ) ,   fir(^) =-Tr(UIp-Ui+)f ( p z ) ,  
(46) 

Dl,. ( p )  =Tr (UI - l ,UI+)d (pZ) ,  D,, ( p )  =Tr(U? l zUi+)d (pZ) ,  

where p * = p, 7: , and 7: and 1, are 2 X 2 matrices in the 

FIG. 2. 
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top left-hand comer of the Nc x Nc matrix in which all the 
other elements are zeros. Substituting (46) and the explicit 
form of TIJ (p, U, , U, ) given in the Appendix into (44) and 
(45), and averaging over the orientations with the aid of 
(23) and (24), we obtain the following set of algebraic equa- 
tions for the scalar functions f (p) and d(p)  : 

N 1 1  
d(p)=2i-------- 2 ' 2  

2VN, im I-imy Pep ( P ) ~ ( P ) ,  

We must first solve (47) by expressing f (p) and d(p) in 
terms of y, and then find the number y from the self-consis- 
tency condition (48). It is readily verified that (48) has a 
solution for which 

In view of this, it is convenient to express f and d in terms of 
E (instead of y)  and also in terms of the function M(p) 
which, as we shall see in the next section, can be interpreted 
as the effective mass of the quark: 

(50) 
In terms of these quantities, the solution of (47) and (48) is 

VN,  2i M2(p) 
d(p2)= -- V N e  2i M(p)  

N E  mZ M2(p)+pZ ' f ( p 2 ) = ~ ~ M 2 ( p ) + p z  7 

(51) 
and the self-consistency condition (48), which is the equa- 
tion for E. is 

It follows from this equation that E does, in fact, tend to a 
finite limit as m a .  Parametrically, E -  N i'2R 2/i5. The nu- 
merical solution of (52) for m = 0, N / V  = (200 MeV4, 
p = (600 MeV)-', and Nc = 3 gives E = (85 MeV)-'. The 
higher-order terms in the expansion for E in terms of m can 
be obtained by iterating (52). Substituting the above value of 
E into the expression for the effective mass (SO), we find that 
M@ = 0) = 345 MeV, which is in good agreement with the 
generally accepted mass of the constituent quark. Parame- 
trically,M(p = 0) - N ~ - ' / ~ R  -2-  p, i.e., we have stability with 
respect to Nc . 
7. QUARK PROPAGATOR IN THE INSTANTON MEDIUM 

We can now see the above Green function in the pseudo- 
particle representation (42) to obtain the quark propagator 
in the medium with the aid of formula (40). When we sum 

FIG. 3. 

over the "extreme" pseudoparticle I, J in (40), we must take 
into account the following possibilities: ( l a )  I and Ja re  the 
same instanton, ( lb)  I and J are the same anti-instanton, 
(2a) I and J are different instantons, (2b) I and J are differ- 
ent anti-instantons, (3a) I is an instanton and J and anti- 
instanton, and (3b) I is an anti-instanton and J and instan- 
ton. Case ( 1 ) involves the quantity D,, -y (see the previous 
section). However, we must remember that the pseuodparti- 
cle I can be encountered several times in the expansion (43). 
Summation over these possibilities leads us, in the case of the 
derivation of the Dyson equations (44), (45), to a geometric 
progression: y + i m e  + ( i m ~ ) ~ y  = y/( 1 - imy). In cases 
(2)  and (3 ), we must also remember that the extreme pseu- 
doparticles I and J can be encountered as many times as 
convenient (cf. Fig. 3). This leads to the factor 
( 1 - imy) -'. We note that, when the extreme pseudoparti- 
cles I, J are repeated, they must not be confused because, 
otherwise, the graph becomes nonplanar and this ensures 
that l/Nc becomes small. 

Let us now use the above remarks to rewrite (40) in the 
momentum representation: 

1 + J d u M i  (p)$,+ ( p )  - -- -- I ( ) (1-imy)2 [ J J  ~ U J  

Be definition (49 ) , 

Since F, D a l/m2 [see (5 1 ) 1,  it follows immediately that 
the propagator (53) remains finite as m - 4 .  To evaluate 
(53), we must use the zero-mode density matrices, given in 
the Appendix, and formulas (46) and (5 1 ) for the functions 
D and F. Averaging with the aid of (23) and (24), we obtain 
the propagator 
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M, MeV 

p, G ~ V  

FIG. 4. Plot of the function M ( p ) ;  l / ~  = 200 MeV and 14 = 600 MeV. 

We note the remarkable fact that the pole of the free propa- 
gator at p2 = 0 has canceled out and the quark propagator 
has assumed the form of the propagator of a massive particle 
with effective mass M(p) (50), whose graph is shown in Fig. 
4. The last point is, of course, a manifestation of the sponta- 
neous breaking of chiral invariance in the instanton medium. 
In fact, the chiral condensate is, by definition, 

This formula yields the following numerical value: 
($$) = - (255 MeV)3 [cf. the cruder estimate (30) 1. Phe- 
nomenologically, ($$) =: - (240-250 MeV)3. 

8. DISCUSSION 

In this paper, we have explained the physics of sponta- 
neous breaking of chiral invariance in a vacuum populated 
by topologically singular gluon fields. The mechanism re- 
sponsible for this phenomenon, which we have discovered, is 
the delocalization of the zero fermion mode belonging to 
individual pseudoparticles and the formation of a finite den- 
sity of states with zero eigenvalues. This is different from 
mechanisms proposed previously in the literature. It is cur- 
ious that the theory of light quarks in the instanton vacuum 
acquires, in our approach, many of the features of the theory 
of disordered systems. 

In deriving the quark propagator, we introduce a num- 
ber of approximations, formulated in Section 6. The most 
serious of these is the use of the approximate Green function 
in the field of one instanton, which means that, strictly 
speaking, we cannot pretend that we have an accurate calcu- 
lation in the momentum regionp - l /p .  However, for small 
momenta and small eigenvalues of the Dirac operator, our 
calculations, based on the diagonalization of the zero modes, 
are parametrically justified. It is remarkable that the cance- 
lation of the pole of the free propagator at p2 = 0 and the 
generation of the effective quark mass M(p) occur precisely 
in the region of low momenta. Although we do not pretend 
that we have achieved confinement, we do, nevertheless, 

note that singularities due to the massless quark have disap- 
peared from the theory. It will be shown in our next paper 
that the instanton vacuum reproduces the qualitative prop- 
erties of the hadronic spectrum and, apparently, provides a 
good qualitative description of the hadronic current correla- 
tors in the entire Euclidean momentum range. 

We are indebted to L. N. Lipatov, N. G. Ural'tsev, E. V. 
Shuryak, and M. I.  ides for useful discussions. 

APPENDIX 

We now list the formulas for the zero-mode density ma- 
trix and the zero-mode overlap integrals used in this paper. 
The zero fermion modes in the field of the instanton I and 
anti-instanton 7 are given by ( 13). The density matrices for 
two instantons (i, j = 1, 2, 3, Gspinors, a, f l =  1, 2, ..., 
N, - co lo r  indices) are as follows: 

cp (x) =~p [n (22') 'I2 (xZ+ipZ) (A.1) 

where 77Ev are the 't Hooft symbols7 and a,, = ( 1/2) [y,, 
yv 1. We now transform to the momentum representation, 
substituting 

$ ( 1  = J x e i  ) $+ (k) = J d4xeikx$+ (x) . 

In terms of the Fourier components, the density matrix 
(A 1 ) assumes the form 

Similarly, the density matrix for two anti-instantons is 

The density matrix for an instanton and an anti-instanton is 

x [ Ur~u-Ui+] (A5) 

The density matrix for an anti-instanton and an instanton is 
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For the definition of the overlap integral of zero modes, see 
(41). Transforming to the momentum representation and 
using (AS) and (A6) ,  we obtain 

T, i (p ,  Ur, U i )  - J" d (27-z,) [ i  ( p ,  (z-z.) ) 1 Tri (G-zr, Ur. U i )  
=-2i[cpr(p) I2Tr(Uip+UI+),  p+=p v u )  T +- (A71 

TiI  ( p ,  Ui,  U r )  =2i [cp'(p) ] 'Tr(U1p-Uif) , p -=p ,~; .  (A81 

We note that the matrix T is Hermitian: TIi (p) = T+, ( p ) .  
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