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The solutions of the gravitational equations for a homogeneous isotropic universe filled with a 
massive scalar field are investigated. Particular attention is paid to the question of the generality 
and conditions of realization of inflationary stages of expansion. It is shown that inflationary 
stages are an unavoidable property of a large class of solutions. The results of the paper indicate 
that the concept of spontaneous creation of the universe with a subsequent inflationary stage 
probably does not require the fulfillment of any too special requirements. 

51. INTRODUCTION 

This paper analyzes all possible solutions of the gravita- 
tional equations for a homogeneous isotropic universe with 
scalar field having a definite rest mass. This investigation, 
which is of interest in its own right, is motivated by the ideas 
of so-called inflationary cosmological models. Although the 
possibility of an inflationary (de Sitter) stage in the evolu- 
tion of the early universe was noted long ago (see, for exam- 
ple, the bibliography in the review Ref. 1 ), the possible part 
it could play in the solution of cosmological problems was 
most clearly pointed out in Ref. 2. It must be said that it is 
however now clear that by no means all variants of inflation- 
ary models can stand up to comparison with observational 
data. The necessary amplitude of perturbations cannot be 
readily obtained in models with specific Higgs dependence 
of the potential on the field. In addition, the very concept of a 
de Sitter stage, arising after the singularity and a hot stage of 
expansion, has lost its attraction compared with variants 
which include spontaneous quantum creation of the uni- 
verse. It seems that the viable variant of the theory is cur- 
rently the one in which it is assumed that in the early uni- 
verse there existed a scalar field p with values exceeding m, , 
where m, = 1.22X IOl9 GeV is the Planck mass.'' It has 
been noted1 that if in addition the initial value of 4, is suffi- 
ciently small then the scale factor a ( t )  of the homogeneous 
isotropic universe increases in accordance with a nearly ex- 
ponential law, i.e., there is an inflationary (quasi-de Sitter) 
stage of expansion. However, the degree of generality of so- 
lutions possessing an inflationary stage; the possible occur- 
rence of these stages for large initial values of#; the quantita- 
tive characterization of "advantageous" and 
"disadvantageous" cases; and the modifications in the set of 
possible solutions introduced by a nonvanishing spatial cur- 
vature-all these remain unresolved questions. To solve 
them, we use the methods of the qualitative theory of dyna- 
mica1 systems. 

We consider the simplest case of massive (with mass m ) 
minimally coupled scalar field described by the Lagrangian 

L ,-I/ zcp,,cp~k-'lzmZcpZ (1.1) 

in a homogeneous isotropic cosmological model with metric 

-ds2=-dt2+a2 ( t )  ( d ~ ~ ~ + d x ~ + d x ~ ~ )  

X [ l+'l,k ( X , ~ + X , ~ + X , ~ )  I-', (1.2) 

where k = 1, k = - 1, and k = 0 correspond, respectively, 
to closed, open, and flat models. 

In this case, only the diagonal components of the ener- 
gy-momentum tensor of the scalar field are nonzero, having 
the same form as for an ideal isotropic fluid with certain 
effective energy density E and effective pressurep. Concrete- 
ly, 

To0=-&, T,R=pS,B, 

where 

From these expressions it is clear that when # '4mZq, the 
effective equation of state isp = - E, this indicating the pos- 
sible occurrence of a quasi-de Sitter stage. In the opposite 
limiting case 4, 2%m2p ' and, in particular when m = 0, we 
have the maximally hard equation ofstatep = E. Cosmologi- 
cal solutions near the singularity for such an equation of 
state were considered in Ref. 3. The equation of state p = E 

itself was proposed earlier in Ref. 4 in a different physical 
realization. Finally, in the regime of an oscillating p the 
averagedp vanishes, mimicking G dust medium. Thus, in the 
different regimes the homogeneous field p ( t )  possesses dif- 
ferent effective equations of state. It is instructive to examine 
this paradoxical situation in the example of an idealized 
model in which it is assumed that the Hubble parameter, 
H = a/a, is constant, the relation IH I )m holding, and the 
"reaction" of the field e, on the scale factor a ( t )  can be ig- 
n ~ r e d . ~  For H = const, the equation for p [see Eq. (2.1) 
below] can be solved exactly. It can be shown5 that in the 
case of expansion, i.e., for H >  0, all solutions for the field q, 
(except one) behave in such a way that with the passage of 
time the equation of state tends t op  = - E. Conversely, in 
the case of contraction all solutions (except one) behave in 
such a way that the equation of state tends to p = E. The 
qualitative features of this behavior are still present in the 
general case too. 

We note that in the late stages of expansion there deve- 
lop oscillations of the field p describing "dust" matter con- 
sisting of scalar particles at rest. Their decay and transfor- 
mation into hot plasma are not considered here. Also left on 
one side are important questions such as the possible role 
played by spatial inhomogeneity of the field q, and the met- 
ric. 

We shall consider the solutions of the classical equa- 
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tions for p( t )  and a ( t )  right down to the singularities, which 
are a typical property of cosmological models (although 
some closed-model solutions do not have singularities at 
all). However, from the physical point of view the solutions 
of the classical equations are invalid at densities and curva- 
tures which reach or exceed the Planck values. Nominally, 
the limit of applicability of the classical solutions can be tak- 
en to be the field values for which 

(no further restrictions on a ( t )  are required). The initial 
data for the classical stages of the evolution are determined 
at this limit. A particular set of initial values can be regarded 
as the consequences of the solution of the corresponding 
quantum-gravity problem in the region E 2 m;. Here, we ad- 
here to the idea advanced in Ref. 6,*' according to which the 
cosmological singularity must ultimately be replaced by "an 
act of spontaneous creation of the universe." It was shown in 
Ref. 6 that an inflationary stage of expansion is necessary if a 
universe created with characteristic Planck dimensions is to 
be able to grow in a definite time to macroscopic sizes and, 
ultimately, after transition to the hot plasma stage, to scales 
equal to or exceeding those of the currently observed uni- 
verse. Putting aside for the moment the quantum-mechani- 
cal analysis and the discussion of the probability of occur- 
rence of particular initial data, we elucidate the fate in the 
classical regime of solutions characterized by arbitrary ini- 
tial values of p and +. Of particular interest are closed mod- 
els (k  = I) ,  since it is precisely for them that the concept of 
"creation" is more meaningful.3' 

The conclusions obtained in the present paper indicate 
that an inflationary stage is a very general property of the 
solutions considered and, thus, the concept of quantum 
"creation" of the universe with a subsequent inflationary 
stage probably does not require fulfillment of any too special 
conditions. 

52. BASIC EQUATIONS 

The Lagrangian ( 1.1 ) and the metric ( 1.2) lead to the 
following simultaneous system of gravitational equations 
and equations for the field p: 

where 

~=8nG=8nm,-~ ,  H=i/a. (2.4) 

Equations (2.1 ) and (2.2) form a three-dimensional 
dynamical system in the phase space p, +, H. However, it is 
more convenient to use the variablesp, 4, H, t together with 
the dimensionless quantities x, y, z, and 7: 

Then Eqs. (2.1) and (2.2) become . . 

and the relation (2.3) can be written in the form 
x2+yZ-Z2=km-2a-2. (2.7) 

Here and in what follows, the subscript 7 denotes the deriva- 
tive with respect to this variable. The relation (2.4) for the 
Hubble parameter now takes the form 

z=a,/a. (2.8) 

In what follows, it will be convenient to present the results 
both in terms ofx, y, z, 77 as well as in terms of p, 4, H, t. The 
transition from the one set of variables to the other is one to 
one and should not present difficulties. 

Equations (2.6) do not contain the parameter k and 
thus describe all three models simultaneously in the phase 
space xyz. Equation (2.7) shows the regions of phase space 
in which the trajectories of the various models lie. First of 
all, it is clear that the surface of the cone x2 + Y2 - z2 = 0, 
which corresponds to the flat case k = 0, separates the re- 
gions containing the trajectories of the open model k = - 1 
(interior of the cone, which contains the z axis) from the 
region containing the trajectories of the closed model k = 1 
(the part of the phase space exterior to the cone and contain- 
ing the planexy). The trajectories of the flat model lie on the 
cone itself and, therefore, form a two-dimensional invariant 
phase space. 

We note that the sections of the trajectories lying in the 
upper half of the phase space (z > 0) correspond to expan- 
sion of the model (i.e., H >  0)  and those in the lower (z < 0) 
to contraction (H < 0). At the same time, the trajectories of 
the open and flat models cannot be continued from the upper 
half to the lower. They are separated by a singular point, the 
coordinate origin (x, y, z)  = (0,0, O), the apex of the upper 
and lower sheets of the cone. Physically, this point (if ap- 
proached from the region H > 0)  corresponds to the final 
stages of unlimited expansion ( a + ~  ), which terminate the 
evolution of the models with k = - 1 and k = 0. Fork = 1, 
the trajectories can intersect the plane z = 0 (H = O), this 
corresponding to the times of the extrema of the scale func- 
tion (a = 0). 

Thus, the expansion and contraction for the models 
with k = - 1 and k = 0 are to be considered separately. 
However, all the trajectories describing the contraction in 
these models can be obtained from the trajectories corre- 
sponding to expansion by two symmetry transformations 
that the system of equations (2.6H2.8)  possesses: 

We now turn to the investigation of the simplest case: k = 0. 

53. FLAT MODEL 

For k = 0, the system (2.6)-(2.7) simplifies. We shall 
consider only an expanding model, for which H >  0. Substi- 
tuting z = + (x2 + y2) in the second equation in (2.6), 
we obtain a two-dimensional dynamical system in the varia- 
bles x, y: 

x,=y, y , = - ~ - 3 ~  ( ~ ~ + y ~ ) ' ~ .  (3.1) 
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As phase space of this system, we shall use the xy plane, 
though it must be remembered that the true trajectories of 
the system (3.1) lie on the conez = + (x2 + y2)"2 and the 
phase diagram in the xy plane is the conceptual orthogonal 
projection of the true picture onto the horizontal plane. It is 
readily seen that in a finite region of variation of x and y the 
system (3.1) has only one singular point-the origin 
(x, y)  = (0,O). A simple analysis shows that this point is a 
stable focus, and the asymptotic behavior of a solution near 
it has the form 

For the variable z we have at the same time 

z=2/3q. (3.3) 

Thus, as we have already said, the point ( x ,  y )  = (0,O) cor- 
responds to the final stages of unlimited expansion, in which 
the field p oscillates, being damped, and the scale factor 
tends to infinity in accordance with the law 

a a q'. (3.4) 

All the remaining singular points of the system (3.1) lie at 
infinity, and to study them one can use a standard device 
such as mapping of the xy plane (taking it to be in the hori- 
zontal position) onto the lower half of a sphere of unit radius 
lying on this plane and touching it at the origin (so-called 
Poincart sphere). The points of the plane are mapped onto 
the sphere by means of central projection (from the center of 
the sphere). The infinitely distant points of the plane are 
then projected onto the equator of the sphere. If we now 
project the entire lower half of the sphere back onto the hori- 
zontal plane, but this time by means of vertical projection, 
we obtain as a result a continuous and one-to-one mapping of 
thexy plane onto the interior of the disk of unit radius. Inves- 
tigation of the nature of the singular points on the boundary 
of this disk completely describes the infinity of the phase 
space. 

If we make all the analysis associated with this proce- 
dure, we arrive at the results illustrated in Fig. 1. Figure la  
shows the behavior of the trajectories in thexy plane, Fig. l b  
the mapping of this phase diagram onto the disk of unit radi- 
us as described above. On the boundary of the disk 
(x2 + y2 = w ) the system has four singular points: two re- 
pelling nodes, K, and K,, and two saddles, S, and S,. At the 
center of the disk (i.e., at the coordinate originx = 0, y = 0) 
there is the attracting focus F with asymptotic behavior 
(3.2) with which we are already acquainted. All the trajec- 
tories emanate from the four infinitely distant singular 
points and then wind around the central focus. We write 
down the asymptotic behavior of the solutions to the system 
(2.1 )-(2.3) near the singular points at infinity. To the point 
K, there corresponds an initial cosmological singularity at a 
certain finite time, which can always be chosen at t = 0. 
Near K,, we have 

cp=sm-' In (tlt,), II=1/3t, (3.5) 

FIG. 1. 

where to> 0 is an arbitrary constant. Emergence from K, 
corresponds to increasing t ,  beginning from t = 0. In the 
neighborhood of this node, the effective equation of state is 
p = &. 

Near the saddles, the asymptotic behavior of the singu- 
lar solution corresponding to the emerging separatrix S,F 
describes cosmological evolution of a different type, which 
begins in the infinitely distant past: 

Here, the time increases from the value t = - W ,  corre- 
sponding to the initial singularity. Near this separatrix, in 
the region of sufficiently large p ,  the effective equation of 
state isp = - E. 

We note that the asymptotic value of @ in (3.6) is 

-- ( 1 2 ~ ~ )  -"~nzmP. 'p=-s- (3.7) 
This means that in the p, &, plane the separatrix S,F has a 
horizontal asymptote (3.7), to which SIF tends as p+ oo . 
The asymptotic behaviors near the two other singular points 
K, and S, and the properties of the separatrix &Fare analo- 
gous and follow from the obvious symmetry properties. 

Since the effective equation of statep = - E is realized 
near the separatrix S,F for sufficiently large values of q, (de- 
termined more precisely below), it is in this region that we 
must expect the occurrence of inflationary stages. 

We now turn to analytic construction of solutions near 
this separatrix. As can be seen from ( 1.3), the equation of 
statep = - E is realized (for positive p) in the region 

This is the region in which the separatrix SIP passes. As 
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follows from Eqs. (2.2) and (2.3), the condition (3.8) in the 
case k = 0 is equivalent to the requirement 

la1 <Ha. (3.9) 

Taking into account (3.8), we obtain from (2.3) for k = 0 

H= (m2/3s)  cp. (3.10) 

Substituting this expression for H in Eq. (2.1 ) , we reduce it 
to the form 

d$ mz v(ip+s) 
-=PA- 
d v  S @ '  

whence we obtain the following approximate equation for 
the phase trajectories: 

(ip4-s) exp (-$Is) =C exp (mZqY/2s2), (3.11) 

where Cis an arbitrary constant. From the same equations 
(2.1 ) and (3.10) we can obtain the ratio of the scale factor at 
some initial time ti to the scale factor at some final time t f. It 
follows from these equations that 

and since 
k 

-- a ( t f )  - exP j ~ ( t )  dt,  
a  (ti) t, 

we obtain 

a( t t ) / a ( t i )= l  [ip(ti)+sI/[ip(tr)+sII'". (3.12) 

It can be seen from this that appreciable growth of the scale 
factor is possible only for the trajectories that at the time t 
approach sufficiently close to the separatrix S,F [see (3.6), 
(3.711. 

It is well known that for cosmological applications the 
ratio a ( t  )/a (ti ) for the inflationary stage must be of order 
lo3' (or greater). It is readily seen that a ratio of this order 
can be obtained in the sections of the phase trajectories that 
begin with 14) + s(-mm, and end with 
14) + S I  - 10-90mmp (or even smaller values of I +  + sl ) . 
With regard to the sections of the trajectories in which (Q, I 
varies from the largest possible values -mp, situated at the 
limit of the region of applicability of these approximate solu- 
tions, to values corresponding to (Q, + sl -mmp , we find 
that a ( t  ,- )/a(ti ) on these sections does not exceed (mp/ 
m) 'I3. Indeed, this follows from Eq. (3.12) if for 14) (ti ) I we 
take the maximal possible value -mp(ti ) - mj. Since addi- 
tional cosmological arguments associated with the growth of 
small perturbations and the bound on the anisotropy of the 
background radiation4' require m/m, - 10-5-10-6 (see the 
discussion below), growth of the scale factor by (m, /m) 'I3 

times is indeed insignificant compared with what is needed. 
One can also show that outside the region of applicability of 
the approximate solution (3.11)-(3.12), i.e., in the sections 
of the trajectories where + 2$m2p 2,  the growth of the scale 
factor is also slight, and the ratio a ( t  )/a (ti ) is determined 
by the same quantity (m, /m ) 'I3. 

The ratio a ( t  )/a(ti ) can be expressed in terms of the 
initial and final values of the field p itself. The expression 
(3.12) with allowance for (3.11) and the approximate equa- 
lity 

which is clearly valid in the range of variation of 14) ( in which 
we are interested (i.e., for 14) + sl 5 mm, ), can be rewritten 
in the form 

a  ( t f ) / a  ( t i )  =exp [2nm~-~(q ," -v r7  1, (3.13) 

where pi and p are, respectively, the initial and final val- 
ues of the field p. If as p we take the value p -m,, at 
which the final stages of the expansion with damped oscilla- 
tions of the field p begin, to ensure realization of the neces- 
sary inflationary stage (i.e., one in which a ( t  ) /  
a(t i  ) - lo3') it is necessary to take pi - (3-4)mp (see also 
Ref. 1 ). But if the initial pi >m, , then the duration of the 
necessary inflationary stage in terms of Ap = pi - p is de- 
termined by the condition 

In particular, for pi taken on the boundary of the quantum 
domain we have Ap - m (m, . 

We emphasize that we were above discussing the dura- 
tion (with respect to the variable p )  of the minimal neces- 
sary inflationary stage, characterized by inflation by lo3' 
times. In fact, the actually realized duration of the inflation- 
ary stage in the solutions of the considered model is almost 
always greater and is determined by an initial value of the 
field pi for which the trajectory has approached sufficiently 
close to the separatrix S,F. In the sequel, such a trajectory 
can only continue to approach the separatrix, not move away 
from it. For this reason, the end of the inflationary stage for 
any trajectory will always correspond to the value p -m, , 
i.e., to the value after which the separatrix passes into the 
concluding noninflationary regime of expansion with oscil- 
lations. Thus, for pi - (3-4)mp the duration of the infla- 
tionary stage that arises corresponds to the minimal neces- 
sary. But if pi Sm, , the degree of inflation in such a solution 
can actually greatly exceed lo3'. Thus, inflation from 
pi -mi/m (near the quantum limit) to p -m, leads to 

a  ( t f ) / a  (ti) -exp (mp2 /m2) .  

In this case, only a minute portion of the entire volume of the 
universe is accessible to contemporary observations, that 
part in fact which passed through the inflationary stage at 
the very end. 

As already noted, bounds on the growth of small pertur- 
bations and the anisotropy of the background radiation lead 
to additional conditions on the parameters of inflationary 
models. In particular, H ( t )  at the end of the inflationary 
stage must not be too large, namely, of order 
10-6)mp. Since the end of such a stage always corresponds 
in the model considered to the value p -m,, it follows 
from (3.10) that H ( t f )  -m, and it is this that leads to the 
estimate mentioned above for the mass of the scalar field: 
m- (10-5-10-6)mp. 

All the analysis is of course also valid (after the substi- 
tution p--t - p,  4-f - Q,) for the region near the separatrix 
SP. 

We now turn to the question of the degree of generality 
of solutions possessing an inflationary stage. This problem is 
most readily solved by means of the exactly constructed 
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FIG. 2. 

phase diagram of the system (3.1) in the region within the 
quantum limit on which we specify the initial data. If this 
construction is carried out, then the phase diagram on large 
scales (out to the quantum boundary) can be represented 
qualitatively as shown in Fig. 2. It can be seen from this 
figure that the phase trajectories are practically vertical out- 
side the central region with radius -m,. In regions with 
Iq, I > m, , the trajectories turn sharply near the separatrices 
and pass along them right to the central region, where they 
then wind round the focus x = 0, y = 0. 

As already noted, the advantageous trajectories (i.e., 
those possessing the required inflationary stage) are all the 
ones for which pi > (3-4)mp. These trajectories begin at the 

points of the quantum boundary situated everywhere on the 
circle except its two segments near they axis (see Fig. 2). 
The set of disadvantageous trajectories, i.e., the ones that 
begin at the points of these segments, is small, since the 
length of each such segment is AL - (6-8)mp, whereas the 
length of the complete quantum circle is L - 2ami/m. Thus, 
the ratio AL /L, which determines the measure of the disad- 
vantageous trajectories, is 

AL/L;=:m/m,< 1. 

Thus, an inflationary stage, which begins sooner or later, is 
inherent in almost all trajectories that begin on the quantum 
limit. This conclusion is very important, since it indicates a 
great generality of inflationary regimes in models with 
k = 0. 

An analogous conclusion also holds for the models we 
investigated of a scalar field with self-interaction propor- 
tional to Aq, 4, and also with Higgs potential. We shall not 
dwell on the details but merely give the phase diagrams cor- 
responding to these cases. 

Figure 3a shows the phase diagram for the flat model 
for which the scalar field is described by the Lagrangian 

L =-'I z(p,,(p;m-'jzm2~z-i/Ih'p4. 

We have used the same dimensionless variables (2.5) as for 
A = 0. To be specific, we assume A-  lo-'', m - 10-6mp. 
The asymptotic equation of the inflationary separatrices at 
large 1x1 is now 

y=-yx, y= (h/6n)'"mPm-'. 

Figure 3b shows the phase diagram for the flat model 
with Higgs scalar field. Its Lagrangian is 

FIG. 3. 
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L =-I/  x(p,mcp;m-i/ka (rp2-cp:) ' ,  

where to be specific we assume 1-10-l2 and 
p0 - 3 X 10-2mp. As phase variables we have chosen the di- 
mensionless quantities 

@=cpo-'cp, Q= (9h/2)-'"cpo-2ip. 

In this case there are two focuses F, and F, (for @ = + 1 ) 
and a saddle So in the center between them. All the separa- 
trices are shown by the heavy lines. The asymptotic equation 
of the inflationary separatrices SIF, and S2F2 at large I@I is 

54. BEHAVIOR OF THE TRAJECTORIES AT THE PHASE 
SPACE INFINITY 

First of all, we complete the description begun in Sec. 2 
of the three-dimensional phase space of the system (2.6). It 
can be seen from (2.6) that in a finite region of variation of 
x, y, z this system has just one equilibrium state-the origin 
(x, y, z)  = (0, 0,O). Other singular points can lie only at 
infinity. To investigate their number and nature, it is con- 
venient to compactify the phase space and complete it by the 
infinitely distant boundary xZ + y2 +z2 = W ,  going over 
from the Cartesian coordinates x, y, z to the spherical 

z=r s in  0 cos I$, y=r sin 0 sin 9, z=r cos 0 

with subsequent transformation of the radius in accordance 
with the law r = p (  1 --p) - I ,  where O<p< 1. If we now in- 
troduce a new time r from the condition dr/ 
dv = ( 1 - p)-', then in the variables p, 8, $, 7- the system 
(2.6) finally takes the form 

p,=-p2 ( I -p )  cos 0 ( 6  sin2 0 sin2 $Scos  20) ,  

0,=p s in  0 cos 20 (1-3 sin2 Q), (4.1) 

I$,=- (1-p)  -3p cos 0 sin I$ cos $. 

For O<p < 1, Eqs. (2.6) are equivalent to the system 
(4. I ) ,  though the latter admits smooth continuation to the 
boundary p = 1. Thus, in the variables O<p<l, O@<n-, 
0<$<2a the phase space of the system (2.6), augmented by 
the infinitely distant boundary, is compact and can be imag- 
ined as a ball of unit radius placed in the same phase space 
xyz (or rather, on its second copy) with center at the origin. 
Each point of the original phase space is mapped along its 
radius vector to a certain point in the interior of the ball, 
while the points x2 + y2 + z2 = cc at infinity are mapped to 
the surfacep = 1 of the ball. It is readily seen from (4.1 ) that 
on this surface the system has 14 singular points. They are all 
shown together with the interior of the ball in Fig. 4. Essen- 
tially different are only four: one point from each group P, K, 
S, and C. The properties of all the others are then obtained 
from the chosen four by some combination of the symmetry 
transformations (2.9).  

At the north pole of the ball there is a saddle point 
P (6  = 0), from which there emanates into the phase space of 

the open model a two-dimensional pencil of trajectories 
(two-dimensional separatrix). Near P, these solutions have 
the asymptotic behavior 

cp=qo-i/8mZ~utZ, H=l / t ,  (4.2) 
where po is an arbitrary constant. The initial singularity 
t = 0 corresponds to the point Pitself and emergence from it 
corresponds to increase of the time from this value. Near the 
P, the scale factor follows the law 

a a t .  (4.3) 

Among these solutions there is a pure vacuum solution: 
p =O (for po = O), whose trajectory is represented by the 
polar axis PF. It corresponds to the metric of a flat (four 
dimensionally) world with hyperbolic spatial sections (so- 
called Milne model). 

The parallel 8 = a/4 is the intersection of the surface of 
the ball with the upper half of the conex2 + y2 - z2 = 0, i.e., 
maps the infinitely distant boundary of the two-dimensional 
phase space of the flat model about which we have already 
learnt (Sec. 3). On this parallel lie the saddles S, ($ = 0) and 
S2($ = n-1, from which just one trajectory from each enters 
the ball. These two trajectories pass along the surface of the 
cone and are the flat-model separatrices SIF and S2F consid- 
ered in Sec. 3. On the same parallel are the points K, ($ = n-/ 
2) and K, ($ = 3n-/2), which are repelling nodes and send 
trajectories both into the space of the flat model (along the 
cone) as well as into the phase space of the open and closed 
models. These nodes correspond to initial cosmological sin- 
gularities, and the asymptotic behavior near them does not 
depend on the model type. For K, we have the same asymp- 
totic behavior (3.5), and for K2 the same expressions with 
the substitution p-t - p. 

On the equator 8 = n-/2 of the surface of the ball there 
are four more singular points C, which are saddles. The 
points C1 (sin $ = - 1 / d )  and C2(sin $ = 1/G)  are the 
infinitely distant ends of the straight line lying in the inter- 
section of the planesz = 1/v2 andx = - n y .  This line is an 
asymptote for the two-dimensional pencils of trajectories 
that emanate from C, and C2 into the phase space of the 
closed model. These trajectories (like the separatrices S,F 

FIG. 4. 
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and S,F) describe cosmological evolution that began in the to add to these results the diagram of all the unphysical tra- 
infinitely distant past. The points C ,  and C,  themselves cor- jectories that lie entirely on the surfacep = 1 of the ball. By 
respond to the time t = - a, (initial singularity), and emer- continuity arguments, such trajectories determine the be- 
gence from them corresponds to increase in the time from havior of the physical integral curves of the system that lie 
this value. The leading terms in the asymptotic behavior of within the ball but near its surface. S e t t i n g p ~ l  in (4.1 ), we 
these solutions near C ,  and C2 are obtain 

cp=const.exp (-mt/1/2), f ~ = r n / l z  (4.4) &=sin 0 cos 20 (1-3 sin2 $), 
(4.6) 

where the constant in front of the exponential is positive for 
C ,  and negative for C2. The scale factor here increases from 
zero exponentially rapidly: 

accexp (mtlVT), (4.5) 

but this does not however mean that in this region an infla- 
tionary stage of interest to us arises; for it follows from ( 1.3) 
that near C ,  and C, the effective equation of state is 
~ + 3 p = O a n d  

- 
~ ~ ~ / ~ m ~ c p ~ a e x p  (-l2mt) aa-'. 

Thus, the energy density decreases with increasing t too ra- 
pidly for the requirements that we usually impose on the 
concept of inflationary stages to be satisfied. 

The saddle points C  ; (sin $ = l / d )  and C ;  
(sin $ = - l/v3) (the ends of the line that is the intersec- 
tion of the planes z = - l/vZ and x = fiy) relate to the 
lower half of the phase space (contraction) and attract cor- 
responding two-dimensional pencils. 

On the lower half of the surface of the ball (see Fig. 4) 
thereare also the singular points P ', K ', andS ', symmetric to 
the points P, K, S. The south pole P '(8 = T) attracts a two- 
dimensional pencil of trajectories, including the purely 
vacuum FP'. The nodes K ; (8 = 3?r/4, $ = ~ / 2 )  and K 
(8 = 3n/4, $ = 3?r/2) also attract trajectories and corre- 
spond to final cosmological singularities. The asymptotic be- 
havior near these collapse points again does not depend on 
the type of the model. The saddles S ; ( 8  = 3?r/4, $ = 0)  and 
S; (8 = 3 ~ / 4 ,  $ = n-) are each approached by one trajec- 
tory, the separatrices FS ; and FS I of the contracting flat 
model. 

We have described above the nature of the singular 
points with respect to the three-dimensional physical phase 
space of the system (2.6), the interior of the ball O<p < 1. 
For complete description of the phase infinity it is necessary 

$,=-3 cos 0 sin $ cos $. 

The phase diagram for this two-dimensional dynamical sys- 
tem is represented in Fig. 5 as if the angles 8 and $ were 
Cartesian coordinates. To cover with them the surface of the 
ball shown in Fig. 4, it is necessary to identify the left-hand 
edge $ = 0 with the right-hand $ = 2 ~ ,  identify with one 
another all points of the upper edge 0 = 0 and also identify 
with one another all the points of the lower edge 8 = T. With 
respect to the two-dimensional space 8$, all the points K and 
S are simple nodes, while the remainder are simple saddles. 
All the saddle separatrices are shown in Fig. 5 by heavy lines. 
For covenience of matching Figs. 5 and 4, the polar angle 8 
in Fig. 4 is plotted downward. 

We note that the system (4.6) can also be integrated 
explicitly. It phase trajectories, shown in Fig. 5, are de- 
scribed by the equation 

sin" $ ~0s ' ' ~  $ sin2 0 cos-' 20=consl. (4.7) 

55. OPEN MODEL 

We discuss briefly the solutions for an expanding open 
model. Their compact phase diagram is bounded by the sur- 
face of the cone z = + (x2 + y2) ' I 2  and the section of the 
spherical surface including the north pole P (see Fig. 4).  

The quantum boundary is now shown by the surface of 
the cylinder x2 + y2 = 8n-m;/3mz (i.e., E = m;), which in- 
tersects the surface of the cone along the circle that is the 
quantum boundary of the flat models and which we dis- 
cussed earlier (see Fig. 2). For the nonflat models, the 
boundary surface is two dimensional, since, compared with 
the flat case, it is necessary to specify one further indepen- 
dent parameter-the initial value of H (or a) .  

It is obvious that the trajectories which begin on the 
surface of the cylinder but near its intersection with the cone 

FIG. 5 .  
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will have qualitatively the same properties as the trajectories 
of the flat model, i.e., the majority of them approach and 
then pass along the separatrices SIFand S2F, which lie on the 
surface of the cone, and are subject to a long inflationary 
stage. These trajectories are characterized by the fact that 
the spatial curvature, already small in the region in which 
the initial data are specified, decreases even further with the 
passage of time in the inflationary stage. With regard to the 
remaining trajectories which intersect the quantum bound- 
ary far from this circle, their fate is less certain. It can how- 
ever be seen that some of them approach the cone in the 
regions of the separatrices SIF and S2F within the classical 
region and undergo an inflationary stage. But others reach 
the region of oscillations near the focus F without having 
been inflated. 

It is important to note that in all solutions the spatial 
curvature, even in the ones in which it has decreased strong- 
ly in the inflationary stage, ultimately becomes dynamically 
important in the final stages of unlimited expansion in the 
region of oscillations near the focus F (effective equation of 
statep = 0). This is reflected in the fact that all the trajector- 
ies approaching the focus approach ever closer to the vertical 
vacuum line PF. 

Thus, an inflationary stage is an unavoidable intermedi- 
ate stage for a set of solutions in the open model, although it 
is now not so easy to give a numerical estimate of the corre- 
sponding measure as it was in the case of the flat model. 

96. CLOSED MODEL 

As already noted, the complete phase space for the case 
k = 1 is the interior of the ball apart from the interior regions 
of the cone x2 + y2 - 2 = 0, in which the trajectories of the 
open model lie. Compared with the cases k = 0 and 
k = - 1, there is a new possibility-the trajectories can in- 
tersect the plane H = 0 (z = 0), i.e., there are points of regu- 
lar maxima or minima of the scale factor a ( t )  . These points 
are strictly separated. For their description, we find first the 
surface in the phase space on which H = 0 (z, = 0). As can 
be seen from the last relation of (2.6), this surface is the cone 
with equation x2 - 2y2 - z2 = 0. As shown in Fig. 4, the 
sheets of this cone are arranged horizontally (containing 
within them the x axis) and intersect the infinitely distant 
boundary of the phase space along the curvesSICIS ; C ; and 
S2CJ ; C ; . These curves intersect the equator of the surface 
of the ball at the singular points C, and the complete cone 
intersects the horizontal plane z = 0 along the two straight 
lines C ; FC; and C,FC2, which have on it the equations 
x = fiy andx = - fiy, respectively. The cone lies entirely 
in the region of space of the closed model and touches the 
phase surface of the flat model (i.e., the cone 
x2  + yZ - 2 = 0) along the two generators z = f x. The 
lines x = f fiy on the plane z = 0 are the ones that sepa- 
rate the points at which a maximum or a minimum of the 
scale factor is attained. Every trajectory which intersects the 
plane z = 0 in the region x2 > 2y2 is a solution possessing a 
regular minimum of a( t) .  The trajectories that intersect the 
plane z = 0 at points of the region x2 < 2y2 have at these 
points a maximum of a( t) .  On every trajectory lying within 

the cone H = 0 the Hubble parameter H increases with the 
time t, i.e., motion in this direction is directed only upward. 
Outside this cone, H decreases, and the motion along the 
trajectories is directed downward. 

To establish the degree of generality of the inflationary 
stages in the closed model, it is important to establish the 
points of the cone H = 0 at which the trajectories can leave 
the cone. Finding on the surface of this cone the curve at 
whose points H = 0, one can show that in the expansion 
phase (H > 0) and for positive values of q, emergence from 
the cone is possible only through a narrow region on its sur- 
face, denoted by the letter Jand  hatched in Fig. 4. For nega- 
tive p, an analogous region exists on the left-hand sheet of 
the cone in the triangle S2C2F. At large values of (q, I, the 
ones in which we are mainly interested, the trajectories leav- 
ing the cone immediately enter the neighborhood of the se- 
paratrices S,F and S2F, and the corresponding solutions un- 
dergo a prolonged inflationary stage. Since the region of 
emergence from the cone adjoins the separatrices SIF and 
S2F, this means that almost all trajectories that leave the 
cone enter into an inflationary regime. This applies to all 
trajectories that appear in the expansion phase already with- 
in the cone H = 0, i.e., from points of a regular minimum of 
the scale factor (we take no account of the previous history 
of such solutions) and from the singular points C, and C2. 
Some of the trajectories that begin at the singularities K en- 
ter an inflationary regime in the same way, i.e., by passing 
first through the interior region of the cone H = 0. There are 
trajectories that make the transitions Kl-S,Fand K2+Sp. 
The other trajectories which begin at K approach the separa- 
trices S,F and S2F without passing into the cone H = 0. 
These are the trajectories, for example, that pass near the 
trajectories of the flat model along the paths Kl+S2F or 
K2+S,F. It is difficult to estimate quantitatively the relative 
number of solutions possessing the required inflationary 
stage, but it can be seen from our discussion that his number 
is fairly large. 

Besides the solutions considered, there is a set of trajec- 
tories along which it is possible to pass directly (avoiding the 
region near the separatrices S,F and S2F) from the initial 
singularity K to the collapse K ', this being done by following 
a path either through one expansion maximum or through a 
finite number of oscillations of the scale factor between regu- 
lar minima and maxima. 

The presence of a closed chain of trajectories lying on 
the boundary of the phase space of the closed model (for 
example, SIFS ;S2FS ;S,) indicates the possible existence of 
periodic solutions, which are represented by closed trajec- 
tories near this chain. The realization of such solutions re- 
quires, of course, a very special choice of the initial data, 
since on the section FS;, moving, for example, in the direc- 
tion of the saddle point S; ,  the trajectory must pass for a 
long time along the unstable solution FS 4.  Solutions of such 
kind were discussed earlier in Ref. 12. 

We must point out the existence of solutions that are t- 
symmetric with respect to the moments of the regular maxi- 
ma or minima of a ( t ) .  One can show that these trajectories 
intersect the plane z = 0 at points of the y or the x axis, 
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tion of particles, growth of entropy, etc., will undoubtedly 
reduce (most probably to zero) the already small probabil- 
ity of realization of such solutions. 

FIG. 6. 

respectively. Also possible is the existence of periodic solu- 
tions t-symmetric both with respect to the moments at which 
a,,, is attained as well as the moments corresponding to 
a,, (Fig. 6 ) .  The possible existence of such solutions was 
noted in Ref. 13, and the question of the existence of infinite- 
ly oscillating nonperiodic solutions is discussed in Ref. 14. 
As noted in Ref. 13, the periodic solutions form an infinite 
discrete set. Under such conditions, it is possible to have 
trajectories one of whose ends begins or terminates at the 
singularities K and K '  while the other winds around and 
closer and closer to one of the periodic solutions. Also not 
impossible is the existence of trajectories containing a finite 
number of revolutions around the periodic solutions, pass- 
ing successively from one of them to another. The existence 
in a dynamical system of classes of trajectories with the prop- 
erties described above usually leads to stochastization of the 
regime of its behavior. 

We note that although the considered system of equa- 
tions admits an infinite number of solutions corresponding 
to an "eternally oscillating universe" these solutions cannot 
serve as the basis for any realistic model of the universe with- 
out singularities. First, even in the framework of the ideal- 
ized system we have considered these solutions require spe- 
cial specification of the initial data and in this sense are 
degenerate. Second, allowance for physical mechanisms 
such as decay of the oscillations of the field p, growth of 
inhomogeneities in the contraction stage, quantum produc- 

"In the paper, we use a system of units in which the velocity of light, 
Planck's constant, and Boltzmann's constant are equal to unity. Latin 
indices take the values 0, 1, 2, 3, Greek the values 1,2, 3. The interval is 
written in the form - ds2 = g,, dx'dxk , where g ,  has the signature 
( - + + + ). For time, we use the notation xn = t. Differentiation 
with respect to t is denoted by a dot. 

"See also the pioneering studies of Refs. 7 and 8. 
3'There is already a fairly extensive literature devoted to questions of the 
quantum creation of the universe (see Ref. 9 and the references given 
there). 

4'For the restrictions on the parameters of inflationary models, see, for 
example, Ref. 10 and the recent Ref. 11. In the case of quasi-de Sitter 
models, which are ones we consider, these restrictions apply to the final 
stages of the inflation. 
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