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A new statistical theory of condensed matter is proposed. It is based on the assumption that the 
matter has a local crystalline order. The structure of an element of the matter is determined by the 
correspondence between the atoms and the sites of a regular "tangent" lattice. The concept of a 
dislocation is generalized to the case of a varying orientation of the tangent lattice. The probable 
configurations of the system, which generally do not have long-range order, are described in 
terms of strain, rotation, and dislocation-density fields. The Hamiltonian of the system is found as 
a functional of these fields in the approximation of small elastic stresses and small defect concen- 
trations. The relations among the fields which parametrize the physical configuration (a  compa- 
tibility condition) are determined. A method is proposed for summing over the distribution of 
dislocations in the Gibbs ensemble by transforming to an integration over the configurations of 
auxiliary fields, i.e., disorder parameters. The phase states of the system and phase transitions 
between these states are found. 

1. INTRODUCTION 

In the various states of condensed matter--crystalline, 
amorphous solid, and liquid (melt)-the energy of a volume 
element of the system is a strong function of the relative 
arrangement of the atoms. At a given density, the difference 
between the energies of different local configurations of 
atoms is large in comparison with the characteristic thermal 
energy; i.e., the relative positions of the atoms are correlated 
in a small element of the system. In condensed matter, only 
certain configurations of particles occur with an appreciable 
probability, implying that a definite local structure exists. In 
a crystal at a sufficiently low temperature the relative posi- 
tions of atoms are determined to within small fluctuations by 
the elementary translation vectors of the ideal lattice. The 
local structure satisfies the conditions of the Fedorov 
theorem.' At higher temperatures, where the displacement 
amplitudes of atoms from their local-equilibrium positions 
become significant, the concept of local structure must be 
defined. The actual question is whether we can treat the in- 
stantaneous arrangements of atoms in an element of the con- 
densed matter as a result of displacements from certain ideal 
positions. 

Ideas regarding local ordering of condensed matter, not 
only in the crystalline state but also in the amorphous solid 
and the liquid state, are not new. They are discussed by Ub- 
belohde2 and Ziman.3 Various suggestions have been offered 
regarding the nature of the ordering. It has been postulat- 
ed4-6 that in phases other than crystalline phases the atoms 
group together in arbitrary clusters, which cannot be treated 
as part of a regular lattice. It has been ~ugges ted~-~  that the 
local structure of liquids and gases is not a Fedorov struc- 
ture, i.e., that the relative positions of the particles corre- 
spond to some regular packing in a space with a constant 
curvature. If these structures are to be embedded in a plane 
space, there would have to be a rather high density of topo- 
logical structural defects. Condensed systems (in particular, 
2 0  systems) have been described in several paperslo-l4 un- 

der the assumption of a local crystalline order. Mitus' and 
one of the present a ~ t h o r s ' ~ , ' ~  have offered a description of 
the melting of a crystal to form a liquid with a local Fedorov 
order on the basis of a simple phenomenological model. 

The existence of states with a local Fedorov structure 
has been solidly established for 2 0  condensed  system^.".'^ 
In the liquid phase an ordered cluster contains 20 to 50 
atoms.16 For 3 0  systems there is apparently still no experi- 
mental evidence which directly demonstrates the existence 
of a local order in an amorphous solid or liquid state. There 
is indirect evidence16,17 for a local crystalline order in melts 
of simple materials; the number of atoms whose relative po- 
sitions are correlated is of order lo2. In amorphous phases of 
substances with nonbinary interactions (directed bonds) 
the structure may be more complicated. Near the melting 
point, we recall, the amplitude of the probable displacements 
of atoms from their equilibrium positions is approximately a 
quarter of the interatomic distance. At such average thermal 
displacements, the positions of the atoms in a small element 
of the system may be regarded as fluctuations of an ideal 
configuration with either a Fedorov or non-Fedorov struc- 
ture. We believe that a parametrization of configurations of 
condensed matter by means of ideal local lattices is to be 
preferred to approaches which assume non-Fedorov struc- 
tures. 

We will be discussing a condensed system whose local 
structure is approximately that of a regular lattice. For defi- 
niteness we assume that the local lattice is a simple cubic 
lattice. Most of the calculations below will be independent of 
the type of local lattice, and there will be no difficulty in 
repeating the arguments for more complicated lattices. Our 
purpose in this paper is to parametrize that class of configu- 
rations of a condensed system for which there is a local crys- 
talline order and in which long-range order is generally ab- 
sent. If matter with a local crystalline order is to be isotropic 
at the macroscopic scale, the orientations of elements of the 
system which are far from each other must be independent. 
We assume that this independence is realized because of a 
finite density of Iine structural defects, i.e., dislocations. 
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Accordingly, in order to study a class of states of con- 
densed matter which is broader than the state of a crystal 
with isolated defects, we need to describe both the local or- 
der and the disorder in the system. The specification of all 
the components of the order in a solid (the local structure 
and the defect distribution) makes it possible to parametrize 
the set of configurations which are statistically probable in 
the condensed state and to reduce the problem to a study of a 
system with an effective Hamiltonian of fields describing the 
local order and disorder. In this paper we propose a solution 
for this problem. Our description is self-consistent if the dis- 
order in the system can be treated as a deviation from some 
completely definite crystalline order. This hypothesis of a 
local crystalline order of condensed matter is the basic sug- 
gestion of this paper. 

2. TANGENT LATTICE AND BURGERS VECTOR IN A MEDIUM 
WITH A FINITE DISLOCATION DENSITY 

As in the theory of real crystals, the problem of describ- 
ing a local order consists of establishing the correspondence 
between atoms, which we treat as points, and the sites of an 
ideal lattice. Following this procedure, we can determine the 
local structure and its defects. As will be shown below, the 
concept of a dislocation in a locally ordered medium with a 
finite defect density is not the same as the well-known con- 
cept'* of an isolated dislocation in a crystal. The most impor- 
tant distinction is that the Burgers vector does not remain 
constant along the dislocation; it undergoes a rotation deter- 
mined in a self-consistent way by the entire set of defects. 

We consider a configuration of condensed matter with a 
defect density low enough that the characteristic distance 
between dislocations is large in comparison with the intera- 
tomic distance. The assertion that the relative arrangement 
of atoms in a given element is approximately the same as the 
arrangement of lattice sites means that there can be a mutu- 
ally one-to-one mapping of the atoms onto the lattice sites 
which conserves the neighborhood relation. The nearest 
neighbors of an atom correspond to those sites which are 
closest to its image on the lattice. Let us assume that this 
correspondence has been established in the vicinity of an 
atom with the coordinates r. We impose a lattice on the sys- 
tem, and we choose image coordinates r' and a rotation 
[g(r) ] with respect to the fixed basis so that the following 
quantity is minimized: 

Here the r, are the coordinates of the atoms which belong to 
the element under consideration, and r; are the coordinates 
of the corresponding sites. The radius of the region for which 
sum ( 1) is calculated must be smaller than the distance 
between dislocations. We call the regular lattice which mini- 
mizes ( 1 ) the "local lattice" or the lattice which is "tangent" 
to the system at point r. 

Let us construct a tangent lattice, choosing a neighbor- 
ing atom as the center of region r,. In the neighborhood of 
the point r, there are atoms which do not belong to the neigh- 
borhood of the point r. Let us find the corresponding lattice 

sites for these atoms. Constructing the quantity A(r,)  as in 
( 1) for the new element, and minimizing it, we find the tan- 
gent lattice at the point r, and the rotation g( r l ) .  Moving 
atom by atom along some path in the system, we construct 
along this path a mapping of the atoms onto the sites of the 
local lattice, and we find its rotation fieldg(r). By definition, 
the only new work which is done on the mapping in a given 
step is for those atoms for which the mapping was not deter- 

- - 

mined in the preceding step. The type of lattice and its pa- 
rameters are assumed to be identical for all elements of the 
system. If the region of local order is large, there is no diffi- 
culty in establishing the values of the lattice parameters, 
since they fluctuate only slightly from element to element. If 
the fluctuations of the parameters are significant, we can 
find average values of the parameters over the system by (for 
example) minimizing the energy of the elastic strain with 
respect to the ideal positions. The construction described in 
this manner is correct if the number N of atoms whose rela- 
tive positions are correlated is large in comparison with uni- 
ty. 

While the procedure for establishing the correspon- 
dence of the lattice is single-valued in each step, it is general- 
ly not single-valued for the overall path. As we move along a 
closed contour an ambiguity of the mapping may arise, a 
discrepancy of the corresponding contour on the lattice, 
which shows that the contour encloses a line defect. If the 
tangent lattice does not undergo a rotation, the construction 
is the same as that which is used in the theory of dislocations 
in a crystal to determine the Burgers vector of the defect. In 
this case the Burgers vector b is 

where the ni are integers, and the b: are the elementary 
translation vectors of the fixed lattice. In the case under con- 
sideration in the present paper, the orientation of the tangent 
lattice differs from point to point along the path, and for an 
arbitrary path there is no invariant concept of a discrepancy 
of the contour on the tangent lattice. If the defect density is 
low, we can ignore the rotation of the tangent lattice in a 
region small in comparison with the dislocation core. 
Shrinking the closed path to this size, we can determine the 
dislocation Burgers vector b ( r )  at the point r (within small 
corrections on the order of the defect density) : 

3 

b (r) = nibi (r ) .  

Here, as in (2),  the ni are integers. The elementary transla- 
tion vectors of the tangent lattice, b, ( r ) ,  are related to the 
corresponding vectors of the fixed lattice by 

bi (r) = g i k  (r)  bko. 

For a small relative rotation of the tangent lattice over a 
distance on the order of the interatomic distance 
a (ag- 'Vgg 1 ), the Burgers vector varies slowly along the 
defect line. Relations ( 3 )  and (4) replace the condition that 
the Burgers vector remains constant along an isolated dislo- 
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cation in a crystal, and they show that this vector rotates 
along with the tangent (local) lattice. This is an important 
point for dislocations which are long in comparison with the 
distance A, over which the relative rotation of the local lat- 
tices becomes substantial. These are the dislocations which 
disrupt the orientational order in a crystal. Gilman19 has 
attempted to extend the concept of a Burgers vector to con- 
figurations of an amorphous system. However, this quantity 
can be defined systematically only with respect to a tangent 
lattice, as we are proposing in the present paper. 

When the atomic configuration of condensed matter is 
mapped onto a tangent lattice, the distribution of point de- 
fects is also established. An atom which has no image on the 
lattice is an interstitial atom; a lattice site which has no cor- 
responding atom is a vacancy. Point defects can be regarded 
as the limit of a dislocation loop as its size is reduced. 

3. HAMlLTONlAN OF CONDENSED MATTER AND 
COMPATIBILITY CONDITION 

According to the hypothesis of local crystalline order, 
those configurations whose size A, is large in comparison 
with the interatomic distance a appear in the statistical en- 
semble of the condensed matter with a predominant weight. 
In a first approximation in the small parameter p = a/A,, 
we ignore the rotation of the tangent lattice in a description 
of the properties of an element of the system of size A <A,, 
and we use the relations from the theory of crystals. The 
energy of an element of condensed matter can be described 
as a functional of the configuration of atoms as a series in the 
magnitudes of the elastic stresses. The energy of the cores of 
dislocations-small regions near defect lines for which the 
approximation of the theory of elasticity is unsatisfactory- 
will be taken into account separately. 

In the approximation of Hooke's law,'' the elastic ener- 
gy of the material, He,, is the sum of local contributions 
which depend quadratically on the stress tensor aV. For a 
cubic lattice the energy of an element centered at the point r 
is 

3 

1 -Y 
he, (r) = (oa t+  Poaa2) +A zoaaoaa ;  P =- 

I +v 
. (5) 

a=l  

The Greek indices specify the components of the tensors 
with respect to local coordinate systems which coincide in 
direction with the anisotropy axes of the tangent lattice. We 
use the standard notation" for the elastic moduli: ,u is the 
shear modulus, v is the Poisson ratio, and A is the modulus of 
the cubic anisotropy. We find the value of He, for a given 
configuration by transforming expression (5)  to a global co- 
ordinate system (common to the entire object) and integrat- 
ing over the volume of the system: 

where T"' is the completelt symmetric tensor 
3 

The matrix U" ( r ) ,  which represents the rotation operator 

g ( r ) ,  sends the local coordinate axes into the basis vectors of 
the global coordinate system. Writing the function He, in 
continuum form implies a smoothing of the fields over scale 
lengths on the order of the interatomic distance. The func- 
tional (6)  is a generalization of the familiar expression from 
the theory of elasticity to the case in which the directions of 
the local-anisotropy axes vary. It is convenient to identify 
the irreducible part of tensor (7)  : 

~ : , I ~ l = ~ t ~ k l - l / ~  ( 6 t i ~ k 1 + 6 i h ~ j i + ~ i i 6 l h ) ,  (8) 

The parameters of functional (6)  are then redefined: 

At this point we drop the tilde. Tensor (8) may be thought of 
as a parameter of the orientational 

Expression (6)  incorporates the elastic energy of the 
material due to both the compatible and the incompatible 
strains of the lattice. We single out corresponding compo- 
nents of He,, for which we introduce a vector potential pi 
and a tensor potential Au of the stress field: 

This representation of the field uu is single-valued if the 
gauge of the potential Au is fixed. We specify this gauge by 
means of the condition 

diAij=O. (11) 

For physical configurations the stress tensor is symmetric 
with respect to an interchange of its indices. We meet this 
requirement by imposing a relationship on the components 
of the field A,. : 

The energy (6)  of the elastic deformation of the material, 
written in terms of the potentials, transforms to the sum of 
the following terms: 

Functional ( 13) is the energy of the compatible elastic 
strain of the substance. The field cp ( r )  obviously describes 
the displacements of atoms with respect to the positions 
which correspond to the minimum energy for the given dis- 
tribution of dislocations and which are phonon degrees of 
freedom of the system. Functional ( 14) is the energy of the 
elastic strain caused by the dislocation distribution. The last 
two terms in ( 14) satisfy conditions ( 11 ) and ( 12) in the 
limit a , p 4  for configurations with a finite energy. Expres- 
sion (14) agrees with the expressionZo for the energy of a 
system of dislocations in an elastically isotropic solid, 
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if we require 

where the operator M is the kernel of quadratic form ( 14). 
The field aU (r)  is the dislocation density tensor: 

where b is the Burgers vector of the dislocation. The vector 
field ~ ( r )  is determined by integrating the 6-function along 
the dislocation loop. The summation in ( 18) is over all the 
dislocation configurations. The symbol D ( r )  in (16) repre- 
sents the operator which is the inverse of the kernel of qua- 
dratic form ( 14). In the limit a ,  /? = 0, the Fourier trans- 
form of this operator is 

In the first approximation in the parameterp, Eqs. ( 14) 
and (17) extend the relations of the theory of crystals to the 
class of configurations with a local crystalline order. The 
primary distinction is that the Burgers vectors are not as- 
sumed to be constant in the expression ( 18) for the disloca- 
tion density tensor. The term ( 15) describes the explicit in- 
teraction of the phonon, dislocation, and orientational 
degrees of freedom of the system. For most substances this 
term of the Hamiltonian can be treated as a perturbation. 

The Hamiltonian H, of the system contains, in addition 
to He,, the energy Hc of the dislocation core. If the disloca- 
tion density is not too high, the expression for Hc is the same 
as that in the theory of crystals. We assign an energy E to a 
unit length of the defect core; in the simplest approximation, 
this energy depends only on the modulus of the dislocation 
Burgers vector. The energy of the defect core is 

The integral is over the dislocation loop; n is a unit vector 
tangent to the dislocation at each point of the dislocation. 
We can now write 

The sum of expressions ( 13)-( 15 and (201, along with 
( 17), gives us the energy of an arbitrary configuration of an 
elastically strained condensed substance with a dislocation 
network. 

The description of the configurations of a condensed 
substance by elastic-stress and dislocation-density fields re- 
quires some explanation. According to the Lindemann crite- 
rion, and under the assumption of a Gaussian probability 
distribution for the displacements of the atoms, we find that 
the probability for the displacement of an atom by more than 
half an interatomic distance is a few percent. Actually, large 
displacements of atoms result from collective motions dur- 

ing the excitation of the softest modes of the system. Fluctu- 
ations along these generalized coordinates lead to displace- 
ments comparable to the interatomic distance, and an 
ambiguity arises in the representation of the configuration as 
a set of defects and some elastic strain. We assume that a 
relative displacement is inelastic if it does not exceed half an 
interatomic distance. A larger displacement is regarded as a 
defect and described by a dislocation loop. In this manner, 
the interatomic interaction is extrapolated in accordance 
with a behavior which is regular in the limits of small and 
large displacements. In this description, even in the crystal- 
line phase near the melting temperature, a few percent of the 
atoms belong to virtual defects with a formation energy com- 
parable to the temperature. 

Specifying an effective Hamiltonian does not exhaust 
the description of a condensed system. The fields which par- 
ametrize the configurations of the substance satisfy a local 
relation, the compatibility condition. For an element of the 
system of size A <A, this condition is the same, to first order 
in the parameterp, as the familiar expression from the theory 
of crystals.'l One way to write this condition in the local 
coordinate system is 

Here the field uaB (r)  is the strain field, which can be written 
in terms of the stress tensor in accordance with Hooke's law; 
and ma (r)  is the field of infinitesimal rotations, which is 
related to the finite-rotation matrix by the familiar expres- 
sion' 

uij=(exp [ - ~ h p k ] ) i ~ .  (22) 

The matrices Tk (k = 1,2, 3) in (22) are the generators of 
the rotation group of the 3 0  Euclidean space, written in a 
vector representation. The field aaB (r)  is the dislocation 
density tensor, determined by ( 18 ) . 

For a small relative rotation, the quantity dBma can 
easily be expressed in terms of matrix (22); then relation 
(21 ) can be transformed to a basis which is common to the 
entire object. Making use of the invariance of the tangent 
lattice under transformations of the cubic group, we find 

Expression (23) generalizes the compatibility condition to 
the case in which the axes of the local cubic anisotropy do 
not have a constant orientation, and it holds to within small 
corrections on the order of the parameter p. According to 
(23) ,  a rotation of the tangent lattice is determined by the 
dislocation distribution and the strain of the substance. In 
turn, the rotation field determines the rotation of the dislo- 
cation Burgers vectors [see ( 4 )  ] and thus the local value of 
the dislocation density tensor. To specify the configurations 
of the system we need to specify the dislocation lines and the 
magnitudes of the Burgers vectors of the dislocations in the 
tangent coordinate system. The Burgers vectors in the global 
system are determined in a self-consistent manner along 
with the rotation field. 
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4. STATISTICAL THEORY OF CONDENSED MATTER 

Configurations of atoms which satisfy the hypothesis of 
local crystalline order form a class of packings which maxi- 
mize the density for a given local structure, generally in the 
absence of a long-range order. These configurations are 
characterized by the correlation lengths for the parameters 
of the translational and orientational order. The ideal pack- 
ing is a limiting packing of this class, which corresponds to a 
minimum randomness. Another limiting case is a very dense 
gas, for which these correlation lengths are comparable to 
the interatomic distance. The properties of configurations 
with a local crystalline order correspond to the slightly inde- 
finite concept of a "random dense packing" which can be 
found in the literature. This concept thus acquires a definite 
meaning. We believe that in a melt there is an overwhelming 
probability for configurations of this class; the size of the 
region of local order is large enough that we can restrict the 
discussion to the first approximation of the theory in the 
parameterp = a/A,. In this case, the statistical description 
of the condensed matter reduces to a study of the properties 
of a Gibbs ensemble with the Hamiltonian of the stress, rota- 
tion, and dislocation-density fields derived in the preceding 
section. 

Certain properties of this model are obvious. At low 
temperatures ( T ( E )  the dislocation density is approximate- 
ly zero, while the parameter of the orientational order aver- 
aged over the system, (T"') ,  is nonzero. This anisotropic 
state is a crystal. At sufficiently low temperatures a mini- 
mum of the free energy should correspond to globally aniso- 
tropic configurations with a large, finite dislocation density. 
Differences in the symmetry of states imply the occurrence 
of a phase transition. The idea that the disruption of the 
long-range crystalline order in a substance is associated with 
the appearance of a dislocation network is well known.16 
Kleinert22.23 and ObukhovZ4 have recently described the 
melting of an elastically isotropic medium as a phase transi- 
tion in a system of dislocation (or disclination) loops. They 
did not take up the orientational order in the substance; that 
approach is justified only for the crystalline state at tempera- 
tures which are not too high. Near the melting point and, in 
particular, in amorphous and liquid states, the interaction of 
the local structure and defects determines the physical prop- 
erties of the system. 

The probability density of configurations of condensed 
matter in thermal equilibrium at the temperature T is 

exp ( - F) ti (A:;) (r) ) 6 (A::) (r) 1, (24) 

a:;) (r) =Mjni'Azn-aij, (25) 

where 

Xp=i/2eiklT""n~ (r) dj~ l 'nnp  (r) . (26) 

The operator M F, the kernel of quadratic form ( 14), is giv- 
en in the Appendix. The functional &functions in (24) en- 
sure that conditions ( 17) and (23) are satisfied at all points 
of the system. In the first approximation in the modulus of 

the cubic anisotropy, the strain tensor is 

We find the partition function of the condensed matter by 
summing probability density (24) over all possible spatial 
configurations of dislocations and the distribution of their 
Burgers vectors and by integrating over the configurations 
of the stress fields (i.e., the potentials) and the rotation 
fields: 

The normalization factor N is chosen for convenience. 
The partition function (28) is a complicated mathemat- 

ical expression whose detailed analysis goes beyond the 
scope of the present paper. Our purpose here is to determine 
the possible phase states of the system and the nature of the 
transitions between them. For this pu.rpose we seek the effec- 
tive Hamiltonian of the orientational-order parameter, inte- 
grating over the other degrees of freedom. The calculations 
below are set forth in more detail in Ref. 25. 

We write the S-functions as the functional integrals 

and in the partition function (28) we single out the expres- 
sion Z,  , determined by the distribution of dislocations: 

where 

We use ( 18) and (20), and we write sum (30) as 

The sum (32), whose terms are found by integrating the 
functions over spatial loops, can be written as a functional 
integral over configurations of the field variables. The con- 
cept of such a transformation is well known. This approach 
was used in Ref. 24 to sum over configurations of disloca- 
tions. However, the particular way in which the functional 
integral was written there cannot be used here (at any rate, 
before we take the continuum limit), since the quadratic 
form in the argument of the exponential function is not posi- 
tive definite. It is written in the correct form below. 

We introduce an auxiliary cubic lattice whose sites are 
separated by a distance which is the same as the average 
interatomic distance in the system. The dislocation loop is 
represented on the lattice by a broken line, formed by its 
links. At each site n we find a triad of scalar complex fields 
$''' (r, ) ( Y  = 1, 2, 3). It can be shownz5 that the integral 

181 Sov. Phys. JETP 62 (I) ,  July 1985 A. Z. Patashinskil and B. I. Shumilo 181 



where 
~ . + d  

G(') (r., rn+d) =I e r p  [i J Q i j ( r l )  a:'' (r') dril 1, 
J=c exp ( - & I T ) ,  (34) - C X  

c = 1 e r p  (-r-gr2) dr  [ 1 r eap (-r-gx2) d i  
0 0 

agrees with sum (32) if we retain in it only those configura- 
tions which have no intersections of dislocations. The inte- 
gral in (33) is normalized by the conditionz, = 1 for J = 0. 
In each of the coefficients of the exponential functions we 
introduce a summation over the neighbors d of the given site 
and over the type of field, Y. The vectors b"' ( Y  = 1, 2, 3) 
constitute a triad of vectors of elementary translations of the 
local lattice. In the sum we take into account dislocations 
with minimum Burgers vectors b = f b"' . The substitu- 
tion 

cp (r,,) =x $("I (r,,) $'(') (r,,+d) G( ' )  (r., rn+d) (35) 
v,d 

in integral (33) makes it possible to carry out the summation 
over a broader class of dislocation configurations. It is not 
difficult to see that in a generalization of this type the dislo- 
cations with minimum Burgers vectors enter the sum with 
their previous weight; furthermore, intersections of these 
vectors are allowed, as are dislocations with other than the 
minimum Burgers vectors. The interaction of defects with 
the field cPv (r) is taken into account correctly for all dislo- 
cations, and the energy of their intersection can be taken into 
account by adjusting the parameter g, which is not fixed in 
integral (33). If g is nonzero and positive, the contribution 
of dislocations with large Burgers vectors is suppressed. Re- 
fining the function G"' (r, r') and the expressions of the 
argument of the exponential function in (33), we find repre- 
sentations which correspond progressively more accurately 
to sum (32). We restrict the discussion to the expression 
found after the replacement of (35). At nonzero tempera- 
tures the partition function is dominated by the dislocations 
with minimum Burgers vectors which are taken into account 
in it. The sum in (32) can thus be written as the functional 
integral 

Z = = N ,  5 11 D$'~)D$ ' (%)  e r p  (-Hr ($(v) ,  Q,,)) , (36) 

The fields $"' should be regarded as smoothed over a dis- 
tance on the order of the interatomic distance, since a precise 
localization of the core of dislocations is meaningless. These 
fields, which describes the defect distribution in the system, 
will be called "disorder parameters." 

We write the partition function (28) as 

Here the functional F{Ui,.) is an integral over configurations 
of the fields pi, A d ,  77' and $"'. The integrand in F{Ui,.) is 
quite complicated; it can be reconstructed by means of (28)- 
(32), (34), (36), and (37). It can be seenz5 that if the aniso- 
tropic part of (15) is ignored in the elastic-strain energy 
some of these integrals turn out to be Gaussian and can be 
evaluated easily. As a result we find 

h 

The operators 0, are given in the Appendix. At a tempera- 
ture T the amplitude of the fluctuations of the field @ii of 
scale size A $u/T is small in comparison with unity, and the 
functional H, can be expanded in a series in large-scale har- 
monics. At a sufficiently high temperature, this expansion is 
valid for an arbitrary configuration of the field Qi,.. To with- 
in terms quadratic in the field CPil we find 

V 

where we are using the operator 

and n is the number of nearest neighbors in the local lattice. 
We consider a model system which differs from the 

original system in that functional (37) is replaced by its ex- 
pansion in (40). This model correctly describes condensed 
matter in the high-temperature limit. Assuming that the 
fluctuations of the fields $'") are weak (i.e., that the param- 
eters Jand 1 - nJare not too small), we can identify in (40) 
a term which is quadratic in the field Qi,. : 

If dislocations with different minimum Burgers vectors are 
equally probable in the phase state under consideration, the 
self-consistent average (1$'") 1') does not depend on the in- 
dex Y. Carrying out the summation in (41), we find 
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Using correction (42), we can carry out the integration in 
(39) over the configurations of the field QO in the Gaussian 
approximation. As a result we find the following effective 
Hamiltonian for the field of the orientational-order param- 
eter: 

The field XO is determined by (26). The operator TF is given 
in the Appendix. 

Hamiltonian (43) simplifies considerably if we restrict 
it to the first-order terms in the spatial derivatives of the 
rotation field. For a sufficiently small element of the system 
we can use the approximation 

It is not difficult to see that in the expression for the field 
energy density T"' all the terms containing the transverse 
operators S,, vanish. In this approximation the kernel of the 
effective Hamiltonian (43) can be written 

We find the spherically symmetric part of the operator (44), 
replacing the operators,, by its average over angles. We find 

The function J ( r )  is the Fourier transform of the function 

The exchange integral J ( r )  falls off exponentially at distance 
A > ( ~ / 4 , u r n ~ ) " ~ ,  so that for slowly varying fields T"' the 
interaction can be assumed to be a local. To simplify the 
model further we use a lattice description, replacing the deri- 
vative of the field T "' by a finite difference: 

1 
a k T i j k l  (r) -+ - [T i jk f  (r+dh) - T " j k '  (r) 1. 

Idl 

At the accuracy of these calculations we find 

H{T"") ---IS TiJhl (r+d) Tij" (r) + const, (47) 
d 

where 

The absolutely symmetric tensor T*' in (47) may be re- 
garded as irreducible. Transforming from reducible to irre- 
ducible tensors changes an unimportant constant. 

We have reduced the effective Hamiltonian of the orien- 
tational-order parameter to the very simple form in (47). 
The statistical properties of a system with this Hamiltonian 
were studied in Refs. 13 and 14, where it was shown that the 
system undergoes a first-order phase transition. The average 
value of the orientational-order parameter, normalized (to 

unity) in the limit T 4 ,  changes abruptly at the transition 
from a value of approximately 1/2 to 0. This transition is 
naturally interpreted as melting. The low-temperature an- 
isotropic phase of the model system corresponds to the crys- 
talline state, and the high-temperature, globally isotropic 
phase is a melt. 

If we assume that the Burgers vectors have constant 
directions in the Hamiltonian of the disorder fields of model 
system (40), then this Hamiltonian is of the same form as 
the expression derived by O b ~ k h o v , ~ ~  who studied the statis- 
tics of dislocations in a structureless medium. In the approx- 
imation of an effective field he showed that the system of 
fields $"' (b"' = const) undergoes a first-order phase 
transition which is of approximately second order at the 
temperature determined by the condition nJ=. 1. At the 
phase transition, a condensate of the fields $'"' forms; this 
event was interpreted by O b ~ k h o v ~ ~  as a transition to a liq- 
uid phase accompanied by the formation of a network of 
dislocations of infinite length. Melting, i.e., the disruption of 
the long-rangeorientational order, cannot occur without the 
formation of a finite dislocation density in the system. There 
is, however, the possibility of states with a condensate of 
fields $"' and with a slow decrease in the correlation of the 
orientational-order field. A similar phase (hexatic) is ob- 
served in numerical simulations of 2 0  condensed systems.26 
A phase transition associated with a change in dislocation 
structure is obviously not a melting of the substance, in gen- 
eral. In certain substances the formation of a network of 
defects (i.e., the condensation of disorder fields) may occur 
at temperatures below the melting point. Such substances 
have an anisotropic intermediate phase which is not crystal- 
line. The phase transition discussed in Ref. 24 corresponds 
in our theory to a transition between a crystal and an inter- 
mediate phase. 

This analysis shows that the partition function in (28) 
describes the known phase states of condensed matter. We 
can classify them on the basis of the existence of nonzero 
average values (more precisely, Bogolyubov quasi-average 
values) of the parameter of the orientational order, TOk', 
and of the fields $"'. 

At low temperatures, in the crystalline phase, we have 

At sufficiently high temperatures, in the molten phase, we 
have 

The phase transition between these two phases is of first or- 
der. In certain substances there may be an intermediate 
phase (at least a metastable one): 

A state with (Tuk')  = 0, ( I$(")  I )  = 0 is obviously impossi- 
ble. 

We are indebted to participants of seminars at the Insti- 
tutes of the Siberian Branch of the Academy of Sciences of 
the USSR, Odessa University, the University of Leipzig, and 
the MEKO Seminar (GDR, 1984) for useful discussions of 
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APPENDIX 

The operators 0 which appear in this paper can be 
written in general as follows in the momentum representa- 
tion: 

where the index s is an integer, and 

We adopt the notation 

Here is a list, in this notation, of the operators, the nonvan- 
ishing coefficients, and the values of the index s: 

(36-2a)  ( a-b d ,  

d 
(a -b )  ( a + b  +-) 2 

c,=cs = 
2d bZ 

, c7 = 4 (a+b)  (a+b+Zc) ' 
a-b (a+b)' 

c,o = 7 + - s=-I. 
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