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An approach developed previously for spin 1/2 is generalized to an arbitrary spin. An antiferro- 
magnet is considered in a magnetic field Hclose to the critical strength Hc at which the sublattice 
structure disappears at absolute zero. In this region the antiferromagnet may be thought of as a 
Bose gas, and the antiferromagnetic ordering would correspond to a state with a Bose condensate. 
The ground-state energy of the system is derived and compared with the energy found in the self- 
consistent field approximation. The temperature of the antiferromagnetic transition is described 
as a function of the magnetic field by T, - (Hc - H ) ~ ' ~ .  

1. INTRODUCTION 

In an antiferromagnet in a strong magnetic field, a so- 
called collapse of sublattices occurs; i.e., the sublattice struc- 
ture disappears (all the spins become parallel at absolute 
zero). 

A new approach in the theory of antiferromagnets was 
proposed in Ref. 1 on the basis of an analogy with a Bose gas. 
This analogy holds near the sublattice collapse point at a 
sufficiently low temperature. The small parameter of the 
problem (along with the temperature) is the ratio 

( H c - H )  i ' H c ~ 1 ,  (1)  
where His  the magnetic field, and Hc is the critical field (the 
point of this transition at absolute zero). An antiferromag- 
netic state occurs at H < hc , and a state with a Bose conden- 
sate corresponds to antiferromagnetic order in this ap- 
proach. 

This approach is quite different from the approxima- 
tion of a self-consistent field (the approximation of classical 
spins), which serves well in the large-spin limit; away from 
this limit, its validity is dubious. Indeed, a comparison of the 
results' for spin 1/2 shows that the self-consistent field ap- 
proximation breaks down near H,. 

The spin-1/2 case was studied in Ref. 1. A question 
which naturally arises is whether this approach can be gener- 
alized to the case of an arbitrary spin (the Hamiltonian used 
in Ref. 1 cannot be generalized directly). We attempt to re- 
solve this question in the present paper. 

Our primary task is to construct a Bose Hamiltonian 
which is equivalent to the original spin Hamiltonian near Hc 
(Section 2). The problem can then be solved by analogy with 
the problem of a slightly nonideal Bose gas2*3 (Section 3). 
This part of the study has much in common with the spin-1/ 
2 case,' so that the corresponding parts of this study will be 
either summarized or omitted altogether. 

2. EQUIVALENT BOSE HAMlLTONlAN 

We begin with the Heisenberg spin Hamiltonian 

where S, is the spin operator of site n, and H i s  the magnetic 
field expressed in energy units. 

We first discuss the concept of a transition to a Bose 
Hamiltonian, which is equivalent to (2)  near H,. In a field 
H >  Hc all the spins are parallel (at zero temperature) and 
have a maximum (in modulus) z projection - S. In a field 
H < Hc , if H is quite close to H, , there are a few spins with 
other projections: a - S, a = 1, 2, ..., 2s. The point which is 
important for our purposes is that all these excitations (of 
the initial state with parallel spins) can be treated in a com- 
mon way by introducing Bose particles. Specifically, with 
the projection 1 - S we associate a single Bose particle at the 
given site; with the 2 - S projection we associate two Bose 
particles; etc.-precisely as in Holstein-Primakoff transfor- 
mations. We then make use of the fact that there are only a 
few such particles, since H is close to Hc . In this case we are 
dealing with a gas, so that we can ignore three-body colli- 
sions, including the possibility that three or more particles 
will meet at a given site. It is thus sufficient to consider the 
1 - Sand 2 - S (in addition to the - S) projections at each 
site. The corresponding Bose Hamiltonian can then be writ- 
ten on the basis of the condition that all the transitions which 
are incorporated in the problem (all those which are impor- 
tant) are described by this Hamiltonian in precisely the same 
ways as they are described by the original Hamiltonian, (2).  

We turn now to the construction of the equivalent Bose 
Hamiltonian. We first rewrite (2)  in the more convenient 
form 

We recall which matrix elements of the spin operators are 
nonzero: 

where M is the z projection of the spin (and the index of the 
corresponding wave function). For brevity here we are omit- 
ting the site index n. 
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According to this discussion, the expression for S, in 
terms of the Bose operators will be the same as in terms of 
Holstein-Primakoff transformations. As for S + and S -, we 
note that the corresponding expressions are written on the 
basis of the condition that the matrix elements in the class of 
functions O,1,2 (in the particle occupation numbers), i.e., in 
the class of functions - S, 1 - S, 2 - S (in spin projec- 
tions), agree with (4).  It is not difficult to see that this condi- 
tion is satisfied by the following relations: 

where P(P + ) is the annihilation (creation) operator for a 
Bose particle (each site has its own operator; the site index is 
omitted). The symbol =: means that the correspondence 
holds only for occupation numbers 0, 1, 2. Here we have 
introduced a special notation for an expression which we will 
be using frequently below. 

Relations (5) were derived without reference to the 
Holstein-Primakoff transformations, but they could also be 
derived directly from these transformations. Briefly, here is 
the procedure: we consider the Holstein-Primakoff expres- 
sion for S +, for example: 

Here the radical is understood as a power series in p + P/ 
2s. We write this series, and using the commutation rela- 
tions we put the operators 0 + and p in each of the terms of 
the series in the normal order (with creation operators to the 
left of annihilation operators). Collecting the terms of first 
and third order in the Bose operators in the resulting expres- 
sion for S +, we find relation (5).  

We note that ( 5 ) holds for an arbitrary spin, including 
spin 1/2. In this case, the infinite repulsion at a site' can be 
taken into account in a different way, by means of the re- 
placement p +--$ + ( 1 - p +P) (a similar approach has 
been used for the Hubbard model with strong correlation4); 
we then have a complete correspondence with (5) .  

We now substitute ( 5 ) into Hamiltonian (3 ) and find a 
Hamiltonian which contains terms with even powers of the 
Bose operators up to the sixth. The latter terms (of sixth 
degree) describe three-body collisions, which are unimpor- 
tant in a gas (furthermore, to take them into account would 
go beyond the accuracy of our treatment), so we must dis- 
card them. Finally, we find the following Bose Hamiltonian: 

%=8, ( H )  +%,+%,, 

where N is the number of sites in the lattice. 
Transforming to quasimomenta in (6)  by means of the 

standard formulas 

(R, is the radius vector of site n ), and omitting the constant 
g ,(H),  which is not important for the discussion below, we 
find 

x {E ( P I - P I )  +2S(K-1)  [ e  (pi) +e ( P A  I ) .  (7)  

In the second sum here, the ordinary quasimomentum con- 
servation law is understood to hold, and we are using the 
notation 

( P I  =S I,., erp [ i p  (R.1-R,) 1, 
n' 

@ (PI =[&(p)-&oI+(H-Hc),  (8 
e, = mi* e ( p ) ,  H . = S ~  ~., ,-e~. 

Here w (p)  is the energy of an isolated magnon in a state with 
parallel spins. If H > Hc , its energy is positive, and the state 
with parallel spins is stable. If H < Hc , the energy is negative 
near the minimum, the state with parallel spins becomes un- 
stable, and magnons accumulate in one of the states (a Bose 
condensate forms). In this case the number of particles for a 
given parameter ( 1 ) is determined by the interaction [the 
second term in ( 7)  1. 

Our basic goal has thus been reached. We have derived a 
Bose Hamiltonian, (6),  (7),  which is equivalent to the origi- 
nal spin Hamiltonian, (2),  near Hc . This equivalence fol- 
lows from the method by which the Bose Hamiltonian is 
constructed. It can also be checked directly by comparing 
the matrix elements of operators (6) and (3)  between the 
states mentioned in connection with the derivation of (5).  

To conclude this section we note the following. The 
Bose Hamiltonian written in Ref. 1 is equivalent to the origi- 
nal Heisenberg Hamiltonian for spin 1/2 for an arbitrary 
field H. However, that Hamiltonian can be used (i.e., it 
solves the problem) only near Hc , where the gas approxima- 
tion can be used. In the present paper we have derived a 
Hamiltonian which is equivalent to the initial spin Hamil- 
tonian for an arbitrary spin. Although this is true only near 
Hc , we require nothing more, because the problem is solved 
only near Hc . 

RESULTS 

In this section we use the equivalent Hamiltonian (7 )  to 
calculate the ground-state energy, and we compare it with 
the energy derived in the self-consistent field approximation. 
We consider the simplest case of a single magnon minimum 
[a single minimum of the function ~ ( p ) ] .  This minimum 
necessarily lies at the boundary of the Brillouin zone, at equi- 
valent points which differ from each other by a reciprocal- 

174 Sov. Phys. JETP 62 (I), July 1985 E .  G. Batyev 174 



lattice vector. It is thus sufficient to introduce the coordinate 
p, of one of these points: 

E ( p a )  = ~ , = r n i n  E ( p )  

For the specific calculations we use a simple cubic lattice and 
a body-centered cubic lattice with a nearest-neighbor inter- 
action. For the simple cubic lattice, for example, we have 

E ( p )  = ~ S ~ ( C O S  p,+cOS p,f  cos p,)  , 
19)  

where I > 0 is the interaction of nearest neighbors, whose 
separation is assigned a unit value. We have also given here 
the effective mass m at the minimum. 

The ground state of the system described by Hamilton- 
ian (7) is a state with a Bose-Einstein condensate (H < H, ). 
The interaction between particles is not weak (it is weak 
only if S) 1 ), so that we must first find the complete ampli- 
tude for the scattering of two free particles (ignoring the 
effects of other particles) at a minimum of the zone. We can 
then use the standard expressions for the energy and other 
characteristics of the ~ystem."~ 

The vertex part T, which describes the scattering of two 
particles, can be found by a diagram technique. In accor- 
dance with the discussion above, we calaculate it in the lad- 
der approximation, using zeroth-order (interaction-ignor- 
ing) one-particle Green's functions (in this case there is 
nothing other than the ladder); i.e., we find the following 
diagram equation for it: 

The sum frequency in r (p)  is chosen in accordance with the 
discussion above, i.e., it is set equal to 2w (p,) . 

After an elementary integration over the intermediate 
frequency, we find that Eq. ( 10) becomes 

This equation can be simplified slightly by making use of the 
property 

Summing ( 11 ) over p, we find the relation 

Using this relation, we can replace ( 11 ) by 

It is thus necessary to solve Eq. ( 14) under condition ( 13). 
It is not difficult to see that in the spin-1/2 case we have 

for the vertex part r the same equations as in any other 
method of describing the interaction used in Ref. 1 [see Eqs. 
(15) and (16) ofRef. 11. 

For simple cubic and bcc lattices we can seek a solution 
in the form 

Here is the expression found for the unknown quantity 
r(p,),  which is proportional to the amplitude for the scat- 
tering of two particles at a zone minimum: 

r ( p , )  = ~ / ~ = v I ~ ( Y I T + I - 1 1 s ) .  ( 1 5 )  

Here we have used E,  = - SYI, where Y is the number of 
nearest neighbors. The constant T is defined by 

T=( ( E - E ~ ) - ' )  (16) 

(for a simple cubic lattice we would have T=: 1/4SI). In ( 15) 
we have introduced a special notation for the quantity r (p,) 
in which we are interested. 

Once we have found A, we can write (for example) an 
expression for the energy of the system, 8 :  

where p is the number of particles per site (p(1; this is a 
small parameter of the problem), and - ,u is the energy of 
an isolated particle at a zone minimum [see (8)  1. The condi- 
tion for a minimum of ( 17) gives us 

p=p/A, BIN=--p2/2h. (18) 

Using 8 ,  we can find the increment in the saturation mag- 
netic moment and the magnetic susceptibility. 

Our next task is to compare (18) with the expression 
found in the self-consistent field approximation (the classi- 
cal-spin approximation). In this approximation, for the cor- 
responding quantity 8' [i.e., for the total energy minus 
%',(If); see (6) 1 we easily find 

Z 1 / N = - k 2 / 2 h ' ,  h1=2vI .  (19) 

It can be seen that we have A <A '. In the case of a simple 
cubic lattice, for example, we have 

[see the comment after ( 16) 1. This result means that the 
energy of the system is lower, and the magnetic susceptibility 
larger, than predicted by the self-consistent field approxima- 
tion. 

It is not difficult to see that these results yield known 
limiting cases, primarily the spin-1/2 case, mentioned ear- 
lier; we derive the expression for the limit s -+~ below. In 
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the latter case the interaction of the Bose particles is weak, so 
we can use the Born approximation to calculate I?; i.e., we 
can make direct use of expression (7 )  in the calculation of 
8 ,  retaining in it only the condensate operatorsP,P 2 ,  and 
replacing them (as usual in the case of a weak interaction) 
by the term ( N ~ ) ' ' ' .  w e  then find (19). 

We can also write expressions for the excitation spec- 
trum at absolute zero, E (k ) ,  and for the temperature T,, of 
the antiferromagnetic transition which are found in the stan- 
dard way and are of the same form as the corresponding 
expressions for the spin-1/2 case.' Near the minimum the 
spectrum is 

E (k)  = { ( k Z / 2 m i - y ) Z - ~ Z ) 1 ! 2 ,  

and far from the minimum it agrees with E - E ~ .  The quanti- 
ty k is a quasimomentum measured from the value at the 
minimum of p,; k has the meaning of the quasimomentum of 
an excitation. The temperature of the antiferromagnetic 
transition is 

This dependence of T, on (H ,  - H) continues to hold in the 
arbitrary case of several equivalent valleys in the "seed" 
magnon spectrum w (p) . The dependence on the spin in these 
expressions enters through the interaction R and the effec- 
tive mass m. 

It is interesting to compare the expression for Tc with 
the transition temperature T: found in the self-consistent 
field approximation: 

The reason for this dependence is the activation nature of the 
spin excitations in this approximation; for this reason, there 
is a marked difference from T, . 

We conclude with a few words about the fluctuation 
region. This region is clearly small for a slightly nonideal 
Bose gas, since it is zero for an ideal Bose gas. Accordingly, 
in the (T, H )  plane the corresponding region will be a very 
narrow strip near the transition curve, for which an expres- 
sion is given above. Furthermore, there is no such region at 
all at T = 0 if we are considering a transition in the field. At 
H > H, we know the exact ground state-it is a vacuum in 
terms of magnons-while at H < H, there are magnons, but 
the gas approximation, which we have used here, becomes 
progressively better as If approaches H,. We thus expect 
nothing more than insignificant corrections to the expres- 
sion given here for Tc . 
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