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The resistance of a one-dimensional system with a two-band charge carrier spectrum is analyzed 
in the one-electron approximation. The motion of the carriers is described by an equation of the 
Dirac type with a random potential and a fluctuating gap width. Since all the electron states in a 
one-dimensional disordered system are localized, the resistance at T = 0 K increases exponential- 
ly with the lengthx of the system. The logarithm of the mean resistance and the mean logarithm of 
the resistance are calculated. They are proportional to x, but the proportionality coefficients 
behave differently as functions of the electron energy and the parameters of the random perturba- 
tions. The reciprocal of the localization length of the electron states is characterized by the 
proportionality coefficient of the mean logarithm of the resistance. Exact expressions for the 
localization length are derived in several special cases. 

1. INTRODUCTION 

Broad electron bands in one-dimmsional systems may 
occasionally be separated by a narrow forbidden band, in 
which case one must allow for the interaction between states 
in the two adjacent bands. The energy gap in the electron 
spectrum may be caused, e.g., by spin-orbit interaction of the 
electrons with the crystal lattice in narrow-gap semiconduc- 
tors. In this case the spectrum and the electron states are 
described by a system of first-order equations of the Dirac 
type.' In principle, ion lithographyZ should make it possible 
to fabricate fine wires from narrow-gap semiconductors in 
which the carriers move one-dimensionally because of the 
small effective mass. Umklapp processes in quasi-one-di- 
mensional compounds of the type TCNQ (Ref. 3) can also 
give rise to a narrow gap in an allowed band. 

The random perturbations in a system with a two-band 
spectrum can be described by a Dirac Hamiltonian 

H=a,p+A (x) oz+U(x),  p=-idldx, (1)  

where ux and u,, are the Pauli matrices, and the gap width A 
and potential energy U both fluctuate. 

The Schrodinger equation with a weak random poten- 
tial can be reduced to a two-band model similar to the one 
above by using "truncated  equation^."^ In this case an addi- 
tional term A' (x)a,, appears in the Hamiltonian ( 1 ) . It was 
shown in Ref. 5 that this term may give a small contribution 
to the carrier scattering in certain organic quasi-one-dimen- 
sional conductors with a half-filled band. The same equa- 
tions also describe the propagation of electromagnetic waves 
in one-dimensional random media. The gap in the photon 
spectrum in this case may be caused, e.g., by a perturbation 
of a periodic structure composed of alternating layers with 
different dielectric constants (such structures occur in x-ray 
mirrors6). Random variations in the thickness of dielectric 
constant of the layers can be described in terms of fluctu- 
ations in A and U. 

The Dirac equation reduces to the Schrodinger equa- 
tion in the nonrelativistic limit. Moreover, it is obvious that 
all the results derived for the model Hamiltonian ( 1 ) should 
agree in the limit A+ co with the corresponding results for 

the one-band model. Anderson et al.' have argued that for 
conductors much longer than the electron mean free path, 
the distribution for the logarithm of the resistance In p 
should be Gaussian regardless of the choice of model. The 
arguments used there have since been confirmed by an anal- 
ysis of specific models. Fluctuations in the resistance of a 
one-dimensional conductor were studied in Refs. 8 and 9, 
where several specific models were considered (the Ander- 
son model, binary alloy model, etc. ). Mel'nikovl0 and Abri- 
kosov" calculated the distribution function for the resis- 
tance and conductivity of a one-dimensional conductor by 
using the Born approximation to analyze carrier scattering 
by an isolated impurity. The results in Refs. 7-1 1 imply that 
in the weak-scattering limit, the mean free path L determines 
the growth exponent of the moments of the resistance for the 
one-dimensional model. The growth exponent for lnp is also 
determined by L. 

The density of states N ( E )  was studied in Refs. 12-14 
for a one-dimensional system with the Hamiltonian ( 1 ). 
This model has the interesting feature that N ( E )  has a Dy- 
son singularity which causes the low-temperature magnetic 
susceptibility of quasi-one-dimensional conductors to be- 
have anomalously. The spectrum and kinetic properties of 
one-dimensional conductors were studied in Refs. 15-1 7 for 
the case when the electron wave length is comparable to the 
lattice period. 

The kinetic properties of disordered systems with a two- 
band spectrum are of interest. It is known'4918 that all states 
in a one-dimensional disordered system are localized and 
have wave functions ljl-exp( - x/l+ ) which decay expon- 
entially with distance x, where I+ is the localization length. 
As a results, the static resistance at temperature T = 0 in- 
creases exponentially with the length of the system. It is im- 
portant to note that the resistance is not a self-averaging 
quantity-as x increases, the rms deviations increase faster 
than the mean value @). The growth exponent of the resis- 
tance may therefore fail to characterize the localization 
length of the electron states in certain cases which we discuss 
below. The self-averaging quantity is actually the logarithm 
of the resistance, whose mean value is proportional to the 
length of the system: (In p )  = I -'x, and I determines the 
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localization length for states on the Fermi surface. 
In this paper we use the one-electron model ( 1 ) to study 

the static resistance of a one-dimensional conductor at 
T= 0. 

2. DERIVATION OF THE EQUATIONS FOR p AND In p 

At T -- 0 the ohmic resistance is caused by electrons in 
states whose energies are close to the Fermi energy E. We 
consider a one-dimensional disordered system of length x in 
the one-electron approximation. Although the contacts also 
contribute top,  for sufficiently large xp will be determined 
primarily by carrier scattering inside the conductor. We as- 
sume for simplicity that the contact material has an electron 
spectrum of the form ( 1 ) with A = 0, U = Uo, and that the 
Fermi level lies at the center of the band: EFO = Uo. In this 
case the Landauer f ~ r m u l a ' ~  

gives the resistance (in units of e 2 / d z ) ,  where T and R are 
the transmission and reflection coefficients for states of ener- 
gy E = U,. When calculatingp it is helpful to consider bilin- 
ear combinations 

of the components of the wave function. The Dirac equation 
yields the equation 

for 2. If we expand 2 in terms of the Pauli matrices: 
R = Ro + R, a, (a = 1,2,3)  and make the change of scale 
2x+x, we get 

&=-A (2) Rz, 
A,=-[E-U(X) ]R2, 

(4)  
R,=-A (x)Ro+ [E-U(X)] Ri, 

R,=O. 
In the nonrelativistic limit we can apply a similarity trans- 
formation and reduce Eqs. (4)  to the system given in Ref. 2C 
for bilinear combinations of the wave function and its deri- 
vative. The resistance of a conductor of length x is 
p = [R,(x) - 1]/2 if the initial conditions are taken to be 
R (0)  = (1,0,0, 1).  System (4)  has the constant of motion 

R3=const=1, 
Ro2-R12-R22=~~n~t=1.  ( 5 )  
We will use Eqs. (4) below to calculate @) and its vari- 

ance. We can calculate (In p )  and the average localization 
length by using (5 )  defining the new variables 

in terms of which the equations become 

x=-A ( x )  cos rp, 
cp=U(x) -E+A (x) e t h ~  sin rp, 

A (~)=Ao+g (x) ,  Ao=(A (x) >. 
In order for localization effects to be appreciable, x must be 
large enough so thatp) 1. In this c a s e ~ ~ l n p )  1 and we can 
set cothx = 1 in the second equation in ( 7 ) :  

ip=U(x) -E+ (AoSE (x) ) sin rp. (8) 

We can interpret (8)  as the equation of motion for a nonlin- 
ear pendulum in a viscous medium for which 6 is small. Here 
U(x) - E may be regarded as a torque, while {(x) is a ran- 
dom parametric perturbation. 

We consider a system with independent Gaussian total- 
ly uncorrelated random variables U and {: 

In general, there are many cases when one cannot neglect the 
finiteness of the correlation length for U and c. However, the 
characteristic features of localization in the two-band model 
(in particular, the behavior of the localization length I for 
statesofenergy E - A )  can beanalyzed in thelimit of vanish- 
ing correlation length. 

3. MEAN VALUE AND DISPERSION OF THE RESISTANCE 

The resistance p is expressible in terms of the zeroth 
component of the vector R satisfying system (4)  : 

Since Eqs. (4) are linear and the autocorrelation functions 
of Uand { are assumed to be proportional to 6-functions, we 
can write the equations for (R ) as 

Equations (9)  form a system of linear homogeneous equa- 
tions with constant coefficients for (R,), (R,), and (R,). 
The mean resistance thus grows exponentially for large x: 
@) -exp(Ax), where the growth exponent A is the root of 

(D-A) (r+A) (D-I?-&) -E2 (D-A) -A02(I?+L) =O ( 10) 

for which Re(A) > 0 is largest. If A, = 0, this root is inde- 
pendent of E and r: R = D. For E = 0 we have 

while for E-t w 

We next calculate the variance o fp  by writing out the 
equations for bilinear combinations of the Ri . The symmet- 
ric tensor Ri R, satisfies a closed system of linear equations. 
The constants of motion (5)  imply that there are five inde- 
pendent components; we make the convenient choice 

After averaging the linear equations for Qi over Uand 6, we 
find that 
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The mean square (p2) = (Q1/6) -exp(Ax) increases 
exponentially, just as we found for (p)2. Here A is the eigen- 
value of the matrix R with the largest real part. We note that 
we always have A > U ,  i.e., the growth exponent of the 
squared variance (p2) - (p)2 is greater than the growth ex- 
ponent for (p)2. The characteristic equation for the eigen- 
values of 0 splits into a product of cubic and quadratic equa- 
tions if E = 0 or A, = 0. The solution for A, = E = 0 is 

while for E = T = 0 we have 

The higher moments of p can be calculated by the same 
method. The fact that the growth exponents increase with 
moment order indicates thatp is not a self-averaging quanti- 
ty. 

We close this section by observing that the mean and 
variance of the resistance have a nonzero growth exponent 
even when the density of states N(E) has a Dyson singular- 
ity. 

4. MEAN LOCALIZATION LENGTH AND <In p) 

Because x =: ln p satisfies the nonlinear equations (7) ,  
there is no closed equation for (x).  The distribution density 
and hence also the mean value of x can be found from the 
Fokker-Planck equation for the joint probability density for 
x and p: 

To calculate (In p) and the localization length we multiply 
( 16) by x and integrate over p and X. The result is 

For large x the right-hand side of ( 17) tends to the constant 
value I - ', so that 

where I is the localization length for states of energy E. We 
can thus find (x) and I by using the stationary distribution 
function P(p) to carry out the averaging in the right-hand 
side of ( 17). Equation ( 16) implies that P satisfies the equa- 
tion 

d d 
(E+I.  - -A, sin rp+D sin cp - sin cp ) P (cp) = I ,  

d~ drp 
(18) 

where the integration constant J is determined by the nor- 
malization condition. In addition, P(p) is required to be 

nonnegative and periodic in p. 
The variable q, describes the phase of the oscillations of 

the bilinear combinations of the wave function components. 
The number of nodes of these components is related to the 
number of states in a system of length x. Following Ref. 12, 
we conclude that J(E) is proportional to the number of 
states. 

In the rest of this section we will derive solutions for the 
steady-state equation (18) and obtain expressions for the 
localization length in some special cases. The results will be 
discussed in Sec. 5. 

a )  Ultrarelativistic limit. In this case the energy E is 
large compared with A,, T, D, and Eqs. (8)  show that p 
oscillates rapidly with frequency E, regardless of the relative 
magnitudes of A,, T, D. The distribution W(x,q,,x) is there- 
fore almost independent of p ,  and x is normally distributed 
with mean (x) = x/l. If we average the stationary Fokker- 
Planck equation ( 18) over the fast oscillations, we get 

to the lowest nonvanishing order in 1/E. 
b) States with energy at the center of the gap. If E = 0, 

T # 0, and D # 0 then we can derive an exact expression for I 
when A, = 0. The stationary distribution density is given by 

N=2K ( k ) ,  k=D/ (I '+D), (20) 

where K ( k )  is the complete elliptic integral of the first kind. 
If we use the density (20) to carry out the averaging in ( 17) 
we find that 

which implies that 

in the limit T(D. In the opposite limit r > l ,  (21) yields 

C )  Constant gap. If A = A, = const then we can derive 
an exact expression for I for arbitrary E, A,, and T. The 
stationary distribution density is given by 

p f  2n 

wh2re p = ET, S = A d r ,  and 

Nr=4n2e-""1 I,, (6) 1 '. (25) 

Here I, (2) is a modified Bessel function. Substituting (24) 
into ( 17), we readily find the expression 

for I - ' in terms of the normalization factor. 
The equation of the two-band model reduce to the 

Schrodinger equation with a random potential U(x) i fE and 
A = A,+ 00 while E - A, and r remain constant 
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[ ( E  - A,)/T can be arbitrary]. The result (26) can be 
transformed to yield the familiar expression14 for the elec- 
tron localization length in the quadratic spectrum model. 

In the ultrarelativistic limit (26) reduces to 

while for E = 0 we have 

For E(r and A,gr we have 

The localization length for states with energies close to 
the center of the gap is thus finite if A,#O. The Dirac equa- 
tion with A = A, + { = 0 implies that carrier scattering by 
the potential field merely changes the phase of the wave 
function without causing any of the states to become local- 
ized. 

d )  Fluctuating gap model. If the potential energy 
U(x) = 0 then we can derive an exact expressions for the 
localization length for arbitrary E, A, and D. We replace q, in 
Eq. ( 8) by the new variable 

8 = sinh-'(cot(p)), - m < 8 < 03 ,  

which is such that the random process appears additively in 
the stochastic equation, 

0=arcsh(ctg cp), - m < 0 < ~ ,  

(I=& ch 8kv-g (x) ,  

where E = E /D and Y = AJD. The upper and lower signs in 
(30) correspond to 0 < q, < a  and - a < q, < 0, respectively. 
The stationary distribution P ( 8 )  has the form 

1 
~ ( 8 )  =-J d i  e r p [ ~ v  (i-0) + E  (sh r-sh 0)],  (31) 

N D  0 

ND=x' [I: ( E )  +Ny2 ( e )  I,  (32) 

where J,  (z) and N,, (z) are the Bessel and Neumann func- 
tions. Averaging ( 17) over the density (3  1 ), we find after 
some straightforward algebra that 

We stress that for potential fluctuations (case c above), 
I -' is expressed in terms of the logarithmic derivative of the 
normalization factor of the steady-state density with respect 
to ln(AJT), whereas for gas fluctuations the derivative is 
with respect to ln(E /D) . ''This analogy between expressions 
(26) and (33) can be traced to the fact that in the latter case, 
the equation 

- 
ip=-iA,+iE cos q+iE 

fore, follows by continuing Eq. (30) for 8 analytically to the 
imaginary axis. The above result then reduces to the equa- 
tion for q, for the case of potential fluctuations if we make the 
substitutions iA,-+E, iE-+Ao, i{-U, and G-+p + a/2. 
Equation (33) thus follows in principle from ( 2 6 )  by analyt- 
ic continuation. 

Recalling the asymptotic formulas for Bessel functions 
of large argument, we find that 

in the ultrarelativistic limit. In the nonrelativistic approxi- 
mation the Dirac equation reduces to the Schrijdinger equa- 
tion, where A, plays the role of the particle mass and {(x) is 
the potential energy. Equation (33 ) then reduces to the fa- 
miliar expression for the localization length given in Ref. 14. 

For half-integral values Y = AJD we can express the 
localization length as a ratio of polynomials of degree Y - 1/ 
2 in the variable E' = (E /D)'. For example, for v = 3/2 we 
have 

ForA, = D /2 (v  = 1/2), 1 = 2/D is independent ofE. In the 
limit E(D and AogD we have the asymptotic approximation 

for (33). For A, = 0 the density of states N(E)  has a Dyson 
singularity and I becomes infinite for states with energies at 
the center of the gap, as was noted in Ref. 14. As A,-+O we 
find from (36) that 

The Dyson singularity disappears if the gap A, is nonzero 
[cf. (36) ] or if the potential U(x) is random (22). 

5. DISCUSSION 

In this paper we study how the mean value and disper- 
sion of the resistance depend on the Fermi energy E, the 
unperturbed gap width A,, and the potential (r) and gap 
(D) parameters characterizing the random fluctuations. We 
recall that the growth exponent A of (p) is always less than 
the growth exponent A/2 for the root-mean-square devi- 
ation (this reflects the fact thatp is not a self-averaging vari- 
able). It was shown in Ref. 7 that l np  is self-averaging; it is 
proportional to the lengthx of the system with proportional- 
ity coefficient equal to 1/1, where I is the localization length 
of the corresponding electron state. 

The results in the previous sections imply that the de- 

FIG. 1. Localization length as a function of energy for a nonfluctuating 
gap width; A& = 0.05 (1) ,  0.5 (21, 2.5 ( 3 ) ,  and 5.0 (4). 
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FIG. 2. Localization length as a function of gap width for a nonfluctuating 
gap; E / T  = O  ( l ) ,  2 (2),  4 (3),  6 (4).  FIG. 3. Localization length vs energy for the fluctuating gap model; A d  

D = O  ( I ) ,  1/3 (2) ,  1/2 (3),  1 (4),  3/2 (5).  

pendences R - ' ( E )  and I (E)  differ qualitatively as well as 
quantitatively. For example,R -' is always finite, while I be- 
comes infinite when the electron energy lies at the center of 
the gap (I? = A, = 0 ) .  Under these same conditions, N ( E )  
has a Dyson singularity. The singular behavior of I for E-tO 
follows directly from Eq. ( 4 ) .  Indeed, for E  = 0  there is an 
additional constant of the motion:R, = const = 0 .  The dis- 
tribution density P ( p )  is nonzero only at the points 0  and n, 
whereas ( 17) implies that 1 - ' tends to zero. For small E(D,  
P has sharp peaks for p z O ,  n, which causes 1 to behave 
logarithmic~lly [cf. ( 3 7 )  1. We can explain this qualitatively 
by noting that because N ( E )  is higher at low energies (Dy- 
son singularity), the wave function is a superposition of 
many overlapping states and the localization length is large. 
On the other hand, we have shown that the Dyson singular- 
ity disappears if the gap width is nonzero (A,#O) or if the 
potential energy fluctuates [cf. ( 2 2 )  1. 

We note that according to the above model, the behav- 
ior ofR -' and I differs qualitatively even if the carriers are 
only weakly scattered (E+m ). According to ( 12),  the pro- 
babilities for scattering by the statistically independent fluc- 
tuations in U  and { contribute additively to A, i.e., the Mat- 
tissen rule is valid, in contrast to the case for 1 - ' [cf. ( 19) ]. 
We showed in Sec. 4a that (lnp) has a Gaussian distribution 
function in the weak-scattering limit. We have already 
stressed that in the nonrelativistic limit A,+m our results 
coincide with the results for the one-band model. For in- 
stance, if we assume weak scattering r ( E  - A,, then ( 2 3 )  
yields 1 - ' = A0r /2  ( E  - A,) for the localization length; this 
result agrees with I found in the one-band model for scatter- 
ing by a Gaussian random potential U ( x )  with a correlation 
function of the form ( U ( x )  U(x' ) ) = 2 r 6  (x - x ' )  . 

As an illustration, Fig. 1 shows how ( I  - I,)/I, depends 
on energy for several nonfluctuating gap widths ( I ,  is the 
localization length of states with E  = 0 ) .  Figure 2  shows the 
dependence lr/2(A,,/r) for several values of E, including 
E = 0 .  

Figure 3 shows how I depends on E  for the fluctuating 
gap model. We see that the fluctuations in U  and A  lead to 
qualitatively different dependences I ( E ) .  For potential fluc- 
tuations Iincreases with E  for all mean gap widths A,. How- 
ever, if A  fluctuates and U  =O, l  ( E )  is decreasing for A, < D / 
2  and increasing for A, > D  /2 .  The length 1 is independent 

for E  for A, = D  /2 .  It was shown in Ref. 23 that the form of 
the state density function N ( E )  changes at this value of A,. 

We note in closing that Eq. ( 18) can be solved without 
difficulty in the general case when both U ( x )  and A ( x )  fluc- 
tuate and the electron energy is arbitrary. However, because 
the result for the localization length cannot be expressed in 
terms of standard special functions, numerical methods are 
needed to analyze I .  
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