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The resonant scattering of an electron by a neutral acceptor in a gapless semiconductor is ana- 
lyzed. The resonant scattering can be regarded as the capture of an electron by a neutral acceptor, 
followed by a decay of the charged acceptor into a neutral acceptor and an electron. The calcula- 
tion of the effective scattering cross section must allow for inelastic scattering, which causes the 
quantum states of the neutral acceptor and of the electron to differ from those before the scatter- 
ing. The Breit-Wigner expression is valid for the total scattering cross section. 

1. The theory of acceptor states in gapless semiconduc- 
tors is distinguished by the circumstance that there is una- 
voidably an acceptor level in the conduction band (Fig. 1 ) .  
In the conventional approach,' the wave equation is solved 
in the effective-mass approximation with the Luttinger Ha- 
miltonian and with the potential of a negative nucleus. The 
solutions are classified on the basis of the total angular mo- 
mentum F, its projection M, and the parity I. We denote this 
set of three numbers by v.  At energies E corresponding to the 
conduction band, the wave functions far from the nucleus 
oscillate as sin(kr + S, )/r, where fik = ( 2 m , ~ )  ' I 2 ,  me is 
the effective mass of the electron, and S, is the scattering 
phase shift. The acceptor levels E,, are characterized by the 
principal quantum number n in addition to the numbers v.  
The levels are manifested in an energy dependence of the 
phase shift S, which is characteristic of resonant scattering: 

r 
6,, = arctg 

2(e+Ev,)  ' 
(1)  

where r is the level width, and the energies E,, are assumed 
negative. This is the basis for the decay model of the acceptor 
state. 

We showed in Ref. 2 that the conventional model actu- 
ally incorporates states with several charges at the acceptor 
and is disrupted by the electron-electron interaction. When 
this interaction is taken into account, it turns out that the 
state of the neutral acceptor is stable. The positive charge 
around the negative nucleus is at a distance on the order of 
the Bohr radius a, ,  with the effective mass m, of the valence 
band; it cannot go off to infinity. A charged acceptor, in 
contrast, is in a decaying state: A negative nucleus in a gap- 
less semiconductor causes the spontaneous creation of an 
electron-hole pair; the electron goes off to infinity, while the 
hole localizes near the acceptor, converting the latter into a 
neutral acceptor. If an acceptor can bind two holes, sponta- 
neous creation of two pairs will occur, and a positive charged 
acceptor will appear. If there is such a state, then it will, 
strictly speaking, be the ground state of the system. 

In many regards this problem is analogous to that of 
superheavy nuclei in v a c ~ u m . ~  If an electron state lies in the 
position band, two electron-positron pairs will be created 
spontaneously, and electrons will localize near the nucleus, 
although the one-electron wave functions are again oscilla- 
tory far from the nucleus in this problem. Because of the 

large nucleus charge, the spatial distribution of the electron 
charge for a nucleus with localized electrons can be found by 
ignoring the electron-electron interaction. In the positron- 
scattering problem, however, we should solve the problem of 
the electron-positron field with an intera~t ion.~ In the accep- 
tor problem, the electron-electron interaction is important 
even in finding the ground state. Another important distinc- 
tion between these problems is that the masses of the elec- 
tron and the hole are distinctly different in the acceptor 
problem: me /m, < 1. It is essentially this condition which 
makes it possible to solve the problem. 

The decay of charged acceptor is closely related to the 
resonant scattering of an electron by a neutral acceptor. We 
analyzed this question in Ref. 2, but made an error: We as- 
sumed that the scattering cross section could be calculated 
from the phase shift of the one-electron function. This ap- 
proach loses the inelastic pathways. Resonant scattering 
may be thought of as the capture of an electron by a neutral 
acceptor, followed by the decay of the resulting charged ac- 
ceptor into a neutral acceptor and an electron in quantum 
states different from those before the scattering. As we will 
show below, these processes influence the width of the reso- 
nant-scattering line. In $2 we analyze in detail the factors 
which cause all of these processes to be lost if we restrict the 
analysis to the solution of the Luttinger equation. 

2. Electron and hole creation and annihilation opera- 
tors a,+, a, and b ,?;, b,, were introduced in Ref. 2. The 
Hamiltonian is 

FIG. 1. Band diagram of a gapless semiconductor. The dashed line is an 
acceptor level. 
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Here the E,, are the energies of the holes localized at an 
acceptor. All are negative. The continuous spectrum of holes 
can be ignored. The matrix elements V,, were written in 
Ref. 2; v* differs from v in the replacement of M by - M. 
The operators a and b satisfy the standard commutation re- 
lations for fermions. The operator (Z) representing the 
charge of the electron-hole system minus the charge of the 
completely filled valence band is 

m 

where e is the magnitude of the electron charge. As was 
shown in Ref. 5 (see also Ref. 2 ) ,  a calculation of E,, must 
incorporate the circumstance that the electron-electron in- 
teraction renormalizes the hole spectrum. The other terms 
of the interaction operator are incorporated in He,. For the 
analysis below it is sufficient to consider the terms of "Hub- 
bard" form, 

vnf v ' n '  

where all the elements of the matrix U are positive. 
In semiconductors in which an acceptor level is in the 

energy gap, the states of the neutral acceptor are described 
by the function b 2 lo), where the state 10) is determined by 
the condition 

It  can be seen from ( 3 )  that the electron charge Z of the state 
b 2 10) is + 1. The coordinate wave functions were found in 
Ref. 2; they are localized near the acceptor, so that the nega- 
tive charge of the acceptor is neutralized by the charge of a 
hole at a distance on the order of the Bohr radius of the hole. 

In a gapless semiconductor, in contrast, these states are 
solutions of a Schrodinger equation if we ignore the electron- 
electron interaction. By virtue of the third term in Hamilton- 
ian ( 2 ) ,  the state b ,+, 10) is at resonance with states of the 
tY Pe 

and with other states which are found through the creation 
of electron-hole pairs. Since the Hamiltonian of the effec- 
tive-mass method ignores the interaction of holes at  the ac- 
ceptor, states of the type in ( 6 )  have the same energy as b 2 
10). For this reason, the states b 2 10) are not solutions of the 
equation of the effective-mass method in a gapless semicon- 
ductor. 

As we showed in Ref. 2, incorporating the electron- 
electron interaction has the consequence that the states b ; 
10) describe a neutral acceptor in a gapless semiconductor. 
The repulsion of holes at an acceptor causes states of the type 

( 6 )  to deviate from the resonance, so that a state b ,+, 10) 
satisfies the Schrodinger equation to within small terms of 
order me / m ,  . 

We now consider the form of the solutions of the Lut- 
tinger equation with a Coulomb center for a gapless semi- 
conductor in the second-quantization representation. For 
this purpose we should diagonalize Hamiltonian ( 2 ) ,  ignor- 
ing the term He,. The eigenfunction of the Hamiltonian can 
be written 

m 

where the function 

vn 

corresponds to a state in which all the levels of the acceptor 
are filled with holes. We should print out immediately that 
such a state is meaningless when we take the repulsion of the 
holes into account. 

The equation H@,, = E@,, has a solution for all ener- 
gies. The energy E is conveniently measured from the eigen- 
value corresponding to the function @,. The coefficients A,, 
and B,, are easily determined under the condition that the 
energy E is close to that of one of the levels - E,, . The 
coefficient B,, , thought of as a function of E, represents a 
Lorentz contour centered at  E = - E,, . The width of this 
contour, 

contains the small parameter of the problem, ( n e / m ,  )3'2, 

and is much smaller than the distance between levels. Conse- 
quently, only a single level is incorporated in expression ( 7 ) .  

States ( 7 )  were actually also found in Ref. 1 through a 
solution of the Luttinger equation in coordinate space. I t  is 
important to note that these states are characterized by 
quantum numbers F, M, I, n. When the operator H acts on 
@,, , particles with v' # v, n' # n are not created since all the 
hole states with v'f v, n l # n  are filled. Far from the center, 
the coordinate wave functions oscillate; their phase shift S,, 
is related to the width r by the ordinary relation for resonant 
scattering [relation ( 1 )  1 .  We used these phase shifts in Ref. 
2 to calculate the cross section for the resonant scattering of 
an electron by a neutral acceptor. As we have already men- 
tioned here, that approach is incorrect. Actually, an electron 
can undergo changes in quantum numbers v during resonant 
scattering, and this possibility must be taken into account in 
a calculation of the scattering cross section. This pheno- 
menon cannot be taken into account in the equations of the 
effective-mass method. 

3. We now consider the resonant scattering of an elec- 
tron by a neutral acceptor. We seek the wave function in the 
form 

.D 

where A and C,, are coefficients determined by the Schro- 
dinger equation H@ = E@. Using ( 2 ) ,  we find 
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vn 0 

From ( 1 1 ) we find 

and from ( 12) we find an equation for z,, : 

We restrict the analysis below to states with a total angular 
momentum F = 3/2. This is the angular momentum of the 
ground state of the acceptor. Furthermore, the matrix ele- 
ments V,, reach a maximum at F = 3/2. For other values of 
the angular momentum, these matrix elements contain addi- 
tional powers of m, /m, . Equations ( lo)-( 14) can be used 
to find the electron scattering amplitude. We assume that the 
neutral acceptor is in the state vono before the scattering. The 
coordinate wave function of the electron in the scattering 
pathway in which the acceptor is in state v, n after the scat- 
tering is - 

j d e ~ ,  ( a )  q;' ( a ,  r) , (15) 
0 

where C,, is determined by ( 13), and p (E, r )  is the wave 
function of the free electron, given by expression (22) of Ref. 
2. According to Ref. 2, at large values of r we have 

9):) ( e ,  r) sin kr lr lk ,  fik= (2m,e) '". 

It can be seem from (22) and (35) of Ref. 2 that V,, ( E )  cc k.  
It follows that ( 15) has an integral of the type 

m 

J da sin kr[ (E-E-E.~)-'+z..~ (E-e-E..) 1 
0 

=zVn sin p,,r-n cos P V J ,  (16) 

where the wave vector is 

since for resonant scattering we have E  I < 1 E,, . 
If we are dealing with an inelastic pathway, v#vo  or 

n #no, the wave function at large r must be of the form 

where f is the amplitude for inelastic scattering. It follows 
from (16) and (17) that 

where v# vo or n #no. This is the condition that there be no 
incoming waves in the inelastic pathways. The phase shift 
Z,-Z,,~ can be found from Eq. ( 14). The first term of this 
equation describes the renormalization of the energy of the 
acceptor levels and can be ignored. Furthermore, in examin- 
ing resonant scattering we may assume ( E  ( - E,, ; we then 
have 

where r is determined by (6)  with v = vo and n = no. The 
prime on the summation sign means that the term / VVono l 2  is 
excluded. The argument of V,, is E,, . 

In an elastic pathway the wave function at large r must 
be of the form 

Y. exp (ipr) 
eipZxz (p) + 6 p ~ 0 f v 0 n 0  ; (20) 

wherex, ( p)  is the eigenfunction of the operator I, with the 
eigenvalue p = f 1/2. If Mo = + 3/2, an electron with 
momentum along z does not undergo resonant scattering. 

Using ( 15) with v = vo and n = no; with the explicit 
expression for p ?'(E, r ) ;  and with Eqs. ( 16), ( 19), and 
(20), we can find the coefficient A and the scattering ampli- 
tude. The result is 

The Zip is the momentum of the incident electron. The 
ground state of the acceptor corresponds to I = 1, I ,  = 0, 
I ,  = 2. The normalized angular wave functions are 

where p = + 3/2, + 1/2, and 6 and p are the scattering 
angles. The total cross section for elastic scattering is 

where I?, is the total width, and I? the elastic width. 
The integrated cross section for scattering accompanied 

by a transition to the state vn is 

(2n) 1 Vvn 1 
Ovn' 

p y ~ ~ + r r ~ / 4 )  ' 

and the total cross section is 

Expressions (23 )-(25 ) are the standard Breit-Wigner 
expressions for the case with inelastic scattering pathways 
(§I42 in Ref. 6) .  

The coefficient A in ( 10) can be found by normalizing 
the function @ ( E )  by means of the condition 

@+ ( E )  @ (E ' )  =G (E-E') . (26) 

We find 
r 

A ( E )  = 
2n (E2+r,2/4) (27) 

From this study we conclude that the Luttinger equa- 
tion can be used only to find the energy of an impurity state 
in a gapless semiconductor in the lowest approximation in 
m,/m,. The electron-electron interaction must be taken 
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into account in order to calculate the wave functions and the 
decay time of a charged acceptor into a neutral acceptor and 
an electron. 
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