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Truncated equations describing the evolution of sound waves in antiferromagnets are derived. 
The crystallographic anisotropy is taken into account. These equations are used to study the 
stability of plane solitons. A theorem on self-focusing is proved. Classes of initial data which give 
rise to a self-focusing sound wave are identified. 

INTRODUCTION 

The propagation of elastic waves in antiferromagnets 
has several remarkable aspects, which have recently att- 
tracted interest.'" The reason for these remarkable features 
is a strong magnetostrictive interaction,' which gives rise to 
a significant nonlinearity of the elastic subsystem of the crys- 
ta1.2 In most solids, at the strain levels which are achievable 
in practice, nonlinear acoustic effects are weak and difficult 
to observee5 In antiferromagnets, in contrast, the coupling 
with the magnetic subsystem causes the nonlinearity and the 
dispersion of sound waves to be far greater than in the purely 
acoustic case. The result is an unusual possibility to study 
the dynamics of nonlinear and dispersive sound waves in 
solid-state experiments, in which highly accurate measure- 
ments are possible. 

Several extremely simple nonlinear effects which arise 
during the propagation of sound in antiferromagnets have 
been studied experimentally and theoretically in recent 
years: second-harmonic generat i~n,~ self- effect^,^ nonreson- 
ant interactions,' and the stimulated Raman scattering of 
sound waves. It is now becoming possible to study effects 
which correspond to higher-order nonlinearities, primarily 
the formation of solitons and the self-focusing of sound 
(which have previously been seen only in numerical simula- 
tions').  estimate^^"^ show that it would be feasible to ob- 
serve these effects even with the experimental facilities avail- 
able today. A systematic search for solitons and self-focusing 
requires a preliminary study of two questions: Under which 
conditions are solitons stable? From which intial distribu- 
tions does a self-focusing sound wave form? Our purpose in 
the present paper is to answer these questions. 

At a strain level which is not too high, the evolution of 
an elastic wave can be separated into fast and slow compo- 
nents. The fast component is the transport of the initial per- 
turbation at the velocity of sound, while the slow component 
is caused by weak nonlinearity and dispersive effects. To 
study these effects it is convenient to use a coordinate system 
which is moving at the sound velocity, retaining in the equa- 
tions the terms which are the most important for the nonlin- 
earity and the dispersion. This approach corresponds to the 
standard procedure for constructing truncated equations. l1 

In $ 1 we derive these equations, which describe the evolu- 
tion of sound waves, with allowance for the crystallographic 
structure of the antiferromagnets used experimentally: 
rhombohedra1 (a-Fe,03, Fe,BO,, MnCO,) and ortho- 

rhombic (TmFeO,, etc.). It turns out that, despite the many 
different cases which are possible (for various directions of 
the external magnetic field, of the propagation, and of the 
sound polarization), the one-dimensional dynamics can be 
described by two universal equations. Specifically, when 
there is a linear magnetoelastic coupling (in other words, 
when the sound velocity depends on the magnetic field) the 
slow evolution of the strain tensor u obeys the equation 

ut+ (nS.2) ( n f  l )  unu,+Du,=O. 

In the case of a common position we would have n = 1, 
but for several wave propagation directions the coefficient in 
the term with the quadratic nonlinearity vanishes, and we 
have n = 2. The sign of the dispersion is determined by the 
relation between the linear volocities of magnons ( V ,  ) and 
phonons ( V, ) (the magnetoelastic renormalization is taken 
into account) : signD = sign( V, - V ,  ) . The weakly three- 
dimensional dynamics can be described by the equation 

a 
-[u , f  (n+2) ( n f  1) unu.+Du,l =au,,+cuzz. (1 
ax 

Curiously, the signs of a and c may differ in certain cases 
($1). 

For sound waves, which are not coupled with magnons 
in the linear approximation, we find the system of equations 

Here e, is the angle through which the antiferromagnetism 
vector is rotated from its equilibrium position. 

The properties of Eqs. ( 1 ) and (2)  are studied in $2. In 
case ( I ) ,  with n = 1, we find the Kadomtsev-Petviashvili 
equation, which has been studied in  detail.'^^^-'^ In this 
equation there are plane solitons for either sign of D. With 
D > 0, a > 0, and c > 0, both the solitons and periodic 
waves are unstable with respect to a transverse rippling,12,13 
and self-focusing is possible in this case, as numerical calcu- 
lations have shown.' With D < 0, a > 0, and c > 0, soli- 
tons are stable. In the case n = 2, soliton solutions exist only 
ifD 7 0; if a < 0 and c < 0, they are stable, but if the sign of 
either (or both) ofa and c is positive the solitons are unstable 
with respect to rippling. With a > 0 and c > 0, as is proved 
in $2, there can be a self-focusing for initial conditions which 
satisfy 2Y < 0, where 
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In system (2), solitons exist only if D < 0. The absence 
of soliton solutions [in (1) with n = 2, D < 0, and in (2) 
with D > 0] apparently implies that the initial perturba- 
tions spread out, since the nonlinearity and the dispersion 
"act in the same directions" in this case. Even if there are 
soliton solutions (with D < O), however, they are unstable 
even in a one-dimensional system, (2).  It might be hypoth- 
esized that the result of the onset of this instability in system 
(2) is the formation of a singularity in a finite time, i.e., a 
collapse. 

In the Conclusion we summarize the results regarding 
the possibility of observing solitons and self-focusing in 
some specific ferromagnets: a-Fe203, MnCO,, and 
TmFeO,. 

51. DERIVATION OF TRUNCATED EQUATIONS 

1.1 Crystals of rhombohedra1 symmetry. In this subsec- 
tion we consider an antiferromagnet with an easy-plane an- 
isotropy. The sublattice magnetic moments M1 and M2 
( ] M I ]  = IM21 =Mo)  lieinthebasisplane (thexyplane). It 
is convenient to transform to the variables 
m = (MI  + M2)/2M0, 1 = (M, - M2)/2M0; then we obvi- 
ously have m2 + I = 1, (ml) = 0. The free-energy density of 
the magnetic subsystem of the sample is2 
Fm=2Mo[HEm2-H, [ml],+'12H,1,2+i12aM, ( V1) 2 -  (mH) 1. 

(3a) 
The energy is minimized in the state with m # 0, 

I, = 0, mllH, mll. We write H = H(cos pO, sin pO, 0) ;  then 
in our analysis of magnetoelastic oscillations we will assume 
1 =  ( -sin$,cos$,O),$=po+p,p(l.Theenergyofthe 
elastic subsystem of the crystal is expressed in terms of the 
components of the strain tensor uij : 

Fe=i/2CIi (um2+uyyZ) + i /2C33~ , ,2+Ci2~ ,~ , ,  
+Ci, (u,+u,,) u*z+ (Cii-Ci,) uw2 

+ ~ C , , ( U , , " + U , , ~ ) + ~ C , , [  (u,-u,,)u,,+2~,,u,~l. (3b) 

In writing the magnetoelastic energy density we consid- 
er only the terms which are nonlinear in uij (as in Ref. 2), 
assuming that the strain is small: 

Fme=Bii (1,2uUr+1,2uyy) +Biz (L~uyy+Zy2u,) 
t-2 (Bii-Biz) ~ , ~ , u ~ , + B ~ ~ ~ , Z U , , + ~ B ~ ~  (l,l,u,, 

+lxlzuxz) +2B1,[21,1,u,,+ (12-1:) u,,] 
+B4i [1,1* (u,-u,,) +21,l,u,] . (3c) 

In (3  ), HE is the exchange field; HA is the anisotropy 
field; HD is the Dzyaloshinskii field; a is a constant of the 
nonuniform exchange interaction; H is the external field, 
which lies in the basis planep is the crystal density; thex axis 
runs along one of the twofold axes U2; and Cij and Bij are 
the constants of the elastic and magnetoelastic interactions. 
To find some numerical estimates of these quantities, we 
make use of experiments with hematite, with the parameter 
values2 C,, = 24.2 (the Cs are given in units of 10" erg/ 
cm3), C3, = 22.6, C12 = 5.5, C,, = 8.5, C13 = 1.6, and 
C,, = - 1.3; p = 5.29 g/cm3; Bll  - B12 = 8 (Bij is given in 
units of lo6 erg/cm3), 2B1, = 27, and 2B4, = 53; Mo = 870 
Oe; HE = 9.2 lo6 Oe; and HD = 2.2 - 10, Oe. 

We first consider waves which are propagating along 
the x axis. If the initial strain field is uniform in the yz plane, 

then the only nonvanishing components of the strain tensor 
are uxx , u, , and u,, . The oscillations of the vector 1 are 
described by the equation (see Ref. 10, for example) 

r-Yl ,  'Jml] == (HI) {Hn+ [H, 11 ,) t2HE[1,  H,, I,, 

where H,, is the effective magnetoelastic field, and y is the 
gyromagnetic ratio. Calculating H,, , and transforming 
from 1 to p,  we find the equation 

y-2n,cp=-H sin cp (H cos q+H,) 

BtI-Biz 
-HE ------ sin 2 (qa+cp) urn 

Mo 

-I- 2HE (Bit-Biz) 4HEB9, 
Mo 

cos 2 ( c p o + c p )  u,,+ - 
Mo 

cos 2 ( c p o + c p )  u,,. 

(4) 
Assuming HA ) H,,,, we have I, = 0 everywhere. 

Sound waves are described by the equations of elastic 
theory: 

(6c) 
Here 

vi2=C,ilp, s2= (Ctt-C,,) Ip ,  ~,~=2C'4lp, 
~ i ,~=Cib/p ,  b=Bii-Biz. 

The directions po = m/4 ,  n = 0, 1, 2, ... , are special 
directions for the field H, as can be seen from (6).  For these 
values of pO, not all of the strain components are coupled 
with magnetic oscillations in the linear approximation, and 
there is no quadratic nonlinearity in the equations for this 
case. 

Let us assume, for example, po = ~ / 4 .  In this case, 
three quasielastic modes can propagate. One of them (a  lon- 
gitudinal mode) is coupled with magnetic oscillations even 
in the linear approximation. We can derive an equation de- 
scribing the slow evolution of q,(x,t) in a coordinate system 
which is moving at the longitudinal sound velocity. Assum- 
ing that the dispersion and the nonlinearity are slight, we 
express uxx in terms of p from (4),  and we substitute the 
result into (6a). We then transform to the moving coordi- 
nate system, a /at + a /at - vl,d /ax, assuming p, 
4 ~ I H P , ,  where 
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V ~ H ~ = U ~ ' - V ~ ~ = V ~ " H ~ ~ ~ / & H  (H+HD)  . 
We find a modified Korteweg-de Vries equation 

Here S1= y[H(H + HD ) ]  ' I 2  is the antiferromagnetic reso- 
nance frequency. 

In addition to the longitudinal sound there are two 
transverse modes, whose velocities ( v +  and v - ) are inde- 
pendent of the field in the linear approximation for cp, = .n/ 
4: 

Again using the approximation in which the modified 
Korteweg-de Vries equation is found, and transforming to a 
coordinate system which is moving at v,, we find the system 
of equations 

2Bi4 
w=ur, + - u,,. 

b 
Here, under the assumptiond /at ( v+d /ax, weare ignoring 
the time derivatives and the terms cp in comparison with cp 
in the first equation; in the second equation, since the terms 
with a '/ax2 cancel out, we are retaining the term 13 2/dxdt, 
ignoring the higher-order time derivatives. A system of 
equations describing the slow evolution of waves propagat- 
ing at a velocity near v- is found by interchanging v +  and 
v- . 

Any real strain field which is produced will be nonuni- 
form in the plane perpendicular to the propagation line. To 
derive an equation which describes the slow evolution of 
slightly nonuniform perturbations, we should incorporate in 
the equations the other components uyy , u,, and u, of the 
strain tensor. 

Assuming that the motion is weakly three-dimensional 
(d/dx > d/dy, d /at),  we restrict the analysis to the linear 
approximation in the terms which contain derivatives with 
respect to the transverse coordinates, and as a result we find 
a modified Kadomtsev-Petviashvili equation in place of the 
modified Korteweg-de Vries equation for perturbations 
which are propagating at v = v,, : 

dldx (cpr+Dq=+Qq2qs). =aiicp,+al2cp,,+a~qW, (7) 
where 

In writing a,,, a,,, and a,, we have discarded terms which 
are small, on the order of the parameter HEb2/  
pMJT(H + HD ) = vH2/vI2 (this parameter is of order 
lo-, for hematite with H z  1 kOe), and we have used the 
condition C,, 4 C,, to simplify the resulting expressions. 
The replacement 

can be used to diagonalize the right side of (7) ,  which be- 
comes - a'cp,.,. - c1cpyZy. . For hematite with H = 1 kOe we 
finda'z3.5 lo5 cm/s a n d c ' ~ 2 . 8  - lo5 cm/s. 

The absence of first derivatives with respect to the 
transverse coordinates in (7)  is a consequence of the degen- 
eracy of this particular case. There would of course be first 
derivatives with respect to the transverse coordinates for ar- 
bitrary directions of the field and the wave velocity. For ex- 
am~le ,  in the case 

we would replace (7)  by the equation 

where 

Interestingly, as the field H is varied in hematite the coeffi- 
cient a,, changes sign (a,, vanishes when H is near H,, at 
which the condition v,, = v, holds). It can be seen from (9)  
that with vlly and HJJx  the transverse perturbations are car- 
ried off along the z axis (the term up,,, can be eliminated by 
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rewriting the equations in terms of z - at). We can derive 
yet another equation describing the evolution of waves 
which are propagating along thez axis. In this case the longi- 
tudinal sound is completely uncoupled with the magnetic 
oscillations, as is easily understood, and for transverse sound 
with linear magnetoelastic coupling we find the equation 

where 

Both the coefficients on the left side of this equation and 
the very fact that there is no quadratic nonlinearity in this 
case are independent of the direction of the magnetic field in 
the basis plane. The coefficients on the right side are given 
for po = 77/4. In this case, transverse perturbations are car- 
ried off along the y axis at a velocity v,, = 3v1,2/4v4, . The 
transverse drift which has been noted in all these cases im- 
poses a lower limit on the transverse dimension of the crystal 
in attempts to observe self-focusing. 

We conclude this section with the derivation of an equa- 
tion for a more general case, containing a quadratic nonlin- 
earity. For p, = ~ / 8  (in which case the coefficient of the 
quadratic term is at its maximum), we have vllx, 
v2 = u I 2  - 1/2)uH2 = ulH2, and the equation becomes, to 
within second derivatives with respect to the transverse co- 
ordinates, 

In this case, the transverse perturbations drift along 
both y and z, but the drift velocity in strong fields H is small 
in comparison with v,,, by a factor on the order of the param- 
eter (uH/ulH )'. 

We can transform from the equation for q, to one for u 
by means of the substitution 

1.2. We now consider the propagation of sound waves in 
rare earth orthoferrites having the general formula MFeO,, 
where M is a rare earth ion. The basic properties of these 
antiferromagnets are usually described by a two-sublattice 
model. The spin reorientation in orthoferrites occurs not at a 
single point on the temperature scale but over an interval of 
tens of degrees.'' At temperatures Tl and T, corresponding 
to the beginning and end of the reorientation, in the absence 
of an external magnetic field, two second-order phase transi- 
tions occur. For these crystals there is characteristically a 
soft mode (a low-frequency mode) of the antiferromagnetic 
resonance, so that the nonlinearity of the magnetoelastic 
waves in the ultrasonic range should be particularly pro- 
nounced, as was shown in Ref. 15. 

The free-energy density of an orthoferrite is written as 
the sum of the magnetic, elastic, and magnetoelastic energy 
densities (see Ref. 15, for example) : 

Here A, ,  C, and A,, C,, G are the bilinear- and biquadratic- 
anisotropy fields, and the notation is otherwise the same as 
in Subsection 1.1. The coordinates x, y, z run along the crys- 
tal axes a, b, c. 

The most common reorientation transitions in ortho- 
ferrites, and those which have been studied most thorough- 
ly, are transitions accompanied by a reorientation of the 
spins in the xz plane. In such crystals (e.g., TmFeO, and 
SmFeO,), the vector 1 is directed along the crystal c axis at 
T < TI, while at T > T, it is directed along the a axis. At 
intermediate temperatures, T, < T < T,, the vector 1 ro- 
tates smoothly from one of these axes to the other. The equa- 
tion for the oscillations of the vector l near the x axis (in the 
temperature region near T,) is10,15 

1 d F  &=- -+ 1= (cos cp, 0, sin cp) 
2M0 d l  ' 

The acoustic oscillations are described by the equations of 
elastic theory, (5).  
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Let us examine waves which are propagating along the 
x axis. After some straightforward calculations, we find 
from (10) and ( 5 )  

" )p=hi sin 2cp+h2 sin 4 r ~ + ~ , u  sin 2, 
ax2 

-p2w cos 29, (1 la )  

a 2  
ui2 - 

d Z  (z- axz " (COS 2 9 4 ,  

d a a2 
sin 2q3, 

dx2 

where 

P u=- 2~ 
Uxr, W = U X Z ,  

Bi t -Bt~  B55 
2C55 

u 5 2  = - CII 
utZ = -, 

P P 

We first consider small-amplitude steady-state solu- 
tions of ( 1 1 ) . Expressing u and w in terms of p, we find one 
equation for p: 

where 6 = x - vt. 
The soliton solution is of the form 

E-E .=cpo sech (--f ), 9 = ( )  '' , A=A-r. 

The condition for the applicability of the expansion in q, 
is 24 ( B. As in Subsection 1.1, we have two different possi- 
bilities here: solitons propagating at velocities vzv,,  in 
which case the reduced equations describing the motions are 
the same as (2); and solitons moving at velocities 

in which case the truncated equation is the modified 
Korteweg-de Vries equation ( 1 ), (7) ,  with the coefficients 

+ 2(Bii-B3i)2 
pMo (v12-vsH2) 

As the temperature is varied, Q may change sign, and if so 

there will be a substantial change in the nonlinear dynamics 
of the waves (g2) .  

One-dimensional equations describing wave propaga- 
tion along thez axis are found from ( 11 ) through the substi- 
tutions d /ax + /dz,vI2 + v,' = C33/p. We then have 

Consequently, all the conclusions reached in the preceding 
subsection remain valid for this wave propagation direction. 

If the velocity is along they axis, there are no sound 
waves which are linearly coupled with magnons, so that 
weakly nonlinear waves propagating in a single direction are 
described by system (2) .  

We also note that there exist exact steady-state solu- 
tions of Eqs. ( 1 1 ) for which the condition p ( 1 generally is 
not necessary (see also Ref. 16) : 

2 Ach s 
w =  

(v"va2) [chZ s+AZ] ' 

where 6 = x - vt, s = (f - (,)/A. 

The intervals of possible velocities v of solutions (12) are 
determined from the conditions A2 > 0 and A * > 0. In the 
limit A + 0 we find small-amplitude solitons from ( 12). 

These examples show that, despite the wide variety of 
physical situations associated with the anisotropy of a crys- 
tal, the dynamics of slightly nonlinear waves displays a uni- 
versality and can be described by either Eq. ( 1 ) or the system 
of equations (2).  It is thus worthwhile to study the proper- 
ties of these universal equations in more detail, and this is the 
purpose of the following section of this paper. 

52. STABILITY OF THE SOLITONS AND SELF-FOCUSING 
THEOREM 

As was shown in the preceding section, the evolution of 
phonons which are not linearly coupled with magnons is 
described by the following system of equations in a coordi- 
nate system moving at the sound velocity v, : 

u,~-v.~  HE b 
cpxx=H (H+HD) 9 + - C ~ U ,  u,+gcpcpX=O, (13) 

y 2  Mo 

wheregz b /pus [see, for example, ( 8)  1. It is easy to see that 
this system of equations has soliton solutions 
U,(X + vt),po(x + vt) only if us < v,: 
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where x2 = i22/(~, - us2) .  The magnitude of the strain 
tensor corresponding to the soliton solution does not depend 
on the velocity v; for hematite with p, = ~ / 4  and for H = 1 
kOe it is 

In the case v, > v, , the absence of solitons-i.e., the 
absence of localized steady-state solutions for which the 
nonlinearity and the dispersion cancel each other out -ap- 
parently means that small initial perturbations spread out. 
In the case us < v, we find a different and more interesting 
evolution. Before we analyze this case, it is convenient to 
switch to the dimensionless variables 

We then find the system of equations 

In these dimensionless variables, the soliton solutions be- 
come 

We see that the solitons are moving at a velocity below the 
velocity of sound. 

The stability of steady-state solutions ( 14) is crucial to 
an understanding of the dynamics of sound waves within the 
framework of system ( 13 ) . 

We linearize ( 13) about a soliton, 

for a perturbation 

The spectral problem ( 15) can be solved exactly by the iso- 
spectral-transformation of Ref. 13. For simplicity, we omit 
the calculations, proceeding immediately to the final result. 
The continuum functions are 

3 

jk=etkL a, thn 8, 
n-1 

a,=- (2+kZ), a,=-2ik, a,=2, 

as can be verified by direct substitution. For k = 0 we find 
from (16) a shear mode of neutral stability: 

With k = - 2i we find from ( 16) a discrete-spectrum func- 

tion, which describes the linear stage of the instability of the 
soliton solution ( 14) : 

The reason for this instability can be explained qualita- 
tively as follows. System ( 13) has no linear dispersion (since 
there is no linear magnetoelastic coupling). Although it is 
possible to construct a steady-state solution (14) in which 
the nonlinearity and the (also nonlinear) dispersion cancel 
out, there exist perturbations of solitons for which the non- 
linear effects are predominant. The probable outcome of the 
evolution of such an instability within the framework of 
( 13) is the formation of a singularity over a finite time, i.e., a 
collapse. In this case we are of course going beyond the range 
of applicability of system ( 13), so that this result cannot 
have a literal physical meaning. The important point here is 
the very possibility that the amplitudes can grow to this ex- 
tent, with the nonlinearity no longer remaining small. The 
subsequent evolution of an unstable perturbation must be 
described by means of the complete equations, of the type 
( 11). It might be hypothesized that the value u, used for the 
soliton solution is a threshold value: Initial perturbations 
with u 4 u, spread out, while those with u > u, break. 

As was shown in 5 1, the equation describing the evolu- 
tion of a system of phonons which are coupled linearly with 
magnons can be written as follows in terms of dimensionless 
variables: 

This equation is written in a coordinate system which is 
moving at the sound velocity us. In it we have retained the 
basic terms (after the elimination of the velocity v, ) which 
are responsible for the weak nonlinearity ( - u2ux ), the 
weak dispersion ( - uxxx ), and the diffractive divergence - A, u ) . Here D and b take on the values f 1, depending on 
the signs of the dispersion along the longitudinal and trans- 
verse coordinates, respectively. Equation ( 17) is a general 
equation describing sound waves with a weak dispersion 
when the coefficient of the quadratic term vanishes by virtue 
of the symmetry of the system. 

Equation ( 17) is one of Hamilton's equations 

d 6% 
U t  = - .  

dx 6u 

for the Hamiltonian 

where w, = u. Equation (17) conserves, in addition to R, 
the momentum P = $u2dr. 

With D = - 1 in ( 17), the nonlinearity cannot cancel 
the dispersion, since it (like the dispersion) causes a spread- 
ing of a wave packet. Consequently, there are no one-dimen- 
sional soliton solutions for this sign of the longitudinal dis- 
persion. 

In the case b = 1, the one-dimensional soliton solutions 
of ( 17) are unstable with respect to bending vibrations of the 
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front." Using the method of Ref. 18, we can show that Eq. 
( 17) has no stable three-dimensional solitons. Consequent- 
ly, an arbitrary initial distribution may either spread out or 
collapse. The nature of the evolution is determined by the 
sign of the Hamiltonian, %, as we will now show. 

A distribution with a negative Hamiltonian cannot 
spread out in a dispersive manner, since a simple analysis 
shows that at small values of u the Hamiltonian 2Y is posi- 
tive. It is natural to conclude that the evolution of an initial 
condition of this sort leads to a singularity. Within the 
framework of Eqs. ( 17) it is possible to determine an exact 
sufficient condition for beam self-focusing. 

Theorem. A solution of Eq. ( 17) for which the condi- 
tion 2Y < 0 holds at the initial time becomes singular in a 
finite time. 

Proof. We consider the positive quantity Jr, ,u2dr, 
which is proportional to the square of the characteristic di- 
mension of the beam. We calculate the second derivative of 
this quantity with respect to the time. After some straight- 
forward calculations, we find 

d  
- I rL2u2 dr=48%-24ob j u," dr.  
at2 

(18) 

With D = b = + 1 we thus have 

d 
R, = - 1 rL2u2 dr 1 ,=., R,= rL2u2 dr.  

a t  
(19) 

If 2Y < 0, inequality ( 18) must break down at some 
finite t: 

This result means that a singularity appears in the solution in 
a finite time. Relation (20) leads to an upper limit on the 
distance over which beam self-focusing occurs. 

If the sign of at lease one of the quantities D, b is nega- 
tive, Eq. (18) shows that the beam undergoes defocusing. 
Specifically, ifD = - 1 and b = + 1, a sufficient condition 
for the spreading of the beam is 2Y > 0, while if D = + 1 
and b = - 1 this condition is 2Y < 0. With D = b = - 1 
we have 

d Z  -1 r12u2 dr=48 - (V,ZU)'  dr+ J u4 d r ]  >o. 
at2 [ : J  

We should point out that this theorem holds for an arbitrary 
nonlinearity un - u, with n > 2(d + 1 ) / (d - 1 ), where d 
is the dimensionality of the space. 

Like the nonlinear Schrodinger equation, this condition 
is sufficient but not necessary. Using the substitution 

and taking an average over the fast oscillations, we find the 
famous Vlasov-Petrishchev-Talanov theorem19 as a particu- 

lar case of the theorem which we have just proved, since this 
substitution causes the envelope $(r, ,t) to obey the nonlin- 
ear Schrodinger equation. 

CONCLUSION 

In summary, we can expect to be able to observe stable 
solitons only in substances with v, > v, (MnCO,, 
RbMnF,) and for sound waves with a linear magnetoelastic 
coupling [it is also necessary to ensure that a,,, a,,, and a,,, 
given by (7)  or (9), are negative]. Self-focusing due to a 
quadratic nonlinearity can be observed in hematite (a- 
Fe,O,) with p, # n-n/4, while self-focusing due to a cubic 
nonlinearity can be observed in MFeO, (where M is a rare 
earth ion) or MnCO, (if aii > 0 and p, = n-n/4). The one- 
dimensional breaking effects described by system ( 13) can 
be observed in hematite at strain values which are not linear- 
ly coupled with magnetic oscillations and which are compar- 
able to M,$Z(H + H, )/HE b. 

We wish to thank V. I. Ozhogin for calling our attention 
to the particular features of sound propagation in antiferro- 
magnets. 
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