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The effective action for superconducting junctions with a direction conductivity is expressed in 
terms of the Green's functions of these junctions and calculated in the adiabatic approximation. 
In several cases (e.g., for pure SCS and SNS junctions at T = 0)  the effective potential is not 
quasiclassical, and the dissipation is nonlinear. The rate of the quantum decay of metastable 
current states at superconducting weak links with a direct conductivity is calculated with expo- 
nential accuracy. This rate may differ significantly from that for tunnel junctions. 

1. INTRODUCTION 

A current state of a superconducting weak link is 
known to have a finite lifetime. The reason is that the phase 
difference between the order parameters of the superconduc- 
tors in contact fluctuates about its equilibrium value, which 
is determined by the current which flows through the con- 
tact. At high temperatures the characteristic time for the 
decay of the current state is determined by thermal fluctu- 
ations of the phase difference. At low temperatures, thermal 
fluctuations are relatively unimportant, so that a quantum 
mechanism for the decay of the metastable state is dominant. 

As it turns out, the electronic degrees of freedom can be 
ignored in a calculation of the rate of the decay of 
current states of Josephson junctions only if these junctions 
have a large capacitance, which plays the role of a mass of 
the tunneling particle. The capacitance of the tunnel junc- 
tions used in the experiments of Refs. 1 and 2, on the other 
hand, was not very large. Under such conditions, transitions 
between different electronic states should generally be taken 
into account in a calculation of the lifetime of metastable 
current states. 

Caldeira and Leggett3'4 took into account the effect of 
transitions between harmonic-oscillator states of a heat res- 
ervoir on the probability for the decay of a metastable state 
of a quasiclassical degree of freedom at zero temperature. 
They showed that such transitions lead to a dissipation 
which may substantially reduce the probability for quantum 
tunneling. 

A microscopic expression for the effective action was 
first derived by Ambegaokar et ~ 1 . ~  by a tunnel-Hamiltonian 
method. The general expression for this action is nonlocal in 
time. If the current flowing through the contact is close to 
the critical value (this is the case in which it is easiest to 
experimentally detect and study the effects with which we 
are concerned here), the expression for the action simplifies 
substantially. In this case we can use the adiabatic approxi- 
mation for the potential V ( p )  to calculate the decay rate, 
and the effect of the electronic degrees of freedom at T = 0 
reduces to a renormalization of the capacitance, as Larkin 
and Ovchinnikov6 have shown. Dissipation in such systems 
can be taken into account by introducing an auxiliary pa- 
rameter, the shunt resistance, which is generally completely 
independent of the junction resistance. In this case the 

expression for the action of the tunnel junction in the adiaba- 
tic approximation is of the same form7 as the corresponding 
expression of the phenomenological theory.3s4 We wish to 
emphasize that if there is no shunt at T = 0, and if the fre- 
quency with which the phase difference changes is small, 
there is no dissipation at tunnel junctions. 

At a nonzero temperature, it becomes slightly more 
complicated to calculate the lifetime of current states, since 
excited states must be taken into account. The fact that a 
metastable state has a finite lifetime means that the expres- 
sion for the free energy of the system acquires an imaginary 
part. The temperature dependence of this quantity has been 
studied by Larkin and Ov~hinnikov.~ 

In a theoretical description of quantum tunneling with 
dissipation, an effective action has accordingly been used. 
This action has been found either from the model of a parti- 
cle plus a heat r e s e r ~ o i r ~ ~ ~ ~ ~ ~ ~  or by a microscopic tunneling- 
Hamiltonian m e t h ~ d , ~ - ~  which is known to be applicable 
only for tunneling junctions. Several e~perirnents '~.~'  have 
dealt with a macroscopic quantum tunneling in SQUIDS in 
which the weak link consists of point contacts with a direct 
(nontunneling) conductivity. Dissipation has a particularly 
strong effect on the probability of a quantum tunneling in 
weak links with a direct conductivity. Our basic purpose in 
the present paper is to carry out a microscopic calculation of 
the effective action and of the probability for the quantum 
decay of metastable current states in superconducting weak 
links of various types (point contacts and SNS bridges). The 
results show that the effective action and the probability for 
macroscopic quantum tunneling in such systems may be 
quite different from the corresponding quantities for tunnel 
junctions. 

2. EFFECTIVE ACTION FOR SUPERCONDUCTING 
JUNCTIONS 

As we have already mentioned, the microscopic expres- 
sion for the effective action has been derived only for tunnel 

by a tunneling-Hamiltanian method. It is 
known quite well that this method is not suitable for describ- 
ing the properties of superconducting weak links with a di- 
rect conductivity. For this reason, the corresponding results 
of Refs. 5-7 cannot be directly generalized to the case of 
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junctions with a nontunneling conductivity. In this section 
of the paper we derive a general expression for the effective 
action of superconducting weak links which obviously also 
holds in the particular case of tunnel junctions. 

A. Effective action on a Keldysh contour 

For definiteness we consider the standard model of an 
SNS bridge: two bulk superconductors connected by a thin 
bridge of a normal metal of length d and cross-sectional area 
S. In the limit d 4  we find the model of superconducting 
contractions (SCS junctions). We describe the system by the 
ordinary Hamiltonian of superconductivity theory1': 

Here $:, $, are the ordinary operators which create and 
annihilate an electron with spin u, A is the vector potential, 
@ is the scalar potential, p is the chemical potential, g is the 
effective constant of the BCS interaction, assumed equal to 
zero for a normal bridge, and H, is the part of the Hamilton- 
ian which describes all possible electron-scattering pro- 
cesses. For simplicity we will omit this part of the Hamilton- 
ian. 

We write a general expression for the probability for a 
transition of a quantum-mechanical system from a state de- 
scribed by the density matrix Ziwi li) (iJ to the state If) over 
the time tf - ti: 

where 

is the evolution operator. We are interested in the case in 
which the states If) and li) are separated by a high potential 
barrier, so that in the zeroth approximation in the transmis- 
sion of this bamer these states may be assumed orthogonal. 
The total probability for a transition across the barrier over 
the time tf - tiis obviously the sum of Wf over a l l8  

The kernel of the operator 3 can be rewritten as 

I= J D ~ A D ~ D A  exp (iSc0), 

isC.= ID ~p F~ exp( - iJ  k f d t )  , (4) 
co 

where 

ti+iO A t* 
ti-  LO 

FIG. 1. 

Here Co is the Keldysh contour13 (Fig. 1 ), fc0 is the order- 
ing operator on this contour, and the t:ace is taken over the 
electron variables. In the derivation of He, in (5),  we decou- 
ple the t,b4 term in ( 1 ) by the usual procedure of introducing 
a scalar field 

(the Hubbard-Stratonovich transformation). 
We assume that a current I below the critical current I, 

of the superconducting junction flows through the system. 
We assume that the phase distribution 4,(r) corresponds to 
this situation. We write p in the form 

c~ (r, t )  = c p o  (r)+cpi (r, t ) ,  

where p, describes the phase fluctuations. Our problem is to 
determine how Sco in (4)  depends on p,. The operation of 
taking the trace over the electron variables in (4) reduces to 
an evaluation of a Gaussian integral over the $ fields, which 
is known to be equal to the determinant of the corresponding 
matrix. To calculate this determinant in its general form is a 
difficult problem. Furthermore, the result would contain an 
excess of information about the superconducting banks. On 
the other hand, the contribution of the fluctuations of the 
phase p1 to the effective action, in which we are interested, 
can be calculated by a simple approach, which can be out- 
lined as follows. We make the gauge transformation 

1 1 arp 
A+A'=A+ - Vcp, @-+@'=@- -- 

2e 2e a t '  

and then formally replace p,(r, t)  by Ap,(r,t), where the 
parameter A describes the "turning on" of the fluctuations 
(O<R < 1 ) . We differentiate the resulting expression for 
Sco (A) with respect to R inside the trace: 

The quantity dSco/dA is thus expressed in terms of Green- 
Keldysh functions with identical arguments. Switching to 
quasiclassical Eilenberger functions,14 integrated over the 
energy, on the contour C,, we find 

I 

-.-=- dSc'(h) 
I j dt  1 drvt ,  (r, t) eK sp;, j d a ~ ,  ( uFa;  t, t) , 

dh 2eco 42-l -, 

where r3 is a Pauli matrix, and the integration over a implies 
an average over the directions of v,. Now integrating (8)  
over R from 0 to 1, we find the expression for the effective 
action which we need. The integration over the variables I A I, 
A, and @ in (4)  is carried out by the method of steepest 
descent. The condition that the contribution of the super- 
conducting slopes is large allows us to replace I A (r,t) ) by the 
equilibrium value of the order parameter in the system, 
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A(r), and in the integration over A and @ on the saddle- 
point trajectory the following conditions hold, in complete 
analogy with the case of tunnel junctions (see Ref. 7, for 
example) : 

Ze@=dq/dt, ZeA=- V 9 .  (9) 

Adding to the action terms which reflect the energy of the 
external field and its interaction with the current I ,  we final- 
ly find 

Here C represents the sum of the junction capacitance and a 
(possible) external capacitance, and 2 [p, + p ( t )  ] is the 
phase difference between the order parameters of the super- 
conducting banks. In deriving (9) we used current conserva- 
tion, and we assumed that the mean free path is long (the 
"clean limit"). The bridge resistance in this case is deter- 
mined by the familiar expression R = ?/pEe2S, and the 
functions &' for pure SCS junctions and SNS bridges are cal- 
culated in Refs. 15 and 16, respectively. Everywhere below 
we will assume that the term Sco [pol,  which is unimportant 
for our purposes, is zero. Using (8), we can obviously also 
find the effective action for $her types of superconducting 
weak links whose functions G are known. For example, sub- 
stituting the Green's functions for tunnel junctions into (8),  
we can easily reproduce the effective action of Refs. 5-7. 

We assume that the current I is close to the critical val- 
ue I,. We consider the case of pure SCS and SNS bridges. In 
this case, the approximate agreement of I and I, means 
x = 1r/2 - po(l, since the critical current is reached at 
p, = 1r/2 (Refs. 17 and 18). The general expression for the 
function &'(t,t) at such junctions is 

G(t,  f )  = X ( t ,  t r )  P (t', t ) d t f .  (11) 
co 

  he matriceskand Fare given by extremely lengthy expres- 
sions which are reprodufed in Appendix 1. We must empha- 
size that the function G(t,t) is determined by expression 
( 1 1 ), which is nonlocal in time, because of a retardation of 
the interaction. Expressions of this type ordinarily arise 
when an average is taken over some set of quantum variables 
which are interacting with a particular degree of freedom 
(influence  functional^'^*^^). In our case, this degree of free- 
dom is the quantity p ( t ) ,  and the influence functional arises 
when an average is taken over the electron variables. 

Here we are interested in the situation in which the 
characteristic frequencies of the change p ( t )  are small in 
comparison with min{A,A,), where A is the equilibrium 
value of the modulus of the order parameter of the supercon- 
ductor, and A, = v,/d. In other words, we calculate the 
function &' in the adiabatic approximation. In lowest order, 
the contribution to the action is determined by those terms in 

the general expression: ( 1 1 ), (A1 )-(A3) which do not con- 
tain the functions QCA, r ip .  In this case we have 
it + ( E )  = t h ( ~ / 2 ~ ) ,  and the matrices Q :A are determined 
by the equilibrium expressions, in which we should replace 
po by p, + p( t ) .  Substituting these terms into ( lo) ,  and 
adding the term Ip /e, we find that the corresponding contri- 
bution to the action can be represented as an integral of the 
function V(p(t) ) over the contour C,. In the limit T 4  we 
easily find the following expression for this function under 
the conditions A, )A, X )  1 : 

In the case A, (A we find 

In deriving ( 12) and ( 13) we made use of the fact that under 
the condition I, - I(I, the quantity p, + p varies in a nar- 
row interval of values near n/2; i.e., we have p( 1. We will 
not go into detail here on the calculation of the contribution 
to the action from the next approximation in the adiabatic 
parameter in those terms in expressions (1 1) and ( A l l  
which do not contain functions Q?', i i - .  We simply note 
that these calculations give rise to renormalization of the 
capacitance in expression ( 10) : 

The difference between C * and C evidently should be taken 
into account only when C is on the order of or less than 
C * - C. Ordinarily (except in the case in which the dissipa- 
tion is quite weak) the decay rate of the metastable state is 
independent of C * to within exponential accuracy for such 
values of the capacitance; in other words, we are dealing 
with the strong dissipation limit. Nevertheless, we will take 
into account the difference between C and C * here and be- 
low, since renormalization of the capacitance may prove im- 
portant for determining the coefficient of the exponential 
function in the expression for the decay rate of the current 
states. 

Let us examine in more detail the contribution to the 
action from those terms in ( 11 ) and (A1 ) which we have not 
yet considered. As we will see below, these are the terms 
which determine (in the leading approximation) the dissi- 
pation and the quantum noise in superconducting junctions. 
In this approximation the corresponding part of the function 
&(t,t) is 

sign or. 
@(t, t)=- 8 J d t t { ~ , ( t ,  t c ) ~ . ( t ' ,  t ) + x z ( t ,  t r ) ~ z ( t ' ,  t ) } ,  

Xi=?-"[(-1)'+n] ,. ,+ +QdA [ ( - ~ ) ~ - n ] ,  
Xz=Q+Rn--n-Q+A, Pi= ( Q R )  - ' Q - R ~ -  ( Q ~ A )  - I  

A 

- (Q+")-'n-Q-A (Q+A) -1, Pz= (Q+") -' 
X[ (-l)m+nl+(Q+A)-t[ (-1) '-n],  

1=0 ( I ) ,  Im t'>O ( < O )  ; m=0 ( I ) ,  Im t>O ( K O ) .  

(15) 
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The function 6 " in ( 15) can be calculated easily in the ap- 
proximation in which the response is linear in p. In substi- 
tuting the result into ( lo),  we should replace p by Ap. Car- 
rying out the integration over A in ( lo),  using the potential 
and kinetic terms in the limit T 4 ,  we find 

where 

r p ,  ( t )  =I/ ,  [rp (t+iO) +rp (t-iO) I ,  cp- ( t )  =rp ( t f  iO) -cp (t-iO) . 

Expression ( 16) is of the same form as the effective action in 
Ref. 21 (in the limit T = O), which describes the behavior of 
a particle which is interacting with a large number of har- 
monic oscillators of the heat reservoir. 

We recall that the effective resistance of tunnel junc- 
tions at T = 0 and at sufficiently low frequencies ( < 2A) is 
infinite; i.e., there is no dissipation. In superconducting 
junctions with a direct conductivity, as we see from ( 16), the 
effective resistance at T = 0 is the same order of magnitude 
as the resistance of the junction in its normal state. Further- 
more, Re, decreases (the dissipation increases) as the cur- 
rent approaches its critical value. In other words, supercon- 
ducting junctions may be in a resistive state even at T = 0, 
i.e., even if there are no quasiparticle excitations in the super- 
conductors. To see the physical reason for this result, we 
consider a superconducting junction with a normal-metal 
bridge. When a voltage is applied across the junction, the 
electrons in the bridge are accelerated, and field energy is 
obviously expended for this purpose. The current in such a 
system, at low temperatures and low voltages, results from 
the flow of a superconducting condensate: The current of 
quaisparticles converts into a current of Cooper pairs by the 
familiar Andreev-reflection mechanism. These arguments 
hold for essentially any length ( d )  of the normal-metal 
bridge. On the other hand, we know quite well that at suffi- 
ciently small values of d the expression for the current 
through the junction is completely independent of the super- 
conducting properties of the bridge (i.e., the bridge may be 
in either a normal or superconducting state). " 

The flow of the condensate in these superconducting 
junctions in the presence of a voltage is therefore dissipative. 
The dissipative component of the current, I  O, is a complicat- 
ed function of p ( t )  in this case,16922 and it is generally not 
described by Ohm's law. In tunnel junctions, this mecha- 
nism for the transport of Cooper pairs does not operate in the 
first order of the expansion in the transmission, since in this 
case the transition of a Cooper pair from one superconductor 
to the other requires that the pair be "ruptured," at the cost 

of an energy 2A. In the following orders of the expansion in 
the transmission, however, a contribution is made to the cur- 
rent from the direct transition of Cooper pairs from conden- 
sate to condensate, so that the dissipative component of the 
current due to this mechanism should be nonvanishing in 
this case also. For similar reasons, the excess current seen on 
the voltage-current characteristics of superconducting junc- 
tions at high voltages is absent (again, only in first order in 
the transmission) in the case of tunnel junctions. 

We should point out that a necessary condition for the 
validity of the approximatip of a linear response in the cal- 
culation of the function G o  is p(cos p,. This condition 
clearly does not hold during the decay of current states in 
pure SCS and SNS junctions at low temperatures, since the 
final state of the system in this case is described by a quantity 
p >x. Here the dissipative current is generally a nonlinear 
function of p ,  and the expression for Sco [ p ]  differs from 
( 16). For our purposes it is convenient to express the effec- 
tive action in terms of the function which actually deter- 
~ i n e s  the dissipative current I  ". Using expression ( 15) for 
Go  along with the analytic properties of retarded and ad- 
vanced Green's functions, we find 

"U 

(17) 
1 

F(rp( t ) ,  r~ ( t o )  = j dhrp(f)f  ( h g ( t ) .  h p ( t ' )  1. 
0 

where the function f(p ( t ) ,  p ( t  ') ) is related in the adiabatic 
approximation to the dissipative current I" by 

I " l t ) = -  a f ( p ( t ) ,  cp( t ' ) )  , 
dt' I I ' = I  . 

The function F ( p  ( t), p ( t ' ) ) will be shown below for several 
cases. At this point we simply note that 

F ( T ( ~ ) ,  cp(t))=O. 

B. Analytic continuation of the action to the imaginary time 
axis 

In calculating the probability for a transition between 
states separated by a high potential barrier, it is convenient 
to introduce an imaginary-time parameter to describe the 
system. There are no extremal trajectories describing the 
tunneling in real time. When we make the transition to an 
imaginary time, such trajectories arise, and they determine, 
to within exponential accuracy, the probability for the decay 
of the metastable state. 

In the case of tunnel junctions, as Larkin and Ovchinni- 
kov have shown,6 the general expression for the effective 
action can be continued analytically since the Green's func- 
tion for such junctions is known in first order in the trans- 
mission for arbitrary rates of change of p .  The expression for 
the transition probability which is continued analytically in 
this manner is actually the same as the expression for the 
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FIG. 2. 

partition function of tunnel  junction^.^ For direct-conduc- 
tivity junctions, the situation is more complicated. The 
Green's functions for such systems are rather difficult to 
calculate for arbitrary rates ofchange o fp  (Refs. 23, 15, 16). 
Furthermore, the Green's functions which arise on the Kel- 
dysh contour when an average is taken over the electronic 
degrees of freedom are generally far from equilibrium near 
the junction. Accordingly, it is generally not possible to de- 
termine the tunneling probability directly from the expres- 
sion for the effective action in terms of the temperature 
Green's functions of the system. If the phase fluctuation fre- 
quencies are low, however, the situation simplifies consider- 
ably. For example, the expression which we derived in the 
adiabatic approximation for the effective action, ( 17), can 
be continued in a comparatively simple way to the imaginary 
time axis. 

We assume tf = 0, and we assume that the time - ti is 
large in comparison with the characteristic tunneling fre- 
quencies; i.e., t,+ - w . We now "straighten out" the con- 
tour C,,, as shown in Fig. 2. The exponential function in the 
functional integral ( 10) then becomes exp( - SE [ p ( r )  ] ), 
where r is the "time" on contour C,. It is trivial to perform 
the analytic continuation of the potential and kinetic terms 
in action ( 17). The last term in ( 17) is also written in a form 
convenient for analytic continuation. As a result we find the 
expression 

- rn 

Expression (19) can be derived by taking our approach of 
introducing a parameteril in the expression for the partition 
function of the system. In the differentiation with respect to 
A, we find equations analogous to (7)  and (8),  but with the 
effective action expressed in terms of the Matsubara Green's 
functions. The last term in brackets in ( 19) can be written 

where I:  ( ~ ( 7 )  ) is the analytically continued expression for 
the dissipative current at the junction. As we have already 
pointed out, this approach is valid only if the deviation from 
equilibrium is small, while the method which we have used is 
suitable for describing superconducting junctions with an 
arbitrary distribution function. 

The calculation of the dissipative contribution to the 
effective action SE is thus reduced to the problem of analyti- 
cally continuing the expression for the current I ", i.e., that of 
finding the function F (p ( t ) ,  p ( t  ') ). Using ( 17) and ( 18) in 
the adiabatic approximation, we find a relation which we can 
use to express F i n  terms of I ": 

Without any loss of generality we can seek the function F in  
the class of functions which are symmetric with respect to 
the arguments p ( t ) ,  p ( t  ') (otherwise, we could always put 
the result in symmetric form). In the case of a linear disper- 
sion-free dissipation we would have 

We can easily determine the function F from (20) and (2 1 ) . 
As a result we find the well-known form of the effective ac- 
tion3p4: 

+ 
4ne2 Re* T-T' 

In the case of pure superconductors, in the approximation of 
a linear response, we find, according to ( 16), 

As we have already mentioned, it is legitimate to restrict the 
calculation of I"  to the linear response only if p, is not too 
close to ~ / 2 .  At a current close to the critical value, this 
situation may arise at tunnel junctions with short circuits. In 
this case, R is the resistance of the short circuit. The poten- 
tial V(p) for such systems is 

where 
nA s in  p 

Z(p)=---- (cos cp+2r), 
eRI 

R,  
cos p,=( ? + $) -r, r= - 2R ' 

R, is the resistance of the dielectric barrier, and 2q, is the 
phase difference which parametrizes the current state 
I = I,. The quantity C * in this case is given by 

n cos q, n (3-cos 29,) 
4- 

n 
C'=C+ 

32AR, 
, p,>-. (26) 

2AR sin4 9, 4 

An effective action in the form (22) and (24) also describes 
SCS junctions with a large impurity concentration. The 
Green's functions for such junctions were calculated in Ref. 
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23. Substituting these functions into (8),  and carrying out 
an analytic continuation, we find the effective action (22) 
with potential (24), where (see Appendix 2) 

k=nA/eRd sin 2($,=3,40A/eRd, C*-c- -1, (27) 

and R, is the resistance of the junction in its normal state. In 
this case, in determining the dissipative contribution to the 
action for a current close to the critical value, we have re- 
stricted the analysis to a calculation of I "  in the linear ap- 
proximation in p,  since the value of pc for dirty SCS junc- 
tions is not very close to a/2 (p, ~ 0 . 9 8 3 ) .  There would 
evidently be no difficulty in writing an effective action for 
tunnel junctions with short circuits in the case of very dirty 
superconductors. As in the pure limit, the values of C * and k 
are determined by the sum of the contributions from the 
tunnel barrier and the short circuit, and Re, is equal to the 
effective resistance of the short circuit. 

An effective action of the type in (22), (24) thus de- 
scribes different types of superconducting weak links for 
T 4  and I, - I(Ic. The theory constructed here can be 
used to calculate the values of the parameters in (22) and 
(24) for junctions of this type. As we have already men- 
tioned, however, in pure SCS and SNS junctions and also in 
wide, extremely dirty SNS  junction^,'^ the current state 
I = I, corresponds at T = 0 to pc = a/2. In this case the 
potential V(p) is not described by (24), even at a current 
close to I, [see ( 12) and ( 13) I .  Furthermore, the dissipa- 
tion in such systems is nonlinear. To determine the nature of 
the dissipative term in the effective action we should find the 
function F. As before, we use (20) to determine this func- 
tion. 

At pure SCS and SNS junctions, at frequencies less than 
the reciprocal of the inelastic relaxation time of the elec- 
tronic states of the superconductor ( y ) ,  the current I "  is 
given by22 

In this case the function F can be found easily. Using (20), 
we find 

1 X-(P 
F= -- [o ( r )  -0 (T') 12, o= Arsh - . 

2eR x 

The effective action is 

1 
4nRe2 r-r' (30) 

At higher frequencies, the expression for I "  becomes 
more complicated. In the adiabatic approximation, it is 

i 

For this case, we restrict the analysis to an estimate of the 
dissipative term in the effective action. At frequencies o ) y  
we can replace (X - p)' in (31) by some constant? which 
is of order xZ.  After this replacement, the expression for I "  
becomes linear in p. To determine the function F i t  is con- 
venient to use the Fourier representation. As a result we find 
the dissipative contribution to the action to be 

where 

In the case of an expression for I "  which is nonlinear in p,  the 
dissipative term can be written in the form (32) by replacing 
p, by a,, where a = a(p) is some function of p. 

The quantity a, (a) serves as a generalized Matsubara 
susceptibility, which characterizes the response of the sys- 
tem to a generalized force a ( r ) .  Here we have the well- 
known relation (see Refs. 12 and 25, for example) 

where a (a) is a Fourier component of the generalized sus- 
ceptibility, which describes the kinetic properties of the sys- 
tem in the linear approximation. In determining the dissipa- 
tive contribution to the effective action SE in this approach 
we should find the functions a(o) and a(p)  corresponding 
to the current I ". In particular, for a current I "  of the form in 
(28) we have a, (a) = lo l/eR, and a(p) is given in (29). 
In the case of a linear dissipation, Eqs. (32) and (34) repro- 
duce the results derived by Leggett.26 

3. DECAY RATE OF THE CURRENT STATES 

We turn now to the determination of the decay rate r of 
the metastable current states at superconducting links. In 
the quasiclassical approximation this decay rate is 

We will restrict the present analysis to a calculation of r 
with exponential accuracy; i.e., we will determine A.  We 
know that we have2' A = S, [@ (7) 1, where @ (7) is the ex- 
tremal trajectory for the action SE [ p ( r )  ], which contains 
points p > p, - p,. We first consider the case of pure SCS 
and SNS junctions. The potential V(p) is then given by ( 12) 
and ( 13), while C * is given by ( 14). The potential V(p) in 
( 12) and ( 13) is definitely not quasiclassical near the point 
p = X .  The extremal trajectory @ ( r )  in the absence of dissi- 
pation can be found easily. In this case, withx(1, we have 
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here the corresponding equations, which are extremely 
lengthy. The condition X( 1 can be used to simplify expres- 
sion (41): 

For small instanton frequencies (smaller than or compara- 
ble to y), the effective action for pure SCS and SNS junctions 
is of the form (30). Let us assume that x is so small that the 
condition ln(x/x)>l  holds. Under the condition 
A0>ln2(x/x) /e2R, the dissipative term can be calculated on 
the extremal trajectory +( r )  found in the absence of dissipa- 
tion. In a first approximation we find 

A=A,+P ln"x/x) /ne2R. (36) 

The numerical coefficient here is 0 = 4 if (Inx 1 (In (x/x) 
and p = 1 if ln(x/x) >ln(x2/x). We note that the second 
term in (36) may prove larger than the first. There thus 
exists a region of parameter values in which the dissipative 
term has only a weak effect on the extremal trajectory, but 
the decay rate I? of the metastable state (more precisely, the 
quantityA) is determined by precisely this term. As we have 
already mentioned, expression (36) holds under the condi- 
tions 

If inequality ( 38) does not hold, expression ( 36) remains 
valid if we replace x by a quantity of orderAoe2/C *x2. In this 
case, of course, inequalities (37) must hold when the same 
substitution is made in them. 

Here 

and q is determined from the equation 
q [ 1 - C - ln(xq) ] = 1, where Cz0.577 is the Euler con- 
stant. 

We see that action (30) can be used to describe pure 
superconducting junctions with sufficiently large values of 
R C  * or at currents close to the critical value. In a real experi- 
mental situation, these conditions may not hold. If not, we 
use an approximate expression for the dissipative term, 
(32), (33), to determine A. For SNS junctions under the 
condition A, (A, the extremal trajectory +(7) and the value 
ofA are determined from (39)-(41), where a, (w) is of the 
form in (33) in the expression for n(w) .  For SCS junctions 
(A, >A), it is more difficult to determine +(r) for all 7 be- 
cause of the cubic term in the potential ( 12). However, we 
do not need to go through this calculation in order to calcu- 
late A. The function 4, in the case A, >A can be written 

Qw=4eI sin (oz ,)  {o [C'oz+aE (o )  +u (q)] I-', (43) 
For superconductors with large values of y, the inequa- 

lity x>x  may hold in a very narrow current interval near I,. where u (+) - Ax/R, and a, (w ) is found from (33). 

In this case the dissipative term in the action (30) becomes We consider the most interesting case, that of strong 

quadratic in p; i.e., (30) becomes (22) with R, = Rx2. dissipation. To determine the parameter ro, we substitute 

There is of course also a linear, dispersion-free dissipation (43) into the self-consistency equation (40). It is easy to see 
that the function u (@) is important in the integral over the 

when a suitably selected shunt is connected to the junction.' 
In the case of wide SNS junctions (A, (A)  under these con- 

frequency only at w 5 AX?. This frequency region is of mi- 
nor importance in the integral (40). Also ignoring the term 

ditions we can calculate A for an arbitrary relation between containing C *, we find, to within a factor of order unity, 
the kinetic and dissipative terms in the action. The extremal 
trajectory + is found easily: 

8nAd sin ot, 4Ad 
Q- = , Q ( a )  =C'oz+eaE ( o )  + - 

3RoQ ( a )  , 7 (39) 

where a,(w) = lol/eR,,, and the parameter r0 is found 
with the help of the self-consistency equation: 

@(a) I ,=,,,='x. (40) 

Substituting (39) into the effective action, we find 
m2 

The integrals in (39) and (41 ) can be expressed in terms of 
the integral sine and integral cosine. We will not reproduce 

Equation (44) justifies our assumption that the most impor- 
tant instanton frequencies in this situation are of order (or 
less than) AX. 

It is also straightforward to estimate A: 

A= b/e2R, (45 

where b is a numerical factor on the order of unity. Expres- 
sion (45) for A does not contain x (in this estimate, for 
course). A more accurate determination of b for SCS junc- 
tions in the case of a weak dissipation of the type in (32), 
(33) would have no special meaning since, as we have al- 
ready mentioned, Eqs. (32) and (33) themselves are ap- 
proximate in this case. The condition for the applicability of 
the weak dissipation limit is 
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Our analysis also applies to SNS junctions in the case A,(A. 
In this case, we can again use estimate (45) for A, while we 
need to replace A in (44) and (46) by A,. 

We conclude with a few comments regarding the case of 
junctions with effective action (22), (24). The probability 
for quantum-mechanical tunneling in systems with an action 
of this sort has been the subject of many papers.3*49"9928 Ex- 
act expressions have been derived for A for the case of weak 
and strong dissipation. The intermediate case has also been 
discussed in several papers.4.9.28 The quantity A was found 
numerically in Ref. 9, while an interpolation expression was 
proposed in Ref. 28 for describing the case of an intermediate 
dissipation. Here we derive an (essentially exact) simple 
expression for A which holds for an arbitrary relation 
between the effective mass and the effective viscosity. 

We replace @(T)  by a @ ( p ~ ) .  Substituting this function 
into effective action (22), (24), we find A(a$). The opti- 
mum values of the parameters a andp for the given @ (7) are 
found from the condition for an extremum of A (a$). We 
then immediately find 

where the function y ( z )  has the simple form 

(48) 
and the quantities 

are invariants of the two-parameter transformation group of 
the function a@ (PT) : 

Strictly speaking, the parameters M and N are functionals of 
the function @ ( T )  , but they change by only a few percent as z 
changes from 0 to w . In the absence of dissipation we would 
have M = 5312/6z 1.863, N = 9.5lI2. f (3)~-3=;0.780, 
while in the limit of strong dissipation we would have 
M = 2512 ~ / 9 z  1.975, N = 2-112~0.707.  

4. CONCLUSION 

This microscopic analysis yields an expression for the 
effective action describing superconducting weak links in 
terms of Green's function on a Keldysh contour. A calcula- 
tion of these functions in the adiabatic approximation shows 
that the effective action of superconducting junctions with a 
direct conductivity contains a dissipative contribution even 
in the case T = 0, because electrons are accelerated near the 

junction. In several cases (extremely dirty SCS junctions or 
tunnel junctions with short circuits), at a current close to the 
critical level, the effective potential is a cubic parabola, as in 
the case of tunnel junctions, and the dissipation is linear. The 
theory constructed here can be used to determine the param- 
eters in the effective action of such systems. In particular, the 
effective resistance may be either less than or greater than 
the resistance of the junction in its normal state. The second 
of these situations may have occured in the experiments of 
Ref. 11, where the tunneling probability was observed to be 
higher than in the case Re, = R,, where R, is the junction 
resistance in the normal state. For pure SCS junctions in the 
presence of an oxide film we have 

R,-'=R,-'+R-', R,E = R  cosZ cp,, 

where p, is given by (25). In particular, for R, (R we have 
Re, )RN. 

In pure SCS and SNS junctions at low temperatures, the 
effective potential is not quasiclassical; it is quite different 
from a cubic parabola [see ( 12) and ( 13 ) 1 ; and the dissipa- 
tion is not linear. We have calculated (with exponential ac- 
curacy) the decay rate of metastable current states at such 
junctions. When there is a definite relation among the pa- 
rameters of the system, we can switch between the weak and 
strong dissipation regimes by varying the current (I) 
through the junction (or by varying the critical current). 

We wish to thank A. I. Larkin, K. K. Likharev, and Yu. 
N. Ovchinnikov for several useful discussions. 

APPENDIX 1 

The matrices and ?in ( 1 1 ) are written in the form 

x ( t ,  t') = ' / , [ P R ( - l ) ' + P A  ( - l ) m + P ] r  
P ( t f ,  t )  ='/Z[(Q+R)-i(-l)m+(Q+A)-'(-l)l 

- (Q+")- 'Q+ (Q+")- 'I ,  

P R , A = ~ " + Q R - ' ~  sign a ,  P=Q- sign a, (A1 ) 

l = 0 ( 1 ) ,  Im t'>O (<O)  ; m=O ( I ) ,  Im t>o  (co), 
where 

& 
< = S j ( t )  j n (8 )  e x p [ - i &  ( t - t ' )  ] S j i ,  n ( e )  = th-, 

2T 

(A21 
It is easy to derive the following relations: 

g R ' A '  ( & )  = 
(E* i y )  ;,+A& 
[ ( ~ & i y ) ~ - A ~ ] ' "  ' 

q ( t )  =i cos[ 
2 

E =( "os + i<$ sin - )6(e-8'). j = l ,  2 .  
2 A d ~  
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where 

APPENDIX 2 

To determine the potential V ( p )  in the effective action 
for superconducting junctions in the adiabatic approxima- 
tion it is sufficient to know how the steady-state Josephson 
current depends on the phase difference. For extremely dirty 
SCS junctions, this dependence can be written as a sum over 
Matsubara frequencies [see, e.g., Eq. ( 2 7 )  in Ref. 181. We 
note that this expression can be written in the form 

A cos cp 
I(cp) = - t h ------ . 

::d!de% 2TcosO 

In the case T<A, in which we are interested here, integral 
( A 4 )  can be evaluated easily; we find 

The maximum value of I, = I ( p c  ) is reached at the point pc 
~ 0 . 9 8 3 .  Using (A4), we can easily find expression ( 2 7 )  for 
k. The renormalization of the capacitance C * - Cis deter- 
mined by the coefficient of the W' term in the expansion of 
the dissipation-free part of the linear response, I  ' ( w ) .  Arte- 
menko et have calculated I' for the case of dirty SCS 
junctions. The exact expression for C * - C in this case is 
extremely lengthy, and we will not reproduce it here. 

"The reason for this result is that all the terms other than the gradient 
terms can be ignored in the Eilenberger equations near the junction (pro- 
vided only that the dimensions of the junction are sufficiently small). 
See, e.g., Refs. 15 and 18. 
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