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The propagation of an intense acoustic wave at a phase transition in a ferroelectric is investigated 
theoretically. Attention is directed mainly to the case when the deformation amplitude in the 
wave is sufficient to induce the phase transition. The shape of the wave contour is obtained for the 
case of weak attenuation. The acoustic nonlinearity in a ferroelectric without the piezoeffect in 
the paraphase due to polarization viscosity is also analyzed. It is shown that for a ferroelectric 
with the piezoeffect in the paraphase the development of a shock wave should be possible, and the 
time needed for it to form is estimated. Order of magnitude and numerical estimates of criteria for 
these phenomena to be observed are presented. 

As is well known, an investigation of the propagation of 
sound in ferroelectrics provides a convenient tool to use in 
the study of their various physical properties. This is because 
the phase transition temperature, where the most interesting 
behavior is observed, is itself (generally speaking) a function 
of stress. Thus, the question arises: in the case of sufficiently 
high-intensity acoustic (i.e., stress) waves, to what extent 
can this stress dependence be neglected? In point of fact, one 
might expect that if the stress amplitude is high enough, the 
phase transition could occur in those portions of the wave 
profile where the stress exceeds a certain critical value. Pro- 
vided that the elastic moduli of the different phases are no- 
ticeably different (Ref. I ) ,  the equations of elasticity for 
such a system are significantly nonlinear. The basic goal of 
this paper will be to analyze the effects of this type of nonlin- 
earity, i.e., one with a marked threshold character, on the 
propagation of sound. 

In this paper, we will assume everywhere that the 
acoustic frequency is so low that the time it takes the phase 
transition to occur can be neglected in comparison with the 
wave period, i.e., that the transition occurs instantaneously. 
This in turn implies that the elastic modulus is a function of 
the local value of the deformation. Now, a deformation de- 
pendence of this kind can give rise to shock wave formation 
(see Ref. 2), since the possibility of formation of such waves 
is determined by the relationship between nonlinearity and 
dispersion and dissipation. As was pointed out above, in the 
case under investigation here an increase in stress above a 
certain critical value produces a significant change in the 
elastic moduli, so that we have a system with very strong 
nonlinearity. We further observe that if the amplitude of a 
sound wave entering the ferroelectric crystal exceeds a cer- 
tain value, it cannot propagate in the crystal in the form of a 
sinusoidal wave. In practice, shock fronts form immediately 
at the surface of a crystal, which guarantees the subsequent 
evolution of nonsinusoidal waves. It is interesting that this 
evolution results not in complete attenuation (see e.g., Ref. 
2) but in the emergence of a certain nonsinusoidal wave pro- 
file whose subsequent propagation is determined by conven- 
tional mechanisms. 

We remark that for the particular systems we have in- 
vestigated, the wave propagation problem is equivalent to 

that of propagation of finite-amplitude sound waves in a gas- 
liquid system near a critical point. That problem was investi- 
gated by Pokrovskii and Kamenskii (Ref. 3).  We have found 
that our results differ both qualitatively and quantatively 
from those obtained in Ref. 3; in our opinion, the differences 
are connected with a certain inconsistency in the way the 
original equations in Ref. 3 were formulated. 

Provided that the nonlinearity described above is due 
only to the change in elastic moduli at the phase transition, it 
can make itself felt even in the systems in which the equa- 
tions of elasticity theory both above and below the transition 
are themselves linear. It is well known that precisely this sort 
of behavior is characteristic of ferroelectrics which are non- 
piezoelectric in the paraelectric phase. For this type offer- 
roelectric, if no account is taken of fluctuations (Ref. 4) and 
polarization viscosity, there are no nonlinear terms in the 
equations of elasticity theory. If, however, the ferroelectric 
properties give rise to such nonlinearities even in the absence 
of the phase transition (i.e., taking place in the wave field), 
then the latter guarantee a change in the form of the wave 
(growth of harmonics and subsequent formation of shock 
fronts) even for sonic intensities below the critical value. 
Such behavior is naturally expected for ferroelectrics which 
are piezoelectric in the paraelectric phase. However, we also 
want to point out that even in the absence of piezoelectricity 
in the paraelectric phase, taking into account the polariza- 
tion viscosity can still lead to the appearance of nonlinear 
terms in the equations of elasticity when this viscosity is 
treated within the framework of Landau's theory (that is, 
without taking fluctuations into account). It is evident that 
this type of nonlinearity can manifest itself only below the 
transition point. We will investigate the growth of harmon- 
ics in this situation; for the case of ferroelectricity accompa- 
nied by piezoelectricity in the paraelectric phase, we will 
only give estimates of the time it takes shock fronts to form. 

1. THRESHOLD NONLINEARITY FOR FERROELECTRICS 
WHICH ARE NONPIEZOELECTRIC IN THE PARAELECTRIC 
PHASE 

For simplicity we will investigate the case of acoustic 
propagation in a single-phase ferroelectric; we will be assum- 
ing that the direction of propagation is selected in such a way 
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that the sonic wave is not accompanied by an electric field 
(in the presence of an electric field, as will be shown further 
on, the nonlinear effects are suppressed). Sound propaga- 
tion in such a situation is described by the following system 
of equations: 

Here, u is the elastic displacement associated with the sound 
wave, a and pT are coefficients for the second-order and 
fourth-order terms in an expansion of the free energy in pow- 
ers of the polarization P; QT ,  A,, a are the corresponding 
components of the electrostrictive and elastic-modulus ten- 
sors, along with the tensor coefficients of thermal expansion 
(we remark that the parameters /3,, QT and A, are defined 
with respect to isothermal conditions; in addition, A, is for 
the paraelectric phases ); p is the polarization vioscosity and 
c the heat capacity at constant polarization. 

Equation ( la), which is the equation of motion for the 
polarization, is obtained by neglecting spatial dispersion. 
This corresponds to fulfillment of the condition 

where w and w are the frequency and sound velocity and x is 
the coefficient of the gradient term in the free energy expan- 
sion. Equation ( 1c)-the equation of thermal balance-is 
derived by neglecting the non-adiabatic character of the 
sound wave. Later on we will neglect the polarization viscos- 
ity in Eq. ( l a ) ,  assuming that the frequency of sound is 
bounded from above by the following inequality: 

The physics of this restriction implies in particular that the 
time it takes to establish the polarization at the phase transi- 
tion is short compared to the wave period. 

To begin with, we eliminate the last of Eqs. ( la)-( l c ) .  
This gives rise to a renormalization of the parameters P, Q 
and A corresponding to a transition from isothermal to adia- 
batic values: 

As a result, we are led to the equations 

Clearly, the first of equations (5)  can have different steady- 
state solutions with different functional dependences on the 

magnitude of the deformation U = &/ax, namely1' 

P2=- (a+2QU)/P, 2QU<-a, 

P=O, 2QU>-a. 

Hence, taking into account (5) ,  it is not difficult to see that if 
/ U I,,, < I Uc / (where Uc = - a/2Q), then the system is 
described by the usual equations of elasticity. If, however, 

I U I,,, > I Uc I, then the nonlinear regime results; in this case, 
the nonlinearity is due entirely to the action of the phase 
transition induced by the wave. Therefore, the second of 
Eqs. ( 5 ) can be cast in the form 

a 
- [ A ( U )  U ]  =@, 
ax 

where 

(for definiteness we assume that Q < 0, a > 0). As is well 
known from the theory of nonlinear waves, equations of this 
kind admit solutions in the form of simple waves (see, e.g., 
Ref. 5): 

w Z ( U )  = [ A ( U )  +Ar ( U )  U ]  /p,  (7b) 

where @ is an arbitrary function determined by the initial 
conditions. We will investigate the evolution of a sinusoidal 
wave 

U=U, cos ( a t - k x ) ,  

introduced into a crystal. From (7)  it is clear that if 
Uo < I U, I we have the case of a pure sinusoidal wave which 
does not change its form during propagation. We note that 
within the framework of our approximation we neglect lin- 
ear damping of the wave caused by polarization viscosity. 
This neglect is permissible if we are analyzing the behavior of 
waves whose distance from the crystal surface is smaller 
than the absorption depth 

l = ~ a ~ / A w k z y ,  Aw=Q2/ppw,, 
wo2=A/p. 

If, however, the wave amplitude is large enough, i.e., 
U, > 1 Uc 1, the velocities of selected portions of the wave con- 
tour begin to depend on the local deformation (Fig. 1). The 

FIG. 1. Velocity dependence of a portion of the wave contour w( U) versus 
local deformation U for Q < 0, a > 0. 
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spike in Fig. 1 arises from differentiating the jump in (6) .  
The presence of a delta-function singularity in the velocity 
profile implies that a portion of the wave contour with infi- 
nite derivative, i.e., a shock front, forms practically at once. 
We note that from a physical point of view the jump in elastic 
modulus leads to the appearance of a jump in elastic stress at 
the same point, i.e., the force density at this point also di- 
verges. This, in its turn, causes the local velocity of sur- 
rounding points to diverge, and in the final analysis leads to 
the generation of the shock front. In the real situation, the 
jump in elastic modulus in (6)  is washed out. The physical 
cause of this washing out can be traced to the fact that the 
real phase transition takes place through creation of do- 
mains of the new phase whose size scale is on the order of the 
correlation length. The smallness of this distance compared 
to a wavelength ensures that inequality (2)  is satisified by a 
large margin. As a result, within the critical region a "medi- 
um" is generated with intermediate values of the param- 
eters. As regards the possible influence of viscosity in the 
critical region, we notice that the corresponding time scale, 
by virtue of inequality ( 3 ) , is much smaller than the wave 
period, so that its inclusion cannot significantly change the 
qualitative picture we describe here. As a result, the singu- 
larity under discussion is washed out, and thus the shock 
front acquires a finite width. Inequality (3) ensures the nar- 
rowness of the front compared to a wavelength.*' 

As was pointed out in the introduction, Kamenskii and 
Pokrovskii3 have investigated a problem which is analogous 
in its mathematical formulation to this one. They studied the 
propagation of sound in a liquid-gas system near the critical 
point. The authors of Ref. 3 did not undertake a systematic 
derivation of the nonlinear equations of elaticity [of type 
(6) I, but at once took advantage of a solution in the form of 
a simple wave (described by a Riemann invariant), where- 
upon they identified the velocity of the simple wave with the 
velocity of sound in one of the two media. Such an identifica- 
tion (without taking into account the nonlinear properties of 
the medium) is justified only for domains which correspond 
to a specific phase; it cannot be justified for the interphase 
boundary. In our case, this would correspond to taking into 
account only the first term in (7b). It is easy to see, however, 
that the presence of the second term is of major importance, 
since it is linked with the emergence of a secondary shock 

front which was not considered in Ref. 3. Later on it will be 
clear that this secondary front plays an extremely important 
role in the later evolution of the wave. 

It is evident that the solution (7)  is not useful in the 
shock-front region since it leads to a multiple-valued depen- 
dence on the coordinates (see Fig. 2b). In reality the wave 
evolution is determined by the motion of the shock front. We 
can obtain the following relation (see Ref. 2)  for the front 
velocity v :  

where {u} and { U }  are the jumps in elastic stress 
u = A( U )  U and deformation at the discontinuity. In order 
to determine {u) and {U} we also need an equation describ- 
ing the motion of points on the profile in the neighborhood of 
the discontinuity, where the solution (7)  can be used. Differ- 
entiating (7),  we obtain 

The system ( 8 ) and (9)  allows us to describe the wave evolu- 
tion. It is apparent that in the situation we are investigating 
this evolution will continue as long as some portion of the 
wave profile is above the linearity boundary U = U, (Fig. 
2).  At the instant that this portion disappears (correspond- 
ing to the "collision" of the two shock fronts) the steady- 
state form of the wave profile becomes fixed and (neglecting 
linear dissipation) will evolve no further. This instant satis- 
fies At- (wdAw) (n-/a). It is easy to see that if inequality 
(3) is fulfilled, then the distance over which this evolution 
occurs is shorter than the linear attenuation length. 

This profile is shown in Fig. 2(e);  the phases where the 
"kinks" shown in that figure appear are determined from the 
following equation 

s i n  v , = s i n  90-cos cp, (2xS-9,-9,) (10) 

[the derivation of ( 10) and a detailed analysis of the evolu- 
tion of the wave contour are given in the Appendix). From 
(10) it is easy to see that the steady-state contour does not 
include any zero-order harmonic, i.e., "DC level" (we note 
that the solution obtained in Ref. 3 will in general contain 
some DC level]. 

ity. For &< tanP'(?r/2) the profile evolves by omit- 
tingphase ( d ) .  ( b )  shows the multiple-valued solution 
(7)  for very short times. 
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2. HIGHER HARMONICS OF SOUND WAVES FOR SONIC 
INTENSITIES LOWER THAN CRITICAL IN FERROELECTRICS 
WHICH ARE NON-PIEZO-ELECTRIC IN THE PARAELECTRIC 
PHASE 

In Sec. 1, we investigated the appearance of strong 
acoustic nonlinearity, caused by the presence of a phase 
transition, in a wave with sufficiently high sonic intensity. 
We now want to turn our attention to the case of a medium 
which exhibits nonlinearity even for intensities below criti- 
cal, in particular a medium whose nonlinearity is connected 
with the presence of polarization viscosity. Provided that the 
paraelectric phase for Uo < I Uc 1 is characterized by P = 0, 
this nonlinearity occurs only in the ferroelectric ( P #O)  
phase. If we take viscosity into account, in place of (5a) we 
have " (ln PZ). a+PP2+2QU=- -- 

2 at  
(11) 

Iterating ( 1 1 ) in the magnitude of the polarization viscosity, 
we obtain a correction to the term P (which appears in the 
elasticity equation) : 

Substituting (12) into (5b), we obtain 

The range of applicability of ( 13) is bounded in the low- 
polarization-viscosity case only by the condition I U / < I Uc I. 
To simplify further analysis we assume, however, that 
/ U I g I Uc 1 .  In this situation we can iterate ( 13) in powers of 
U/Uc and investigate the propagation of the corresponding 
acoustic harmonics. We will confine ourselves to an analysis 
of the behavior of the second harmonic. Following standard 
procedures, we assume U2(x, t )  = UO2(x) 
x exp[2i(wt - kx) ] ; substituting this expression (along 
with the deformation which corresponds to the fundamental 
harmonic) in ( 13), we obtain for the slowly-varying ampli- 
tude UO2 the following equation: 

The boundary condition on (14) is the requirement 
Uo2(x = 0)  = 0. We remark that, strictly speaking, the am- 
plitude of the fundamental harmonic Uol itself depends on x 
because of attenuation which occurs over a distance I- w/ 
2Awkw~. We will assume, however, that the sample length 
satisfies L 5 I and neglect this dependence. As a result, we 
obtain for Uo, at x = L: 

As regards higher-frequency harmonics, the correct iter- 
ation procedure for ( 13) is quite tedious. However, it is not 
hard to see that 

U,, "-' n2 L 
0 -  ~ , ~ [ ~ - e x p ( - ~ ) ]  

It is clear3' that Uon diverges as T-Tc . 

We will now trace the evolution of the higher-harmonic 
signal at temperatures in the vicinity of T,, taking into ac- 
count both the "nonadiabatic" nonlinearity we have investi- 
gated and the formation of the shock wave. We remark that 
the characteristic behavior of the wave profile can be qualita- 
tively different for different values of x. For the present anal- 
ysis there exist three length scales which characterize the 
wave evolution: the temperature-dependent attenuation 
length of the fundamental harmonic I( T) , the "critical" val- 
ue of this length I( T, ) where the temperature T, satisfies the 
condition 2QU0, = - a (T, ), and finally the distance the 
wave propagates before it establishes a steady-state profile as 
a result of the process of shock wave evolution 2 = w/Awk. 
If Y > I(T, ), then the shock wave will form, and only the 
viscosity mechanism can give rise to nonlinear effects. The 
temperature dependence of the higher harmonic amplitudes 
is different for temperature regions where the relations 
x < I(T)  and xNl(T) are satisfied: for x > I (  T), 

UOn- (T,-T)  '-" exp ( - n x / l )  ; 
while for xg l (T) ,  

U,,- (T,-T)-" .  
In the intermediate region, it is clear that a maximum will be 
reached whose amplitude is determined by the estimates 
( 15) and (16), and depends on temperature as 
(Tc - T I I - ~ .  

If, however, Y < I( T, ), then for T >  T, a shock wave 
forms in the system. However, at a distance x > I(T, ), the 
overall character of the temperature dependence is in prac- 
tice no different from that investigated above, since on the 
one hand for points here T >  T, the harmonic amplitudes 
experience a rapid fall because of the strong attenuation of 
the fundamental wave, while on the other hand it is easy to 
convince oneself that for such conditions the order of magni- 
tude of the harmonics which arise in the course of evolution 
of the shock wave is the same as that connected with the 
"viscosity" mechanism for U- Uc . The most interesting be- 
havior is observed in the region x < I( Tt ). In this region, for 
T <  Tt a growth in harmonic amplitude is observed, which 
varies at ( Tc - T) - " , caused by the "viscosity" nonlinear- 
ity. For T >  T, a shock wave is generated in the system, and 
from that point on (for Tc - T- Tc - Tt ) the harmonics 
are associated basically with the steady-state profile. In con- 
trast to the mechanism of "viscous" nonlinearity (for which 
Uo2- U,,wrAw/w, the amplitude U,,, in the steady-state 
profile is k U,,, so that in a fairly small temperature interval 
around Tc (where Tc - T- Tc - T, ), the harmonic ampli- 
tude grows by a factor of w/Awwr. Subsequently, however, 
for a further approach to Tc there is a substantial reduction 
in the amplitude of the steady-state contour (which varies 
according to the relation Uc (T )  cc Tc - T) and so the am- 
plitude of the corresponding harmonics falls as Tc - T. Fin- 
ally, in the intermediate vicinity of Tc for I( T) -x this law of 
decrease changes over to exponential. 

3. FERROELECTRICS WITH PIEZOELECTRICITY IN THE 
PARAELECTRIC PHASE 

As is well know, in crystals of this sort there is a linear 
relationship between deformation and order parameter both 

129 Sov. Phys. JETP 62 (I), July 1985 V. I. Kozub and A. K. Tagantsev 129 



FIG. 3. Stages in the evolution of the wave profile for 
linear coupling between the wave deformation and the 
order parameter. 

above and below the transition point; in addition, the dy- 
namic behavior of the order parameter is distinguished by 
substantial nonlinearity. By virtue of the circumstances 
mentioned above, there arises a nonlinear contribution to 
the effective elastic modulus of the medium, the equation for 
which can be written in the form4' (for definiteness we pick 
the paraelectric phases) : 

In order to write ( 17) we include a term in the free energy 
expansion bilinear in the deformation and polarization; d is 
the coefficient of this term. Expression ( 17) is valid for mo- 
derately large values of the deformation U such that the fol- 
lowing inequality is satisfied: 

We remark that the nonlinear term in ( 17) is entirely due to 
the dielectric nonlinearity; the term which would be present 
if both piezoelectricity and electrostriction were taken into 
account is absent by virtue of symmetry considerations. The 
point is that piezoelectricity and electrostriction are con- 
nected with different components of the deformation tensor. 

In order to analyze the wave evolution, it is necessary to 
substitute ( 17) into the elasticity equation ( 6 ) .  The corre- 
sponding nonlinear equation was analyzed in Ref. 2 for the 
specific case of a quadratic nonlinearity. As shown in Ref. 2, 
for any value of the deformation potential a nonlinearity of 
this form leads to the formation of a shock front at a time 

The subsequent wave evolution sketched in Fig. (3)  in fact 
results in damping which is nonexponential in character (sa- 
tisfying a I/t law). In order to observe the behavior under 
consideration here, it is necessary that the time it takes the 
shock front to form, i.e., (19), be smaller than the linear 
attenuation time 

n &-dZ/a 
At,= - ---- 

o dzoy laZ  ' 

This condition leads to the inequality 

Compatibility of inequalities (20) and ( 18) is assured if the 
limit on acoustic frequency (3) is fulfilled. 

4. CONCLUSIONS 

Let us go through an analysis of the possibility of ob- 
serving the phenomena discussed here experimentally. To 
begin with, we consider some estimates relating to the 
threshold nonlinearity. First of all, a limit on sonic frequen- 
cy can be derived from inequality ( 3 ). Applied to the ferroe- 
lectric TGS, which has a phase transition of the second kind, 

this inequality corresponds to the restriction 

(here and further on the material parameters are taken from 
Refs. 1, 8 and 9). On the other hand, as we have seen, the 
ferroelectric phase transition can occur under the influence 
of the sound wave if 

IT-T,I~JT,-TCI=2Q(aaldT)-' (2Jlwhj '"  
(where J  is the wave intensity). For TGS this implies that 
IT - Tc I 5 lo-' 5'" (V/cm2). Taking into account the 
above-mentioned relations, wave evolution in TGS can be 
observed if J -  10 V/cm2, T - Tc - .03 "K and w/277 5 50 
MHz. 

As regards harmonic formation deriving from the non- 
adiabatic (i.e., viscous) nonlinearity, it is natural to com- 
pare the corresponding contribution with that of the fluctu- 
ation nonlinearity. It is not difficult to show that for uniaxial 
ferroelectrics (Ref. 4) the order of magnitude of this contri- 
bution is given by the expression: 

[ ( T l x " )  p ( a l y o )  I-'. 
Hence we find that the nonadiabatic nonlinearity is more 
important if wr>  T/Mw2, where M is the ionic mass. The 
inequality is easily fulfilled in conjunction with the condition 
wr < 1. 

APPENDIX 

We will assume that the jump in sound velocity at the 
phase transition is relatively small ( AwGw,). In that case, to 
lowest order in Aw/w,, from ( 8 ) and (9) we obtain 

where a is the nonlinear part of the elastic stress: 
Aw a=-~A-u~(u-u , ) .  

W 

In turn, (7b) gives 

In order to investigate the evolution of the shock wave, we 
will assume that the 8-function in (A1 ) is "smeared out" on 
a scale Tg U. As follows from (9) ,  the points where the front 
appears (and converts the derivative a d a x  to infinity)- 
i.e., points 1 and 2 in Fig. 2a--correspond to maximal values 
of law/aU 1; the inequality 6'w/aU> 0 corresponds to the 
leading edge of the shock, while aw/aU < 0 is the trailing 
edge. It is not difficult to convince oneself that, starting from 
Eqs. (9),  ( A l )  and (A2), the evolution of the fronts in the 
initial instants will be determined by the motion of their 
edges next to the line U = U,; this stage is concluded when 
the velocities of these edges, described by (9),  fall to the 
values corresponding to Eq. (A1 ) . This takes place during a 
time much smaller than the characteristic time for evolution 
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FIG. 4. Solution to Eq. (10) for the "kink" phase angles shown in Fig. 
2(e). 

of the wave; the smallness of this time is ensured by the 
smallness of the scale I' of "smearing-out" of the 0-function 
compared to the characteristic scale of the change in U. At 
the instant in question one can assume that within a single- 
phase domain the velocity w is constant, while the jumps 
corresponding to the fronts equal respectively - 2U+Aw/ 
wo for the leading-edge front (where U+ is the value of the 
deformation at point a in Fig. 2c) and - 2Uc Aw/wo for the 
trailing edge. Thus, for the leading edge velocity we have the 
expression 

and for the trailing edge velocity the expression 

(where U- is the value of the deformation at point b in Fig. 
2c). 

Taking into account what was said above, we can obtain 
the following equations 

Transforming to polar coordinates, i.e., rewriting U+ = Uo 
x cos p + , U- = Uo cos p- , Uc = Uo cos p,, and taking 
into account that @' = kdU/dp along with the initial condi- 
tions, p- I t =  = - pot p+ l r  = = pO, we substitute (A31 
and (A4) into (A5) and (A6), and find an equation for the 
motion of the front 

sin cpo - sin cp+ 
'2t=cp+-cpo+ --------- , 

COS cpo 

sin cpo -I- sin cp- 
Qt=-rp--rpo+ 9 

COS c p o  
(-48) 

where = Aw.k. If po < arctg(?r/2), then the evolution is 
completed by "truncation" of the peaks by the leading edge; 
the time for this truncation is determined by the condition 
p+ = - p,. The position of the trailing edge in the final 
instant of evolution, taking into account (A8), is given by 

the equation 

sin cp-=sin TO-cos cpo (yo-cp-). (A91 

Equation (A9), by means of the replacement p- = p, - 2?r 
leads to ( lo) ,  which we were required to show. 

If, however, p,>arctg(n/2), then the evolution is 
completed by "collapse" of the fronts. In this case, in place 
of (A6) we have a system of equations for the values of the 
deformation at the front boundaries. 

where U+ - is the deformation at point b in Fig. 2d). The 
initial conditions for (A10) are p+ - 1, =, = - p,, 
p- ( r =  to = - ?r + pO, where to = ( 7 ~  - 2p0)/fl. An analy- 
sis of (A10) once again leads to Eq. (A9) and correspond- 
ingly to ( 10). The form of p, (p,), satisfying Eq. ( lo),  is 
shown in Fig. 4. For different components of the deforma- 
tion tensor. 

"We remark that if the sound wave is accompanied by an electric field, 
correction terms appear in the equation of motion for the polarization, 
the inclusion of which (neglecting the background dielectric susceptibil- 
ity) leads to the change (Ref. 6) a- + 4ak$k2.  Provided that this 
correction does not reduce to zero at the phase transition point, it will 
lead to an abrupt increase in U, . 

''We note that in order to estimate the width of the shock front, it is in 
general necessary to take into account the effect of spatial dispersion 
along with viscosity, if in the corresponding region there is an abrupt 
change in the medium's characteristics. However, the exact nature of the 
mechanism which causes the front to steepen is for us irrelevant, pro- 
vided that we do not underake to analyze the detailed shape there. 

3'We note that the problem of nonlinear sound propagation in ferroelec- 
trics which are nonpiezoelectric in the paraelectric phase, and which are 
far away from the tricritical point so that fluctuations can be neglected, 
was investigated in Ref. 7. In this work it is inferred that this nonlinearity 
does not have any anomalies in the neighborhood of the phase transition. 
In our opinion, this inference is connected with certain inconsistencies in 
the use of the iterative method. 

4'We remark that although the nonlinear term in (17) is proportional to 
d 4, for a fixed value of the linear elastic modulus an increase in d leads to 
a decrease in the nonlinearity. Formally, this is connected with the fact 
that near the transition a - d  '/A,. For atomic values of the piezomodu- 
lus d2-A,,, corresponding to a nonlinear contribution comparable to 
that of the elastic nonlinearity (which in the situation under investiga- 
tion, by virtue of symmetry considerations, is appreciable only for an 
increase of U by three orders of magnitude). 
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