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The interaction of two electromagnetic waves with greatly differing frequencies is investigated. 
The dependence of the surface impedance at the low frequency on the ampli tudePof the high- 
frequency signal and on the external magnetic field strength h, is investigated. The cases of weak 
and strong nonlinearity are analyzed with asymptotic accuracy. It is shown that the nonlinear 
impedance is the product of the quasilinear low-frequency impedance and a certain factor that 
contains practically the entire dependence on Z a n d  h,. This factor can cause the nonlinear 
impedance to increase or decrease by many times in relatively narrow ranges o f Z a n d  h,. At high 
high-frequency-field amplitudes the low-frequency impedance exhibits hysteresis as a function of 
the external magnetic field h,. The results agree with the main conclusions of the experiments of 
Dolgopolov, Murzin, and Chuprov [Sov. Phys. JETP 51, 166 ( 1980) 1. 

1. INTRODUCTION 

We investigate here theoretically the interaction of two 
electromagnetic waves (one of high and the other of low 
frequency) that penetrate into a normal metal. The quanti- 
ties representing the behavior of this interaction are taken to 
be the dependences of the low-frequency surface impedance 
on the amplitude % of the high-frequency signal and on an 
external constant and uniform magnetic field h,. 

Electromagnetic-wave interaction in a metal is essen- 
tially a nonlinear effect having no analog in the linear re- 
gime. No theory has been developed for this effect so far. 
There is only one known experimental study1 of the influ- 
ence of two interacting waves on the low-frequency imped- 
ance. It follows unequivocally from this study that its results 
cannot be interpreted in terms of the known concepts con- 
cerning the dependence of the surface impedance on the 
magnetic field. The results of Ref. 1, in contradict 
the heretofore prevalent opinion that the nonlinear depen- 
dence of the surface impedance on the amplitude of an exter- 
nal wave can be qualitatively analyzed by replacing, in the 
known linear-theory expression for the impedance, the con- 
stant magnetic field by the wave amplitude or by some alter- 
nating and nonuniform wave field averaged over time and 
space. 

It is shown in the present paper that the low-frequency 
impedance of a metal in which two waves interact nonlinear- 
ly is equal to the quasilinear impedance at this frequency, 
multiplied by some factor. The quasilinear impedance de- 
pends little on the alternating-signal amplitude, just as the 
linear impedance depends little on the constant magnetic 
field. The second factor is determined essentially by the in- 
teraction conditions, and indeed contains in practice the en- 
tire dependence on the high-frequency signal 2Y and on the 
constant field h,. This dependence is found to be significant 
even at low amplitudes % (up to the threshold for the exci- 
tation of current states2). The variation of the impedance is 
then on the order of the impedance itself in relatively small 
ranges of the amplitude A? and of the external field h,. 

Our paper consists of five sections. In the second we 

derive, on the basis of transparent and quite general argu- 
ments, expressions for the low-frequency impedance under 
the conditions of nonlinear interaction of the waves. The 
third and fourth sections are devoted to an asymptotically 
accurate solution of our problem in two actual physical sit- 
uations: in the case of weak nonlinearity, when the wave 
interaction can be analyzed by successive approximation, 
and in the strong-nonlinearity regime, when the metal is in a 
current state. The results of these two sections confirm first 
of all the validity of the more general equations of the second 
section. In addition, analysis of these actual examples per- 
mits a more detailed study of the behavior of the impedance 
and leads to a number of nontrivial conclusions (fifth sec- 
tion). 

The results of the paper agree with the main experimen- 
tal conclusions of Ref. 1. 

2. STATEMENT OF PROBLEM. PHYSICAL ANALYSIS OF THE 
PHENOMENON 

1. Consider a semi-infinite metal in an external constant 
and uniform magnetic field h, parallel to the metal surface. 
The x axis is directed inward perpendicular to the surface, 
and the z axis is parallel to the vector h, (Fig. 1). Let two 
monochromatic waves, so polarized that their magnetic- 
component vectors are collinear with the magnetic field h,, 
be incident on the ?eta1 surface. The incident-wave ampli- 
tudes are Z and R, and the respective frequencies are w 
and 6. We consider the case when the anomalous skin effect 
sets in at both frequencies and the following conditions are 
satisfied: 

*<o<Y, (2.1) 
where Y is the electron-relaxation frequency. 

The electromagnetic field of the wave in the metal 

is determined by the Maxwell equations: 
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One boundary condition for the Maxwell equations at x = 0 
is written, to the accuracy with which the impedance is 
known, in the form 

U ( O ,  t )  =2% cos ot+2.% cos at. (2.4) 

The second boundary condition is the requirement that the 
magnetic field of the wave be bounded as x - +  oo . 

Of greatest interest is the effect of the high-frequency 
signal of large amplitude Z on the metal's electrodynamic 
properties resulting from the presence of the low-frequency 
signal. Such a property is the low-frequency impedance 

where EG (0) and H, (0) = 9 are respectively the ampli- 
tudes of the first harmonics of the low-frequency electric and 
magnetic fields on the metal surface [they are proportional 
to exp( - i&t) ] : 

CO - sin et 
E; (0) =l lim 1 d t ~  (0, t) e i ~ t  - 

e-0 -m 
t . 

The surface impedance (2.5) has the same physical meaning 
as in the linear situation. Its real part is proportional to the 
wave reflection coefficient at the frequency 6, and the imagi- 
nary part is proportional to the phase shift in the reflected 
signal. 

The distinguishing features of the interaction of the in- 
cident waves manifest themselves in the way the impedance 
depends on the amplitude A? of the high-frequency signal. 
The dependence on the amplitude Z is due to nonlinear 
effects of the low-frequency wave. 

The nonlinearity mechanism is connected with the time 
dependence of the distribution of the magnetic field 
H(x,t)  + h,, the sum of the wave field H(x,t) and of the 
external field h,. The total magnetic field determines the 
electron trajectories and hence the time dependence of the 
metal's conductivity. Obviously, the behavior of the magnet- 
ic field in the metal is an extremely important factor in this 
magnetodynamic mechanism of the nonlinearity. 

2. It can be seen from (2.5) that to calculate the imped- 
ance we must find the distribution of the low-frequency elec- 
tric field. Since the electromagnetic field incident on the 
metal contains two frequencies, it is natural to expect two 

FIG. 1. Coordinate frame and electron trajectories in an alter- 
nating magnetic field: 1-trapped electrons; 2-Larmor elec- 
trons. 

characteristic distance scales to appear in the metal, 
S - (c21 /3?TZwa0) 'I3 and 6 - (c21 /3.rr2500) 'I3, correspond- 
ing to the skin-layer depths at the frequencies o and &. It 
follows then from the condition &No that 

a ~ s .  (2.7) 

Herec is the speed of light, I the electron mean free path, 
and a, the static conductivity of a bulky sample. 

The electromagnetic field in the high-frequency skin 
layer has two components: one of low frequency, and the 
other of high frequency modulated by the low one. On the 
other hand, at distances of order S from the metal surface, 
only a low-frequency signal is present, together with a time- 
independent magnetic field that in general differs from h,. 
when solving the problem in the two regions of space, it is 
necessary to "join" these solutions in the transition region 
64x48. In other words, the asymptotic value of the electro- 
magnetic field of the high-frequency skin layer serves at x>S 
as an effective boundary condition for the low-frequency 
skin-layer field. We begin therefore by finding the wave field 
in the high-frequency skin layer. We consider first the "sin- 
gle-frequency" problem with only one high-frequency inci- 
dent wave. Since the conductivity depends on the wave's 
magnetic field and hence also on the time, a rectified current 
and a resulting constant nonuniform magnetic field h (x)  are 
produced in the sample. The field h (x),  equal to zero on the 
metal surface, varies with the distance S and has a value h, 
at x>S. At 2 Z >  Ihol, in particular, the so-called "current 
state" sets in and leads, under certain conditions (see Refs. 
2-5) to hysteresis of the field h, as a function of the external 
field h,. 

We consider now the "two-frequency" problem. We 
seek the distribution of the fields in the high-frequency skin 
layer in an adiabatic approximation whose validity is en- 
sured by the conditions (2.1 ). This means that the skin layer 
S is formed within times much shorter than the period 2 ~ / &  
of the low-frequency signal. To determine the electromag- 
netic field in the x 5 S region, the "slow time" can therefore 
be regarded as an external parameter. We represent the elec- 
tric component E(x,t) of the wave as a sum of two terms: 

E(x, t)=(E(x, t))+E,(x, t ) ,  (2.8) 

where the angle brackets denote averaging over the "fast 
time," i.e., integration over the period 2a/o of the high- 
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frequency wave; this integration does not affect the depen- 
dence on 5t .  

Assume that the current produced in the skin layer 6 by 
the low-frequency electric field (E(x,t)) is weak compared 
with the current due to the high-frequency perturbation 
E,(x,t) of the field. The Maxwell equations for the region 
x 5 S contain therefore only the high-frequency electric field 
E, (x,t), and the only difference between the two- and single- 
frequency problems is in the boundary condition at x = 0. 
Whereas in the single-frequency problem the total magnetic 
field at the boundary was h, + 2 R  cos a t ,  in the two-fre- 
quency problem considered the total magnetic field at the 
boundary is 

h,+2% cos at+ 2% cos Qt. 

This means that the field distribution in the high-frequency 
skin layer is the same as it would be in the single-frequency 
problem, but the role of h, is now assumed by 
h, + 2 2  cos 5t .  Therefore, whereas in the single-frequency 
problem the magnetic field at distances x%S was 
h, + h, (h,), in the two-frequency problem the total mag- 
netic field in the space 8 4 x 4 6  assumes the value 

h,+2% cos tijtfh, (ho+2% cos a t ) .  

The subsequent behavior of the low-frequency signal is thus 
determined by the solution of the Maxwell equation (2.3) 
with the "effective" boundary condition for the total mag- 
netic field 

Heff (0,  t )  =h,+2% cos tijt+h, (h0+2% cos Q t ) .  (2.9) 

Equation (2.9) can be interpreted physically. Just as in 
the single-frequency problem the constant boundary field h, 
is transformed at a distance on the order of S into a field 
h, + h, (h,), in the two-frequency problem the low-fre- 
quency boundary field h, + 2% cos 5 t  is transformed over 
the same distance into He, (0,t). Although this transforma- 
tion of the low-frequency signal is effected over a distance 
which is negligible compared with the thickness of the low- 
frequency layer, it turns out to be significant and plays a 
major role in the nonlinear-interaction problem. The last 
term of (2.9), which describes the transformation of the 
low-frequency signal in a skin layer S, determines in the final 
analysis the basic dependence of the surface impedance on 
the amplitude R a n d  on the constant field h,. 

In contrast to the magnetic field, the low-frequency 
electric field (E(x,t) ) is not significantly altered in the high- 
frequency skin layer. Solution of the electrodynamic prob- 
lem in the region x-6 yields therefore the field E, (0,t) that 
enters in the definition (2.5) of the surface impedance. In- 
deed, it can be seen from the second Maxwell equation for 
the fields averaged over the fast time 

d ( E ( x , t ) >  1 d ( H ( x , t ) )  =- - (2.10) 
ax c at 

that the (E(x,t)) changes over a distance of order S by an 
amount ( H  )5S/c. A similar estimate in the region x-6 
yields 

It follows from these estimates that the characteristic scale 

of the average-electric-field variation is 6 and that the field 
behavior is determined by the solution of the Maxwell equa- 
tions in the low-frequency region, with boundary condition 
(2.9). The value Ee, (0,t) of the high-frequency field on the 
"effective boundary" (84x48)  coincides with its value 
(E(0,t) )-on the real boundary (x  = O), accurate to terms of 
order 6/13. Equation (2.5) can be rewritten to the same accu- 
racy in the form 

where E fff (0)  is the amplitude of the first harmonic of the 
electric field at the effective boundary. 

3. The final expression for the surface impedance can be 
easily obtained if the expansion 

,-4 ah, 
h ,  (ho + 2% cos Gt)  = h, (ho) + - 2% cos Gt (2.12) 

ah0 
is valid. The effective boundary condition (2.9) then takes 
the form 

Hetf (0,  t )  =ho+h, (h,) + (l+dh,/dho) 2% cos Bt. (2.13) 
Condition (2.13) means that the low-frequency skin layer 
contains a constant and uniform magnetic field h, + h,, 
and that a monochromatic wave of frequency 5 and ampli- 
tude 

2% (l+ah,/dh,) 

is incident on the effective boundary of the metal. The ratio 
of the first 5-harmonics of the electric and magnetic fields 
E tff (0)  and H fE (0)  is therefore determined by the solution 
of the low-frequency "single-wave" problem and is given by 

where the right-hand side contains the metal impedance, 
which is generally speaking nonlinear at the frequency 6 in 
the external magnetic field h, + h, if the incident wave has 
a frequency 5 and an amplitude ( 1 + dh, /ah,)%. Accord- 
ing to (2.13) we have then 

H)B. (0 )  = ( I  + 8h,/dho) 2. (2.15) 

Substituting (2.14) and (2.15) in (2.11 ) we obtain 

2; (X, 2, ho) 

This equation agrees fully with the statement made in Ref. 1 
that the experimentally observed difference between the 
nonlinear and linear impedances is proportional at small 2 
and 5 to the derivative of the magnetic moment of the sam- 
ple with respect to the external field h,. 

Equation (2.16) allows us to determine the impedance, 
in the interaction between low- and high-frequency electro- 
magnetic waves, from the known solutions of the corre- 
sponding single-frequency problems. The solution of the 
high-frequency problem specifies the value of h, (h,), while 
that of the low-frequency problem yields the impedance at 
the frequency 5 for R = 0. We note that the major part of 
the dependence of the impedance (2.16) on the high-fre- 
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quency-wave amplitude 2? and on the external field h, is 
contained in the first factor. According to Refs. 2 4 ,  the 
quantity ( 1 + ah, /ah,), and hence the impedance (2.16), 
can increase (or decrease) by several times when A? and h, 
are varied. Moreover, the increase of the impedance may 
turn out to be quite appreciable, for if the amplitude A? is 
large enough the h, ( h , )  curve has a critical point h, = h ,* 
at which the derivative ah , /ah, becomes infinite. The im- 
pedance increase that occurs when h, approaches h ,*, how- 
ever, is bounded by the fact that the expansion (2.12) and 
the expression (2.16) for the impedance are not valid in the 
immediate vicinity of the critical point. 

4. If the expansion (2.12) is not valid, equations for the 
impedance can be obtained only in the approximation linear 
in the low-frequency amplitude, when the influence of the 
low-frequency signal field on the electron trajectories in the 
skin layer 8 can be neglected. This approximation is valid if 
one of the conditions 

IH$ ( O ) ~ < E ?  l H %  (O))J<IH2'I (2.17) 

is satisfied. Here 

1 
H$ (0) = + - $ drp cor ry6, ( l i o  4- 2% cos ip). 

2n 

where - e andp, are the charge and Fermi momentum of 
the electron. 

The first inequality of (2.17) expresses the weakness of 
the low-frequency magnetic field compared with the charac- 
teristic value g at which the electron-path length in the skin 
layer 8 is equal to the mean free path I. When the second 
inequality of (2.17) is satisfied, the electron orbit is formed 
by the constant and uniform magnetic field H:ff ,  which is 
the zeroth harmonic of the field H,, (0,t) [see (2.9) 1. 

Under conditions (2.17), the Maxwell equations in the 
skin layer 8 are linear in the low-frequency field and can be 
separately written for each of the harmonics contained in 
(2.9). The ratio of the first & harmonics of the electric and 
magnetic fields at the effective boundary is determined by 
the linear-theory impedance Z p (H zff ) at the frequency 6 
in the external constant and uniform magnetic field H 2ff : 

Substituting (2.18) in (2.10) we get 

- H f f f  (O) zp ( ~ 2 , ) .  
Zw (%, 2, ho) = - 

L?z 
Just as the main dependence of the impedance on A? and h, 
was contained in the factor ( 1 + ah, /dh,) of (2.16), the 
principal role is played here by the factor H $  (o)/*. 

Although the conditions under which (2.16) and 
(2.20) hold are different, they have a common region of 
validity. The two equations coincide in the regime linear in 
the high-frequency field when the expansion (2.12) is valid. 

We point out that expressions (2.16) and (2.20) for the 
low-frequency regime have much in common. They were 
derived using neither the anomaly of the skin effect at the 

two frequencies, nor the relations between the frequencies of 
the incident waves and the electron relaxation frequency. As 
written, expressions (2.16) and (2.20) are valid in a wide 
frequency range (at 5 ( w ) .  The various physical situations 
differ only in the explicit forms of the quantities 

h, (ho), Zp (H2E),  Z-, (0, (1 + ah,/dho) L%?, ho + h,). 

To analyze the behavior of the low-frequency imped- 
ance, we consider in the sections that follow two actual phys- 
ical situations. In Sec. 3 we analyze the case of weak nonlin- 
earity in a weak external magnetic field h,, when the 
influence of the total magnetic field on the electron trajector- 
ies is treated as a perturbation. Section 4 is devoted to the 
situation when the high-frequency field amplitude is so high 
that a current results. The expressions for the impedances in 
these two cases are obtained independently of the results of 
Sec. 2, by an asymptotically accurate solution of the prob- 
lems. This approach is by itself of interest for several reasons. 
First, the two-frequency problem can be solved by a unified 
approach, without dividing it into two single-frequency 
problems. Second, the asymptotically accurate expressions 
obtained for the high-frequency expressions in the two actu- 
al cases confirm the validity of the more general expressions 
obtained in Sec. 2. 

3. WEAK NONLINEARITY 

Weak nonlinearity implies that the amplitudes A? and 
9 are small compared with the characteristic field h at 
which the length L - [4cp,S/e(A? + 2) ] ' I 2  of the elec- 
tron arc in the skin layer S is equal to the mean free path 

%, %<<g, g=8cp,6/e12, 6= (c21/3n2000)'". (3.1) 

We assume in addition that the external constant field is also 
weak: 

I h O i ~ g .  (3.2) 

If the inequalities (3.1 ) and (3.2) hold, the electron 
trajectories are almost straight lines. The magnetic field 
gives rise only to small corrections to the current density and 
to the surface impedance. According to the results of Ref. 6, 
the Fourier transform of the current density 

0. 

j ( k ,  t )  = 2  3 &j  (2, t )  cos k r  
0 

can be expressed as a sum of two terms: 

wherej, is the anomalous skin current in the linear regime in 
the absence of a magnetic field (see, e.g., Ref. 7). The nonlin- 
ear correction Aj is smaller than j in terms of the parameter 
(H(O,t) + h,)2/g2: 

o" H ( o ' ~ + h o ) 2 t ( P ) ~ ( ~ ,  t ) ,  A j ( t )=-9-P 
1 

(3.5) 

where 
m 

p is the probability of specular electron reflection from the 
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sample boundary.' 
The solution by perturbation theory of the Maxwell 

equations (2.3) in the k-representation at the current den- 
sity (3.4), (3.5) yields 

[Z; (X, 2, ho) -2: ( O ) ] / Z ~  (0) 

Here Z is the surface impedance of the metal in the linear 
regime at the frequency 6 in the absence of a magnetic field; 
Aj, is the amplitude of that term of Aj ( t )  which is propor- 
tional to exp( - i6t).  

As a result, the relative change of the low-frequency 
impedance is of the form 

(3.7) 
where cos TZ, =p.  

We separate in (3.7) the term AZ, (A?) that describes 
the low-frequency-impedance correction necessitated by the 
interaction of the two waves (and dependent on the ampli- 
tude A? of the high-frequency field) : 

Note that (3.8) is valid at any ratio of the frequencies w and 
6. 

We now compare the asymptotically accurate expres- 
sion (3.8) with expression (2.16) obtained in Sec. 2. The 
validity of (2.16) in the case of weak nonlinearity is obvious, 
since at A?4g or h o e  the induced field h, (or h,) is a linear 
function of h, (Ref. 5)  : 

c% 

h , ( h o ) = 9 $ 6 ' 1 ~ ~  (0) IZ(p) (7) ho. 

Rewriting (2.16) in a form similar to (3.8), taking (3.9) 
into account, and neglecting terms of order (A?/g)4, we ob- 
tain 

Comparison of (3.10) and (3.8) shows that in the region 
where (2.16) [and hence also (3.10) 1 is valid, 6(w, the 
equation obtained in Sec. 2 for the low-frequency impedance 
coincides with that obtained by the asymptotically exact so- 
lution of the problem. 

4. CURRENT STATES 

1. We consider in this section the case when the inci- 
dent-wave amplitudes satisfy the inequality 

2%'>lho(+2%. (4.1) 

In addition, we assume the amplitude 2 to be so small that 
the low-frequency-signal propagation in the region x)6 is 

described by the linear-theory equations. It suffices for this 
purpose that the amplitude of the magnetic component of 
the low-frequency signal be much less at x)S than 
I h, + h ( oo ) 1, where h ( co ) is the magnetic field induced in 
the interior of the sample. The electron trajectories in the 
low-frequency skin layer are formed then by the constant 
magnetic field h, + h ( oo ), and the conductivity in the re- 
gion 64x48  is independent of time. 

Condition (4.1 ) means that the period 237113 of the 
high-frequency wave includes a time interval during which 
the sign of the total magnetic field h, + 2A? cos wt + 2 2 -  
cos 6 t  on the metal surface differs from that of the field 

h, + h ( oo ) outside the high-frequency layer: 

(2% cos ot+hof & cos @t)/(h,+h(w)) (0 .  (4.2) 

In these time intervals direction of the magnetic field in the 
skin layer 6 changes as a function of position, and a class of 
"trapped" electrons is produced in the sample. Their trajec- 
tories twist around the planex = x,(t) 5 6 in which the field 
H(x,t)  + h, reverses sign (see Fig. 1). The trapped elec- 
trons make a large contribution to the conductivity of the 
high-frequency skin layer 6 and dominate in the formation of 
the current states. Besides the trapped electrons, the Larmor 
and surface electrons also contribute to the conductivity of 
the skin layer 6. The Larmor electrons move during the 
greater part of the time along a circular orbit in the constant 
magnetic field h, + h (0) and interact with the high-frequen- 
cy-wave field for only a short time At-L /v ( v  is the electron 
Fermi velocity). 

The situation is different in the low-frequency skin lay- 
er. Its conductivity is determined only by the contribution of 
the Larmor and surface electrons, which is independent of 
time. 

2. To derive an expression for the current densities of all 
the electron groups, it is convenient to represent the Fourier 
transform of the electric field 

8 (k, 1)  -2 5 dzE (r ,  t) cos kr 
0 

in accord with (2.8) in the form of a sum of two terms 

8 (k, t )  =<8 (k, t )  )+&i (k, t) . (4.4) 

Here (8'(k,t) is the Fourier transform, averaged over the 
fast time, of the electric field characterized by values 
k-6-'. The characteristic values of k for the high-frequen- 
cy field 8, (k,t) are of order 6-'. 

According to the model of Ref. 5, the connection 
between the current density j(k,t) and the electric field 
8' (k,t) for diffusely reflected electrons takes the form 

3n oo 
j (k, t )  = -- [ l - e - Z v T a ]  -'{(8 (k, t) >+S(k, t ) 8 ,  (k, t)), 

4 kl 
(4.5) 

where 

1 - exp (-ZvT,) 
S(k, t) = I f  a(t)F (kxo) 8-, a = 

1 - exp (-2vTb) ' (4.6) 
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2% cos ot+ho+2% cos 6 t  

ho+h ( m )  

nmc 
2T, = , 2Tb= 2n[ , 

e 1 ho+h ( a )  I evHf (so, t) 

Here 2T, and 2T,, are the periods of motion of the Larmor 
and trapped electrons, and 8 ( x )  is the Heaviside unit step 
function, equal to zero at x  < 0  and to unity at x  > 0.  The 
function F(kx,) is of order ( k ~ , ) ~  at kx, 5 1 and tends to 
( x , J S ) ~  as kx,-+0, while a is the ratio of the conductivities 
of the trapped and Larmor electrons in the high-frequency 
electric field. 

The structure of the expression for the current density 
j (k , t )  is quite clear. The term proportional to (%'(k,t) in 
(4 .5 )  is the current density in the low-frequency skin layer 8, 
and the second term is the current density in the high-fre- 
quency skin layer S .  The function 8 -  in S ( k , t )  takes into 
account the fact that the trapped electrons exist only during 
the time interval defined by ( 4 . 2 ) .  The quantity a ( t )  > 1 
describes the decrease of the period of the trapped electrons 
compared with the Larmor ones. The function F(kx,)  re- 
flects the character of the spatial dispersion (the k-depen- 
dence) of the trapped-electron conductivity. 

3. The Maxwell equations (2 .3 )  with current density 
(4 .5 )  and with allowance for the boundary condition (2 .4 )  
are written in the form 

43$ cos ot+4% cos st-kH (k, t )  

+s (k, t j dH::yt) 1 9  
1 dH(k, t) 

ki7 (k, t) = - 
at ' 

where 
m 

H (k, t) =2 J d s ~  (2, t )  sin kz, 
0 

H (k, t) =(H(k, t) )+HI (k, t ) .  

We divide the first Maxwell equation in (4 .8 )  by S ( k , t )  and 
average it over the fast time. To find the low-frequency im- 
pedance we need know only the first & harmonic of the elec- 
tric field, $, ( k )  = - i&H, ( k ) / c k ,  with characteristic 
values k  -8-'. We therefore write down the resuli of averag- 
ing for kS< 1 : 

To obtain (4.10) we have used the relation 

2%(S-1 (0, t) cos ot>/(S-' (0, t )  >=h, (h,+2% cos a t ) .  

(4 .11)  

Equation (4.1 1 ) is valid in the adiabatic approximation and 
is a generalization of the equality 

2n/o 2 n r 0  

2 B  5 dt~- l (o ,  t) cos o t  / J dtS-' (0. t) =h. (h,) , 
0 0 

obtained in Ref. 5 for 9 = 0 ,  to the two-wave problem. We 
point out that the induced field h ,  (h , )  of the single-particle 
problem generally speaking is unequal to the field h  ( w ) in- 
duced when the waves interact. We obtain h  ( co ) by separat- 
ing the zeroth harmonic from (4.10) : 

1 
h ( ~ )  = --$ dcph, (h0+2% cos cp). (4.12) 

2n 

We note that the total magnetic field h, + h  ( co ) in the inte- 
rior of the metal coincides with the result (2.18) for the field 

The first 6 harmonics of the fields are determined from 
(4.10) and from the second Maxwell equation of ( 4 . 8 ) :  

- 3n200G 
H ;  ( k )  = 2X@ ( X , X ,  h,) k  - i -- - [ c2kii 

where 
%-i 

(0 (%,%, h,) =I + -$ dcp cos cphm (h,+2% ccs cp). (4.14) 
2z 

From this we obtain for the impedance (2 .5 )  

2; (%, 2T, 1%) 

The factor @ coincides with H tff ( 0 ) / 2  [see (2.18) 1, while 
the second factor of (4.15) is the linear impedance of a metal 
in an external magnetic field h, + h  ( ). Expression (2.20) 
for Z,, obtained from general considerations of the wave 
interaction, agrees thus with the asymptotically correct 
expression (4 .15) .  The condition that be small, which is 
necessary for (4 .15)  to be valid, also coincides with Eqs. 
(2.17) that bound the region where (2.20) is valid. 

5. ANALYSIS OF RESULTS 

Let us study the salient features of the behavior of the 
low-frequency impedance of a metal in the current state. We 
analyze the function @, which is the one containing the prin- 
cipal dependence of the impedance (4.15) on the high-fre- 
quency field amplitude Z and on the external constant mag- 
netic field h,. The function h ,  (h, )  needed for this analysis 
was obtained in Ref. 4  for various values of the nonlinearity 
parameter b = ( g / 2 Z ) 1 1 2 .  For simplicity, we assume that 
94%. 

The characteristic h, interval over which the function 
h ,  (h, )  changes is Z. Exceptions are the vicinities of the 
singular points h, = h  ,*, at which Iah, /ah,/ = w . Far from 
these points, the expression (4 .14)  for @ can be simplified by 
expanding h  , in powers of A?: 

The quantity ah, /ah, can be an arbitrary function of 
Z and h,. There exists, in particular, a region in which 
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FIG. 2. 

If (5.2) is satisfied the real part of the surface impedance 
becomes negative. This means that the amplitude of the 
wave of frequency 5 reflected from the metal boundary ex- 
ceeds the amplitude Z of the incident wave. In other words, 
the wave interaction can cause an appreciable energy trans- 
fer from the high- to the low-frequency field. In this case, 
however, the question of the stability of such states arises. 
The answer to this question calls for a special investigation 
outside the scope of the problems solved in the present paper. 

As h, approaches the singular point h ,* the impedance 
increases abruptly. In the vicinity I h, - h ,* 1 ( 2 Z  Eq. (5.1 ) 
no longer holds for the function Q,. An analysis of the exact 
expression (4.14) shows that the value of Q, at the maximum 
point is of order 

I-a ah, m r n  - ) sign - . 
ah0 

Here a characterizes the singularity of the function h, (h,) 
at the point ho = h ,*: 

2% (5.4) 

At the values of 2? corresponding to the onset of hysteresis 
of the induced field h, , and h, (h,) curve has two singular 

points h ,* * h (Fig. 2), for which a = 1/3. In all other 
cases a = 1/2. 

It can be seen from (5.3) that as the ratio %/A? de- 
creases the maximum value of the high-frequency imped- 
ance increases (Z r a Q,,,, ) . This increase is described by 
Eq. ( 5.3 ) until IZ, I becomes of the order of the impedance 
Zv, = 4r/c of the vacuum. Our results are not valid if 
IZ, I 2 Z,,, since they were obtained by using the boundary 
condition (2.4) under the assumption that IZ, I (Z,,, . 

A characteristic feature of the low-frequency imped- 
ance is its hysteresis as a function of the external magnetic 
field h,. Figure 2 shows schematically a set of hysteresis 
loops of @ ( Z , Z , h , )  for different values of the amplitude 
Z (of the nonlinearity parameter 6).  For the sake of clarity 
we show alongside the @(ho) curves schematic plots of h, 
(h,) at the same values of the parameter b. We note that the 
"pre-hysteresis" @(h,) curve corresponding to b = 0.25 
agrees with the experimental curve of Ref. 1. The depen- 
dences, observed in Ref. 1, of the signal amplitude ( a Z r) 
on Z,%,w, and the temperature agree qualitatively with 
our result (4.15). 

In conclusion, we consider one more possible formula- 
tion of the wave-interaction problem. It is easier to have in 
experiment a situation in which the nonlinearity is due to the 
large amplitude of the low-frequency signal ( P s i ) ,  and the 
amplitude of the high-frequency wave is small (Re). The 
high-frequency impedance is then the linear impedance at 
the frequency o in a magnetic field h, + 2% cos 5t, aver- 
aged over the period of the low-frequency signal: 

Such a situation is of less physical interest than the case con- 
sidered in the present paper. Indeed, as can be seen from 
( 5.5 ) , the impedancez, ( p , h 0 )  depends little on the ampli- 
tude p. 

We thank E. A. Kaner for interest in the work and for a 
helpful discussion of the results. 
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