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The static and dynamic manifestations of magnetoelastic coupling in the noncollinear antiferro- 
magnet UO, are investigated theoretically. It is shown that only optical magnons interact effec- 
tively with sound, whereas all three acoustic magnon modes are weakly coupled to the elastic 
subsystem. The existence of a linear piezomagnetic effect in this compound is predicted. A meth- 
od of calculating the magnon spectrum in the vicinity of symmetric Brillouin-zone points is 
demonstrated. The method takes full account of the crystallographic and magnetic symmetry of 
the system. 

INTRODUCTION 

Coupled electromagnetic waves have been the subject 
of many studies. The history of this topic is reported in con- 
siderable detail in Refs. 1 and 2. Almost all the available 
papers (with the rare exception, e.g., of Refs. 3-5) dealt 
only with collinear or almost-collinear magnetic structures 
whose noncollinearity is due to weak relativistic interac- 
tions. All the effects possible for these cases have been calcu- 
lated in detail and analyzed. The magnetoelastic effects in 
antiferromagnets that are noncollinear even in the exchange 
approximation (these include UO,, whose magnetic struc- 
ture is shown in Fig. 1 ), however, have hardly been studied. 
This holds in particular for the dynamic aspects of the prob- 
lem. 

Our investigations have shown that the character and 
dynamic manifestation of the magnetoelastic coupling in 
UO, differ in principle from those previously known from 
the analysis mainly of collinear and weakly noncollinear 
ferro- and antiferromagnets. 

The magnon spectrum of multisublattice magnets can 
contain, besides acoustic modes, also exchange (optical) 
modes whose activation is of purely exchange origin. If the 
magnetic structure is collinear (albeit in the exchange ap- 
proximation), only acoustic magnons interact effectively 
with the sound6 (of course, all these exchange interactions 
are much stronger than the relativistic ones), and this inter- 
action is relativistic and vanishes in the exchange approxi- 
mation. 

The situation in UO, is the exact opposite. The acoustic 
magnons (which exist in three modes in this case) hardly 
interact with the sound in the region of small wave vectors. 
At the same time, the exchange magnon mode is strongly 
coupled with the elastic subsystem, with the coupling deter- 
mined by exchange magnetostriction that is quadratic in the 
spins. This offers, in particular, a rare opportunity of excit- 
ing optical magnons by oscillations of the elastic subsystem. 

MAGNETIC ORDERING IN UOz 

The UO, crystal symmetry is described by the Fm3m 
Fedorov group. The uranium ions occupy a-type positions 
that coincide with the fcc lattice sites. The magnetic order- 
ing in UO, corresponds to the irreducible star k , ,  (in the 

notation of Ref. 7) with rays 

where b,, b,, and b, are the reciprocal-lattice vectors. The 
rays k,, k,, and k, are parallel to the x ,  y, and z axes of the 
Cartesian frame of the figure. 

Following Refs. 8 and 9, we introduce the ferro- and 
antiferromagnetism vectors 

the wave number k in the parentheses determines the trans- 
lation symmetry of the corresponding vector. 

The rest of the analysis will be carried out in the quasi- 
classical approximation and for temperatures T4 T N .  We 
can use therefore the normalization conditions 

or, in equivalent form [with (2)  taken into account], 

FIG. 1. Magnetic structure of UO,. The ion magnetic moments are paral- 
lel to the body diagonals of the cube. 
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The components of the vectors F and Lp (p = 1,2, 3) 
are distributed over the irreducible representations of the 
paraphase symmetry group as follows8: 

Ll,, LIZ, LZZ, L2zr L3xr LSyr (5) 

F,, F,, F,. (6)  

From the standpoint of exchange symmetry," the re- 
presentations (4)  and (5)  pertain to one permutation repre- 
sentation (exchange multiplet) . 

The magnetic ordering in UO, corresponds to the irre- 
ducible representation (4) .  In this case 

The magnetic-symmetry group of such a state is Pn3m1. The 
corresponding primitive cell is shown in Fig. 1 and contains 
four crystal-chemistry cells. 

Taking into account the transformation properties of 
the vectors F and Lp , as well as the normalization conditions 
(3),  we can obtain the following expressions for the homo- 
geneous part of the exchange energy8.16: 

We have left out of (8)  the terms biquadratic in spin: 

since, as shown in Ref. 16, they are of no significance for the 
investigation of the static and dynamic properties of UO, in 
the absence of an external field. 

In the exchange approximation, the ground state is de- 
termined' by the parameters B and D of (8).  The constant B 
in UO, is large and positive, meaning that in the ground state 

The type of ferromagnetic ordering is determined then 
by the sign of the constant D in ( 8). 

At D < 0 we have 

The orientation of the magnetic structure relative to the 
crystallographic axes is determined by the relativistic inter- 
actions. To within terms quadratic in the spins, we have8 

In the case of UO, we must put a > 0, and have according to 
(lo)-( 12) 

for phase 1 (D < 0)  

In UO, phase 2 is observed (see Fig. 1). We point out 
once more the distinguishing feature of the magnetic order- 
ing in UO,. In the exchange approximation, the relative ori- 
entation of the sublattice magnetizations is uniquely estab- 
lished only with account taken of the relatively weak 
biquadratic exchange. This gives rise to singularities in the 
spectrum of the exchange (optical) magnon mode (Ref. 9) 
and also to exchange-striction anomalies of the magnetoelas- 
tic properties. 

MAGNETOELASTIC INTERACTIONS IN U02 

The magnetostriction quadratic in the spin is deter- 
mined in the exchange approximation, with allowance for 
the normalization conditions (3),  by the two terms 

where e = el + e ,  + e, is the trace of the strain tensor. We 
use for the components ua8 of the strain tensor the Voight 
notation 

el=u,, e2=u,,, e3=u,,, 
e4=2uyr, e5=2uxr, e6=2uZy. 

The elastic-strain energy density for cubic-syngony crystals 
is 

c 4 4  + - (e42+e,2+e62) 
2 (16) 

or, equivalently, 

where 

The quantities e, {l,f), and {e,, e,, e,), respectively, 
constitute the basis of irreducible representations A ,, , Eg , 
and F,, of the point group 0, 

From the thermodynamic viewpoint, allowance for 
X:: [Eq. ( 15) 1 is responsible for two significant effects, 
viz., exchange-striction renormalization of the elastic modu- 
lus c of ( 17) and of the biquadratic exchange constant D. In 
fact, from the condition that 

be a minimum with respect to the strains e ,  at fixed direc- 
tions of the lattice anharmonicities we get 

Substituting (21 ) in (20), we obtain the static renormaliza- 
tion of the biquadratic-exchange parameters, and in particu- 
lar for phase 2 (D > 0) 
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We note that if phases 1 and 2 are stable [see Eqs. ( lo) ,  ( 1 1 ) 
and ( 13 ), ( 14) ] D must also be replaced by D * [Eq. (22) 1. 
Exchange magnetostriction can thus lead to the onset of the 
collinear phase 1 even at D > 0. 

On the other hand, from the condition that A?"" be a 
minimum with respect to F and L, at fixed strains en we 
obtain in the noncollinear phase 

Substituting (23) in Z'" of (20), we obtain the static 
renormalization of the elastic moduli in phase 2, due to the 
exchange magnetostriction 

One should expect the renormalizations (22) and (24) 
to be quite appreciable, since A is the constant of the ex- 
change magnetostriction that is quadratic in the spins, and 
the biquadratic-exchange parameter D is usually not very 
large. At the very least, it is customarily assumed that 

There is no exchange-striction renormalization of the 
elastic moduli in phase 1 (in our approximation). 

We consider now relativistic magnetostriction. When 
account is taken of the normalization conditions (3),  the 
relativistic magnetostriction quadratic in spin is given by 

In the analysis of the relativistic effects we can confine 
ourselves to spin-quadratic terms in the Hamiltonian 

%=%m+%me+Bel , 

Here 

am,=&:: +a$::. (29) 

We consider only the magnetic ordering ( 14) [phase 
(2)],  which is actually observed in UO, (a  more detailed 
analysis, including that of phase 1, is given in Ref. 16). 

Simple calculation shows that allowance for the first 
two terms of (26) reduces to renormalization of the aniso- 
trOpy constant a: 

The renormalization of the elastic moduli is determined 
by the last term of (26), which can be rewritten for phase 2, 
without allowance for anharmonicity, in the form 

where account is taken of the fact that the normalization 
conditions (3) lead to 

From the condition that 2? [Eq. (27) ] be a minimum with 
respect to F we have at fixed strains e n ,  taking (31) into 
account, 

These equations determine the linear piezomagnetic effect in 
UO,. Eliminating F from Z with the aid of (32) we obtain 
the magnetostriction renormalization of the modulus c,,: 

This result is somewhat unusual. The point is that the 
shear modulus is appreciably renormalized in any collinear 
magnetic structure, viz., 

Ap-h2/Ha, (34) 

where Ha is the anisotropy field. In particular, vanishing of 
the anisotropy (in a spin-flip phase transition) is always ac- 
companied for a collinear magnet by vanishing of a certain 
shear modulus, hence also of the velocity of transverse sound 
in a definite direction. Nothing of this kind occurs in UO, 
(i.e., in phase 2), where the renormalization is very small 
and is insensitive to the anisotropy. 

As for the renormalization of the moduli cll  and c,, [see 
Eqs. (24) 1, they are quite appreciable in UO, and are of 
exchange-striction origin; this is likewise possible only in a 
crystal with an exchange-noncollinear magnetic structure. 

According to (32), a magnetic field should produce in 
UO, shear strains that are linear in the field. Namely, at 
H(BL, we have 

w h e r e F ~ H B  -'. In the immediate vicinity of T,, where the 
para-process is significant, the normalization conditions do 
not hold. The linear piezomagnetic field is then determined 
by a contribution biquadratic in spin to H,, , of the form 

SPECTRUM OF COUPLED MAGNETOELASTIC WAVES IN UOz 

We investigate in the sections that follow the dynamics 
of the coupled magnetic and elastic subsystems at low values 
of the wave vectors q. We consider only the noncollinear 
magnetic ordering (14), which is just the one observed in 
UO,. 

It is shown in Ref. 9 that the magnon spectrum of UO, 
has one exchange (optical) mode and three acoustic ones. 
The exchange mode corresponds to oscillations of the quan- 
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tities 

where the tilde indicates the oscillating part of the corre- 
sponding projection of the vector L, or F. The three acoustic 
magnons correspond respectively to oscillations of the type 

In addition, there are three acoustic phonon (sound) modes, 
which are coupled in the genera1 case with the magnons. 

As to the optical phonons, we shall neglect their contri- 
bution to the spin dynamics and assume that the correspond- 
ing frequencies exceed greatly the spin-system oscillation 
frequencies. 

COUPLING BETWEEN OPTICAL MAGNONS AND SOUND 

In this section we use the exchange approximation 
throughout. In the continual approach, the system Hamil- 
tonian is 

A = I d  v%? = I du (22' +%:: (39) 

where &:' and .&' are the exchange and exchange-stric- 
tion contributions to the energy density, and X,, is the elas- 
tic-energy density ( 16). We have 

The last two terms of (40) describe the inhomogeneous ex- 
change interaction. We have left out of (40) the interaction 

It makes no contribution to the exchange-mode dynamics in 
UO, if there is no external field. 

The carets of the symmetrized operators $ and ip in 
(40) and (41) mean that 

To investigate the spin-system dynamics we use a meth- 
od proposed in Ref. 17 and developed in Ref. 16 for the case 
q#O. A brief description of the method and the equations 
used are given in the Appendix. Using the Hamiltonian (39) 
and going through the steps (A8)-(All) ,  taking into ac- 
count the commutation relations (A13), we obtain the fol- 
lowing equations of motion that describe the optical magnon 
mode with allowance for the exchange magnetostriction in 
the long-wave region 

where iim8 is the oscillating part of the strain tensor. The 
equations of motion for L ,, andz  ,, are obtained from (43) 
by cyclic permutation of the indices: 

Rather than writing them out, we proceed directly to the 
Fourier transforms with respect to the temporal and spatial 
variables. The result is 

where 

Finally, to obtain a closed system of equations we must 
derive equations of motion for the displacement-vector com- 
ponents 9, , ii, , and 9,. According to Ref. 1 we have 

Taking (15) into account and taking the Fourier trans- 
forms, we get 

The system of Eqs. (45) and (48) describes fully the 
dynamics of coupled magnetoelastic waves in the exchange 
approximation for small wave vectors q. It is found that in 
this approximation the acoustic magnons are coupled 
neither with sound nor with exchange magnons, so that their 
analysis can be deferred to the next section, where relativis- 
tic effects will also be taken into account. 

In the absence of magnetoelastic coupling (at A = 0) 
the dispersion law for dispersion magnons is given, accord- 
ing to (45), by 

osyq )  =Q,Q,+QxQz+Q,Qz=La2 (2L02D+aq2+Pq,2) (2L02D 
+'aq2+Pqt) +Lo2 (2L02D+aq2+Pq,2) (2L02D+aqZ 
+pq12) +LoZ(2La2D+aq2+pq~) (2LoZD+~q2+pqzZ). (49) 

A similar expression is given in Ref. 9, where it was derived 
with allowance for nearest-neighbor exchange interaction. 

We shall write out a dispersion equation that describes 
coupled magnetoelastic waves only for two directions of the 
wave vector, - q11[ 1001 and qll[ 1101 : 

The optical magnon interacts here only with longitudi- 
nal sound. The corresponding dispersion equation is 

where 

The solution of (50) is 
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As q 4  the solution w -  (q)  corresponds to a longitudinal 
quasiphonon w  --m, as A 4 ,  while w  + (q) corresponds to 
an optical quasimagnon w ++a, as A+O. 

It can be easily deduced from (52) that at small qllx the 
longitudinal quasisound velocity is 

wherec:, is the effective elastic modulus of the renormalized 
exchange magnetostriction [see (24) 1. The transverse 
sound, on the other hand, does not interact with the magnet- 
ic subsystem and its frequency is determined in the usual 
manner 

ofi=ofz= (c,,p-')"'q (¶I/ [I001 1, - (54) 
2) q [I101 (q,=q,=q/l2; q,=O). 

An optical magnon interacts in this case with longitudi- 
nal sound and with one of the transverse acoustic modes 
(with the mode having u k ) .  The corresponding dispersion 
equation is 

where 
of=[ (~,j+cjz-t2cr,)/2p]'"q--~iy, 

(56) 

One other transverse acoustic mode (with ullz) does 
not interact with the magnetic subsystem; its dispersion law 
coincides with ( 54). 

The dispersion equation (55) is bicubic. We write down 
only the solutions that describe two quasiphonon modes at 
small q: 

where 

here cz, are the effective elastic moduli of Eq. (24), renor- 
malized by the exchange magnetostriction. 

According to (55), at large q one can no longer treat 
longitudinal and transverse quasisound separately [pure 
transverse sound in the ql( [ 1001 direction has a polarization 
ullz and a dispersion law (54) 1 .  

Let us summarize. In the exchange approximation, only 
exchange magnons interact with sound in UO,. This interac- 
tion in quite strong, with a coupling parameter proportional 
to A2D-'. 

According to (22) and ( 14), in the exchange approxi- 
mation the UO, magnetic structure is stable when the pa- 
rameter D * = D - A2/2c is positive. D * vanishes at the sta- 
bility limit of phase 2. It is of interest that the activation of 
the exchange magnon mode remains finite in this case (even 
in the exchange approximation! ) 

o, (0 )  =3'"L,%z~-1 at D*=O, (60) 

but on the other hand the quasisound velocity v:, [Eq. (59) ] 
vanishes in directions that are crystallographically equiva- 
lent to [ 1101. The reason is that the loss of system stability at 
D * = 0 corresponds to a phase transition that according to 
the symmetry classification is a proper ferroelastic transi- 
tion even in the exchange approximation.6 In contrast to the 
example analyzed in Ref. 6, such a phase transition realizes 
the passive two-dimensional irreducible representation of 
the phase-2 symmetry group (an invariant that is cubic in 
the order parameter is present) and cannot be a second-or- 
der phase transition. 

ACOUSTIC MAGNONS; ALLOWANCE FOR RELATIVISTIC 
INTERACTIONS 

When the acoustic modes of the magnon spectrum and 
their coupling with sound are considered, it suffices to retain 
in the Hamiltonian the terms quadratic in the spins 

where pel is defined as before by ( 16) or ( 17), and km is 
given in the approximation quadratic in the spin by 

We have left out of (62) the exchange term (41) as well as 
the gradient terms of relativistic origin. These approxima- 
tions are justified if the exchange interactions are much 
stronger tkan the relativistic ones. 

For Zm, in (61 ) we have ultimately 

We have left out of (63) the terms whose role reduces to the 
renormalization (30) of the anisotropy constant a .  We re- 
gard this constant 2s already renormalized and begin with 
relations (63) for Zm, . 

The subsequent analysis of the magnon-spectrum 
acoustic modes, with allowance for the magnetoelastic cou- 
pling, follows exactly the same procedure as in the case of 
exchange (optical) magnons (see the preceding section). 
The pertinent calculation is described in detail in Ref. 16. We 
present only the results for the spectrum of coupled magne- 
toelastic waves in the particular case q1)[100], i.e., for 
q = q, . This particular case illustrates quite fully the general 
situation. 

At qllx the following modes are independent (at small 
4 = q z ) ;  

1 ) F, , i ,, , ,,, (acoustic magnon) 

w ( q )  = [2BLO2 (a+aqZ) 1 '", (64) 
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2) c, L ,, , L ,, , ii, (acoustic magnon + transverse 
sound) 

where 

the solutions w +  and w - correspond as q+O to the acoustic 
quasimagnon and to the transverse quasisound. The quasi- 
sound velocity is then (as q-0) 

where ckC, is defined in (33). 
3) I;;, i l y ,  L,, , hY (acoustic magnon + transverse 

sound). 
Relations (65)-(67) hold for this case without change. 
4) i i 2 y ,  Lj,, ii, (exchange magnon + longitudi- 

nal sound). These modes are described by relations (50)- 
(53) of the preceding section. 

Thus, at qllx we have a strong coupling of the longitudi- 
nal sound with the exchange magnon and a considerably 
weaker coupling of the transverse sound with two acoustic 
magnon modes. The third acoustic magnon mode is not cou- 
pled with the sound at all. 

The situation is similar in principles for all other direc- 
tions of the wave vector q, viz., only exchange magnons in- 
teract effectively with the sound. We recall once more that in 
collinear (or in weakly noncollinear) antiferromagnets the 
situation is the exact opposite-the acoustic magnons inter- 
act effectively with the sound, whereas the exchange mag- 
nons are hardly coupled with the sound. 

APPENDIX 

Calculation of the magnon spectrum by the technique of 
symmetrized spin operators 

Group-theoretical methods have long been productive 
in the calculation of elementary-excitation spectra and in the 
determination of normal vibrational modes.18.13 They in- 
volve essentially a transition from the ordinary dynamic var- 
iables that describe small deviations of a system from equi- 
librium to linear combinations of these variables, which 
transform in accordance with irreducible representations of 
the ground-state symmetry group. In investigating small os- 
cillations of a spin system it is possible, within the standard 
spin-wave2' approximation, to advance farther and use effec- 
tively the crystallomagnetic symmetry of the system even 
before transforming to the operators of small deviations of 
the spin system from the equilibrium position. We have in 
mind here the method we proposed previously17 for deter- 
mining the normal modes and the corresponding oscillation 
frequencies of a spin system. There, however, as in all subse- 
quent papers where this method was used (see, e.g., Refs. 6 
and 13), only homogeneous oscillations were considered, 
i.e., modes - with q = 0. We develop below a natural general- 

ization of this method to include the case when the magnon 
wave vector q is in the vicinity of an arbitrary symmetric 
point of the Brillouin zone. The advantage of the method 
described below (as well as of its particular realization)17 is 
most pronounced in investigations of complex noncollinear 
magnetic structures. 

The starting point is the quantum-mechanical equation 
of motion for the spin operator of an isolated ion 

where a = x ,  y, z: f and x indicate respectively the magnet&- 
cell coordinate and the magnetic-ion position in this cell; H 
is the system Hamiltonian expressed in terms of spin opera- 
tors. The spin operators satisfy the commutation relations 

[Sa(f, x ) ,  Sp(ff, xf)]  =i&,p$T(f, ~ ) 6 t r , 6 ~ ~ . .  (-42) 

In the continual approach we let 

where v, is the magnetic-cell volume; we then obtain in lieu 
of (A2) 

[Sa (r, x ) ,  SB(rf,  xf)  ] =iea~Ts7(r, 3t) 6 (r-I") 6rxn. (A4) 

We note further that the analysis of spin excitations in the 
vicinity of symmetric Brillouin-zone points can be easily re- 
duced to the case of small q, i.e., to an investigation of the 
vicinity of the point q = 0 of the Brillouin zone. It suffices for 
this purpose to choose not a primitive magnetic cell, but an 
expanded unit cell such that the corresponding symmetric 
point of the Brillouin zone is now the center of a new reduced 
Brillouin zone. The sublattice index x will now run through 
a larger number of values, and the number of magnon modes 
will increase correspondingly. Their identification, how- 
ever, will encounter no misunderstandings. A similar proce- 
dure is used also to investigate the vicinity of t h ~  point q = 0 
of a magnetic Brillouin zone of a structure in which the mag- 
netic and chemical cells do not coincide. In this case the 
initial cell of the group G,, must be chosen such that all the 
magnetic structures under investigation not cause its multi- 
plication. 

Taking all this into account, we confine ourselves to an 
investigation of long-wave spin-system excitations. In the 
continuum approach, the Hamiltonian H of the magnetic 
subsystem is 

where the energy-density operator * ( r )  is expressed in 
terms of the spin-density operators of the magnetic sublat- 
tices 

s (r, x) =v,,,-'s ( f ,  X )  (-46) 

and of their derivatives. Here v, is the volume of the expand- 
ed unit cell. 

We transform next to symmetrized operators f ( r )  in 
accordance with the scheme 
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where the index x runs through all the values inside the ex- 
panded unit cell. Thus, the operators r of (A7) effect the 
irreducible representations of the paraphase symmetry 
group for the point q = 0 of the reduced Brillouin zone. 

This transformation must be carried out both in the 
expression for the density of the Hamiltonian Z ( r )  (in 
which case its structure is radically simplified), and in the 
equations of motion (A1 ) . We get then in place of (A1 ) 

The commutation relations for the operators ? ( r )  are 

- (u') (N") A (M") [i:;) (r), I',,,,, (rt) ]=itI(r--rf) ~ A * ~ ~ j ~ ~  I's,,jzl (r) ,  

the mixing coefficients A are determined from (A7) and 
(A4). 

After calculating the commutators in the right-hand 
side of (A8), the equations of motion are linearized in the 
spirit of the random-phase approximation; this is equivalent 
to the substitution 

A B . .  . 6 = + A B . .  . C + A B  . . . C S A B . .  . C + . . . + A B . .  . (7. (A101 

Here 
A = ( A > ,  B = ( B > , . .  ., C=(C>,  

A=A-A, B=B-B, .  . . , (7-6-C. 
( A l l )  

The terms of the type AB. . . C in the right-hand side of 
the equations of motion (AS) cancel out if the ground state 
(i.e., the mean values) is correctly chosen. The equations of 
motion are reduced as a result to a system of linear homogen- 
eous equations. This system breaks up automatically into 
blocks which correspond to oscillations of different symme- 
try. 

A useful relation for the calculation of the commutators 
in the right-hand side of (A8) and for the subsequent lineari- 
zation of the equations of motion in accordance with (A10) 
is 

It was derived using the fact that integration is carried out 
with respect to the variable r' [see (AS) 1. 

The method described above enables us to use not only 
the symmetry of the ground state (i.e., of the magnetic or- 
dering), but also the higher symmetry of the paraphase. The 
greaiest simplification is obtained when the spin Hamilton- 
ian H is expressed in terms of the symmetrized operators r, 
and also when the linearization procedure (A10) is used. 
For noncollinear magnetic structures it becomes unneces- 
sary to introduce a local coordinate frame for each of the 
magnetic sublattices. 

In conclusion, we present commutation relations of 
type (A9) for the symmetrized operators 

F (r) = $1 (r) + 5 2  (r) $ & (r) + 9 4  (r), 
L~ (r) = Sl (r) + S2 (r) - 3 3  (r) - s 4  (r), 

(-412) 
L~ (r) =:I (r) - S z  (r) + 3s (r) - s 4  (r), 
L~ (r) = Sl (r) - S2 (r) - Ss (r) + S 4  (r), 

namely, 

[ L i a  (r) , 22s (rf) ] =i&,e7tI (r-r') (r) , 

[ Liz (r)  , LtB (r') I = [ Pa (r) , P O  (rf)  I =icue7S (r-r') P7 (r)  , 
(A131 

[Pel (r ) ,  Li, (r')] =i&,erS ( r - r f ) L  ( r ) .  

The remaining relations are obtained from (A13) by the 
cyclic permutation 1+2+3+1 of the indices. 

"The necessary exchange-symmetry-theory data are contained in Refs. 
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isotropy are of no significance. 
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