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The correct expression for a tunneling source is obtained taking account of the macroscopic phase 
coherence in a Josephson junction and the imbalance between the electron-hole excitation 
branches. The canonical forms of the electron-electron, electron-phonon, and phonon-electron 
inelastic collision operators are derived with allowance for the imbalance. The phenomenon of 
quantum oscillations of a tunneling source is discussed. This phenomenon gives rise to the oscilla- 
tion of the electron distribution function in the nonequilibrium layer of the junction between two 
superconductors, as a result of which a chemical-potential-shift "jitter" arises and satellites are 
also formed in the radiation scattered by the junction. The spectral dependence of the phonon 
fluxes from a nonequilibrium junction is studied with the use of the results obtained in a numerical 
analysis of the kinetics of the electron-hole excitations. It is shown that the previously discussed 
phonon-deficit effect should occur even when the superconductors contain excess quasiparticles 
produced by the field from the pair condensate. The behavior of the current in a nonequilibrium 
junction is also analyzed. The current-voltage characteristics in the near-threshold voltage re- 
gime are calculated. Allowance for the nonequilibrium effects may affect the qualitative disagree- 
ment between the well-known experimental results obtained in the measurement of the "interfer- 
ence" (phase-difference dependent) conductivity of the Josephson junction and the predictions 
of the equilibrium theory of tunneling. 

$1. THE NONEQUlLlBRlUM JOSEPHSON JUNCTION 

The nonequilibrium phenomena that occur in Joseph- 
son junctions are of great interest from the standpoint of the 
microscopic theory. Not only has this subject not been suffi- 
ciently fully studied, it turns out on closer examination that 
many questions have not been touched upon at all. Among 
these questions is, for example, the question, considered in 
the present paper, of how the macroscopic phase coherence 
in the junction affects the kinetics of the single-particle exci- 
tations. 

The existence of effects connected with the action of 
external fields on the Josephson junction is of great interest 
from the practical point of view as well. Let us note that, 
even in those cases when there are no external nonstationary 
fields, the voltage potential applied to the junction is an ef- 
fective unbalancing agent. This is especially true of thin-film 
junctions with finite geometry. In this case the excitations 
produced during tunneling cannot be resorbed because of 
the fast diffusion process (which occurs in the presence of 
massive banks), and the relaxation into the equilibrium state 
occurs on account of the presence of a uniform kinetic mech- 
anism. At the same time the phonon subsystem in a thin-film 
junction can be considered to be in a state of equilibrium, 
since the nonequilibrium phonons manage to effectively 
leave the film without exerting a reciprocal influence on the 
electron subsystem. Thus, the model with a phonon bath can 
be employed in the study of the kinetics of the electron sub- 
system of nonequilibrium junctions. 

Furthermore, junctions obtained by the deposition 
technique usually contain a fairly large number of elastic- 
scattering centers, so that we can use the "dirty" limit ap- 
proximation, and thus significantly simplify the analysis. 

Under these conditions, which we shall assume below, 
it is possible to make considerable progress in the study of 
the nonequilibrium properties of Josephson junctions. In or- 
der to carry out a consistent investigation of the kinetics, we 
derive a kinetic equation (§§2,3, and 4) for the single-parti- 
cle excitations in the junction (the expressions given in the 
literature are not sufficiently complete and at times incor- 
rect), after which we find it possible to study a number of 
effects that occur in the electron ($85 and 6) and phonon 
($7) subsystems. 

62. BASIC RELATIONS 

We shall use the approach proposed by ~ l i a s h b e r ~ '  for 
describing the kinetics of nonequilibrium superconductors. 
The matrix Green's function gee_ ,  (p, k),  integrated over 
the energy variable {, is determined by the dynamical equa- 
tions 

,. A A A 

i = g Z A - Z R g + g R E - Z g A ,  

where 

the causal functions being found fiom the diagrammatic ex- 
pansions in which the propagators and the energy eigenval- 
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ues are either all retarded, of all advanced; we do not give 
these expansions here so as not to encumber the discussion. 
The matrix product in ( 1) should be understood as a con- 
traction over the internal variables. Thus, in the coordinate 
representation ( l=r, t )  

h 

The self-energy parts c ( ~ , ~ '  in ( 1 ) are additive quantities: 

and according to (3) ,  describe the interaction of the elec- 
trons with the impurities and the phonons and with each 
other, as well as tunneling. They will be specified below. 
Separating out the virtual electron-phonon processes in ( 1 ), 
and introducing the order parameter A 
= (2; + 8 ; 4 ) ( e - p h )  /2, we obtain up to unimportant renor- 

m2izations the following expression for the 1 1-component 
ofre&-,: 

I,,-,= { - fA'+Af' )ce-w+ { - i ( g y f  y g )  +i  ( - f 6++6f+ )  

+ g ~ x f  -ph' - ~ t ( ~ - p ~ ) ~ A - f R . p ~ - P ~ )  + 2 l e - p h )  f+A)EE-w+IE1s-O, 

(4)  
Here 

where I:,-, no longer contains 2" - p h )  explicitly. The dis- 
sipation functions y, 6, and BI:2-ph' in (4)  have characteris- 
tic values of the order of the electron decrement in energy 
terms (e.g., y- T 3 / 4  ), and smaller in order of magnitude 
than the modulus of the parameter A in almost the entire 
temperature region of existence of the latter. This requires 
that we make exact allowance for the contribution of the 
expression in the first curly brackets in (4)  before going over 
to the kinetic approximation. We find on the basis of the 
equations for the off-diagonal elements in ( 1 ) that 

2 (&-a)  ( f - f + )  E e - w = ~ k  ( f+f+)  ,,-,+{i (fT+iiifi) - i ( y f + f f y )  
+ i  ( 6+g -g6 )  + i ( g6+-6g )  + ( gA-A 'g )  ( gA ' -Ag)  

[Here we have used the procedure employed in the deriva- 
tion of (4), and I" also does not contain B'e-ph' explicitly.] 

Assuming that scattering by the impurities is the most 
rapid kinematic process, let us average over the angular vari- 
able in the expressions ( I ) ,  (4 ) ,  and (6); the self-energy 
parts corresponding to the interaction with the impurities 
then drop out from the diagonal (with respect to the energy 
variables) quantities I: and I :, and we can go over directly 
to the derivation of the kinetic equations in the isotropic 
approximation. We first of aJl discuss the connection 
between the diagonal function g, and the nonequilibrium- 
electron distribution function. 

Let us consider the normalization condition obtained in 
Ref. 2, which in our notation has the form 

Using the fact that the condition ( 7 )  is identically fulfilled 
when we set 

where ;(E) is an arbitrary (2  X 2) matrix function, which 
can be expanded in terms ofthe Pauli matrices, and t hey 'A)  
are defined by the relation (2),  with 

(8'-A') '" sign ~ + i t i ,  &'>AZ 
E s R = -  ( L A ) . =  { i ( A 2 - ~ 2 )  '" E'<A' ' 

we obtain 

where f, ( E )  and f2 (E)  are related to a  (E) .  Using the proper- 
ties 

R ( A )  ge=g-s ,  gp(*) = - g .  , (11) 

which follow from ( 1 ), we find from (9)  that 

gc=f i  ( 8 )  ( g R - g A )  E + f 2  (8)  ( g R - g A )  c ,  

g c = - f t  (8) ( g R - g A )  e + f 2  (-5) ( g R - g A )  e. 

From this we can, bearing in mind ( 11 ), conclude that f, ( E )  

is an even function of E, whereas f2(&) should be an odd 
function. Thus, in the general case Cf2+O) the g, function 
has a part that is an even function of E. This even-in energy 
terms-part is responsible for the electrochemical-potential 
shift Sp in the electron system under conditions of nonequi- 
librium, as can be seen from the expression 

m 

which is derived in Ref. 1 from the condition for electrical 
neutrality. 

As follows from ( lo),  the equality f, = f ,f is satisfied 
when f, a 0(E2 - A2). Therefore, it is convenient to set 

(we shall hereinafter drop the prime). Introducing now the 
function n, of arbitrary form, we can write 

Since the function n, is to be determined below, let us use the 
arbitrariness in the choice of the coefficients a , , ,  by defining 
them in such a way that the expressions for the&'R2A' assume 
the form 

1 e 10 (&"A2) A  sign ~0  ( E ~ - A ~ )  
U s  = ( k z - * z ) l b  - '  = (EZ-AZ) '" a (14) 
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With such a choice of the quantities, a choice which we can 
make without loss of generality, on the one hand we can 
obtain Eliashberg's expressions1 by going over to the limit, 
and, on the other, the function n, will have the same obvious 
meaning as the energy distribution function for the excita- 
tions in pure superconductors. 

Proceeding from ( 14), we can arrive at the following 
formula: 

where the dot denotes differentiation with respect to time. 
Thus, the right-hand side of ( 15) can be expressed in terms 
of the 1 1-element of ( 1 ), which, with allowance for the off- 
diagonal channel, contains the following effective collision 
integral: 

(e-ph) (e -e)  (T) 
I,E ( & ) = l e g  +Z,E +I,E , (16) 

where the last two terms possess the structure 

A - -~gz,A+f~iA-zlRf-z,Rg+gRz,+fal-zl~A-~zgA 
2& 

+f+z,A+gz,+A-Z2+Rg-T,,Rf++f+RZl+gRZ2+-Z2+gA-xlf+A). 

(17) 
A similar type of expression folows for the first term in ( 16); 
we do not give it here so as not to encumber the exposition. 

53. TUNNELING SOURCE OF THE DEVIATION FROM 
EQUILIBRIUM 

The self-energy parts corresponding to tunneling in a 
SiS' junction are obtained in Ref. 3, and have, in our nota- 
tion, the form 

where Y is the "tunneling frequency" connected with the 
conductivity of the tunneling junction and the function g' 
pertains to the injector superconductor S '. We shall assume 
that the superconductor S under investigation is maintained 
at potential V = 0, while the injector is maintained at a time- 
independent potential of V ( e  = fi  = 1 ). Then on account of 
gauge invariance, the presence of Vgives rise to phase factors 
in the g functions; as a result we find 

xiR'*) (t l t2) = (v ln )  gr(R,A) (t l t2) exp[-iV(tl-t,) 1, 

We must substitute these expressions into (17) and carry 
out a Fourier transformation with respect to the time, as- 
suming that the temporal dependence is quasiclassical. Us- 
ing the following rules that then arise (here a = g'R* A ) ,  

f 'R, A )  , etc., p = 2Vt): 

aZz+Z2,-va, exp (-iq) ; Z2a-+Z2,+,a, exp (-iq) , 

~ ~ + a - ~ , : - ~ , a ,  exp ( iq )  ; aZ,+-+Z,f;+,a, exp ( iq )  , ( 19) 
- - 

Zla=aZl-+aeZlp-v; Xla=aX,-+a,Zl,-,, 

we find, going over to the distribution function n, , the tun- 
neling source in the form 

v 
u,fi, = -[Ql (n,,)sin q+Q2 (n,,)cos 9+Q3 (n,.) I ,  &>A, 

2 

(20) 

where the factors Q, are equal to 

Ql (n.,,) =v,w,-v (2n,,-I) €)(Ar-E+V)O(A'+E-V) 
-v,w,+, (2n,,-I) e (A1+&+V) e (A1-E-v ) ,  

(22(nke) =v ,v , -~[  (n,,-n,-v)+ (n,,--n-,+v) I@(&-V-A') 
- u , u , + ~ [  (n,+,-n,A+ (n-,-,-n,,) ] ~ ( E + V - A ~ )  

+ u , u ~ - ~ [  (I-n,,-n,-,)+ (I-n,,-n-,+,) ] e ( v - & - A r ) ,  
Q3(n+?)  =[ (n,-v-n*,) (ueue-v*u,-,+u,=tl) 

+ (n-,+,--n+,) ( U ~ U ~ - ~ + U , - ~ - U , T ~ )  10 (E-V-A') 
-[ (nis-ne+Y) ( u e ~ e + v T ~ e + v - ~ e = t I )  

+(n,,-n-,-,) (u,u,+,~u,+,+u,~1)]0(~+V-A') 
+[ (I-n,,-nv-,) ( u , u ~ - ~ * u ~ - ~ - u , ~ ~ )  

+ (l-n,E-n-,-+,) (ueuv-,*uy-,+ ue*l) ~ ~ ( V - E - A ' ) ,  

(21 
with w, = AO(A2 - &')/(A2 - E') 'I2. Let us emphasize 
that we have chosen the quantity E in the expressions (20) 
and (2 1 ) to be positive definite, and that, with this choice, n, 
is the distribution function for the electronlike excitations, 
n - , is the distribution function for the holelike excitations, 
and all the functions with shifted arguments pertain to the 
superconductor S '. Let us enumerate some properties of the 
source (20) and the consequences that follow from them. 

1. In the A' = 0 limiting case the source (20) goes over 
into the expressions obtained for the NiS junction in the 
eq~ i l i b r i um~ ,~  and nonequilibrium6 approximations. Typi- 
cal of such a source is the property 

as a result of which the nonequilibrium n, function exhibits 
a branch imbalance, i.e.,n, # n  - , , and there arises a chemi- 
cal-potential shift, which, according to ( 12) and ( 14), is 
equal to 

m 

6p= 5 (n.-n-.) dr. (23) 
A 

2. The property (22) is maintained in the A' #O case for 
both the equilibrium and nonequilibrium sources, this being 
the case even for the symmetric SiS junction. At the same 
time this property is not present in the source obtained by 
Kirichenko et a/.,' which has figured in a number of papers 
(see Elesin and Kopaev's review papers). As follows from 
(23), the property (22) can be directly established in experi- 
ment. 

3. A nonequilibrium junction between superconductors 
is characterized by another interesting property, namely, the 
quantum oscillations of the excitation source in time-with 
the Josephson frequency in the case of a small deviation from 
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equilibrium and with frequencies that are multiples of the 
Josephson frequency in the case of a strong deviation from 
equilibrium. As a result, the chemical-potential shift (23) 
should also oscillate in time (for more details, see Ref. 9) .  

4. A large-scale effect can occur in the case of scattering 
by a junction of a high-frequency external field (electromag- 
netic or acoustic). Since the oscillating terms in (20) are 
nonzero even in the equilibrium approximation, the already 
linearized correction to the excitation distribution function 
undergoes oscillation with the Josephson frequency, as a re- 
sult of which the single-particle excitation density oscillates, 
and satellites should appear in the radiation scattered by the 
junction (for greater details, see Ref. 10). Let us note that, if 
in the case of scattering of electromagnetic waves we can 
attempt to qualitatively explain the presence of the satellites 
as also being due to the presence of a variable Josephson 
current in the junction, in the case of scattering of acoustic 
waves the occurrence of satellites is unambiguously connect- 
ed with the single-particle excitation density oscillations. 

5. The presence in (20) of oscillations connected with 
the macroscopic phase coherence in the superconductors de- 
serves a special comment. It is usually assumed that, in the 
case of single-particle excitations, whose behavior is de- 
scribed by the kinetic equation, the role of the off-diagonal 
long-range order in the superconductors amounts to the ap- 
pearance of coherence factors (in the transition matrix ele- 
ments connecting one state with another) and the appear- 
ance of a singularity in the electron level density. As shown 
above, direct dependence of the excitation distribution func- 
tion on the coherent phase difference can also occur in non- 
equilibrium superconductors. Of interest in this connection 
are experiments that would allow the detection of the effects 
enumerated in Subsections. 3 and 4 (a  more detailed exposi- 
tion can be found in Refs. 9-1 1 ) . 

54. CANONICAL COLLISION INTEGRALS 

Using the expressions found in Ref. 1 for the self-energy 
parts, we can derive the inelastic collision integrals. 

1. The inelastic electron-electron collisions 

In this case the self-energy parts have the form 

where the operator L is defined as 

the curly brackets have the structure 

and the quantities A and B are connected with the scattering 
amplitudes for the normal excitations at the Fermi surface 
(their explicit form in the Born approximation is given in 
Ref. 1). Using (14), (15), (17), (24), and (25), we find 
after lengthy but straightforward transformations that 

where the Ei ( + E )  have the form ( i  = 1,2, 3) 

Ei=Mi ia i (e l ,  E Z ,  ~ 3 )  fMi2'ai(-&it 82, 8 3 )  

+Mi3ai  ( E ~ ,  -82, ~ 3 )  +Mi4ai ( e l ,  -&2, ~ 3 )  3 (26) 
with 

al= ( I - n + t )  ne,nC2ne3-n*~ ( l - n e , )  ( l - n ~ ~ ?  (I-nea? 
+ ( I - n + & )  nz,n-ezn-e3-n*8 ( l - n e , )  (I-n-eJ (1-n-83) 7 

a 2 = a l  ( n , , - + l - n , , ) ,  a3=al (ne ,+f -nE, ,  ne3+l-ne3). 

The coefficients M j  ( + E )  are given by the following expres- 
sions: 

The numbers a and b figuring in (27) are connected with A 
and B by the relation 

The elementary events described by (26) have quite an ob- 
vious meaning. Thus, in the addend proportional to M i  in 
the expression for E, the first term describes, in the case 
when E has the positive sign, the process of fusion of three 
electronlike excitations into one excitation of the same type. 
In the case when E has the negative sign three electronlike 
excitations produce, on fusing, an excitation on the hole 
branch. As a result, the difference between the numbers of 
electrons and holes changes by two units in the first case and 
four units in the second. Similar processes involving a 
change in the difference in the excitation numbers are de- 
scribed by the other terms in the addend in question, which is 
why it vanishes in the normal metal ( M i  0 for ui = 1 and 
vi = 0).  Such a clear representation of the collision integral 
is a consequence of our choice of the form of the function n, . 
2. Colllsions of the electrons with the phonons 

The electron-phonon collision operator is also reduced 
to the canonical form when n, is chosen by means of the 
relations ( 14). Let us immediately give here the result for 
this operator (it is obtained in the particle representation in 
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Ref. 6): 
m m 

X [ ( D , ~ ( E ' - E - o )  +@z6 (E-E'-0) +@36 (&+&'-a) 1, 
(Dl=(ueu,~-v,u,~*l) [ n . ~  (I-n,,) (I+N,)-n,,(l-n,,) N,] 
+ ( I I . , U , ~ - U , U , ~ ~ ~ )  [n-,/ (I-n,,) (I+N,) -n,, (I-n-,()N,], 

(28) 
02= (u ,u ,~-u ,u ,~*~)  [ n , ~  (I-n,,) N,-n,, (I-n,()  ( I f N , ) ] .  
+ ( u 8 u e ~ - u c u e ~ F l )  [ n - e ~  (l-n,e)N,-n+s (I-n-&t) (l+N,) 1 ,  
(Ds= (u.u..+u,u,~Fl) [(I-n,,) (I-n,c)N,-n,,n,, ( I f N , ) ]  
+ (u8ue<+ u ,u , / *~ )  [ (I-n,,) (I-n-.() N,-n,,n-,, (I+N,) 1 ,  

where N, is the phonon distribution function and A is the 
dimensionless electron-phonon interaction constant. 

3 Collisions of the phonons with the electrons 

We shall also need the Phonon-electron collision opera- 
tor. Using the general relations given in Ref. 12 and the ex- 
pressions ( 14), we can obtain 

m 

Tch o n  
l ( ~ ~ - ~ '  (N. q )  = -- j j d a  deJ{6 (e+&'-mq) T i  

8 E R  A 

The operators (26), (28), and (29) generalize the canonical 
form, obtained in Refs. 1 and 12, of the collision integrals to 
the case in which there is an imbalance in the populations of 
the electron-hole excitation branches in a nonequilibrium 
superconductor. 

55. NONEQUiLlBRlUM TUNNELING CURRENT 

1. The nonequilibrium Josephson effect 

The expression for the tunneling current in an equilibri- 
um superconducting junction was derived by Josephson l3 

(as well as by a number of authors in subsequent papers, in 
particular, Refs. 14- 18 ), and has the form 

j=j,  sin q+j, cos rp+j,,. (30) 

Let us derive the expressions for thej amplitudes of this 
current in the nonequilibrium case. Integrating the 1 l-com- 
ponent of Eq. ( 1 ) over e, averaging over the angle variable, 
and integrating the resulting divergence of the total tunnel- 
ing current over the volume 7 of the electrode, we find, 
using ( 14), that 

j,=k d~v .v , :~[  (1-n.-n-.) sign e 
- m 

L=K Jde {u.u.+v [ (1-n.-n-.) sign e 
- m 

- (l-n,+V-n-,-v) s i g n ( ~ + V )  ] 

+u,+ve (&'-Az) (n,-n-,) sign E-u,e[ (E+v) z - - ~ J 2 ]  

x (n,-,-n-,-,) sign (e+V) ), 

where k = vYmp,e/$. In the equilibrium approximation 
these amplitudes go over into the well-known expressions 
obtained in Refs. 14-18; in the case A' = 0, into Bulyzhen- 
kov and Ivlev's expression for the nonequilibrium tunneling 
current in a NiS j ~ n c t i o n . ~  Using the fact that (30), (31) 
should go over to Ohm's law at T >  Tc, we find that k = 1/ 
2eR and, consequently, 

where R is the resistance of the junction in the normal state 
and N(0) = mp,/2$. 

The nonequilibrium amplitudes ( 3  1) allow us to de- 
scribe a number of interesting effects. We shall show below 
that allowance for the deviation from equilibrium affects, in 
particular, the so-called sign paradox of the "interference" 
conductivity of the Josephson junction. 

2. On the sign of the cos cp-term in the Josephson current 

Let us recall that in (30) jo sin p is the nondissipative 
pair supercurrent, jw is the dissipative normal-excitation 
current, and jlcos p is the dissipative "interference" term, 
which depends on the phase difference p across the junction. 
The presence of the p-dependent dissipative part leads to a 
situation in which the Q-factor of the Josephson "plasma" 
oscillations'9 in the junction is phase dependent. This has 
allowed the presence in the Josephson current (30) of the 
second term to be experimentally established," but, con- 
trary to the prediction of the equilibrium r n i c r ~ t h e o r y , ~ ~ ~ ' ~  j, 
turned out in the experiment to be opposite in sign to jw . On 
the one hand, the numerous experiments that have subse- 
quently been performed have shown that this discrepancy is 
characteristic of almost all weakly coupled junctions (see, 
for example, Refs. 21-25), and, on the other, detailed inves- 
t i g a t i o n ~ ~ ~ ' ~ '  have established a strong dependence of the 
interference conductivity on temperature: the conductivity 
changes sign in a very narrow temperature region, becoming 
positive in the vicinity of Tc 

The attempts that have been made to date to explain 
this phenomenon (see, for example, Refs. 28 and 29) leave 
the question of the nature of the effect open. Hida and Ono's 
explanationz9 of the data of Pedersen et al.,'O on the basis of 
the time-dependent Ginzburg-Landau equations is open to 
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question mainly because of the subsequently established 
strong temperature dependence and reversal of the sign of 
the interference conductivity. The problem in question has 
therefore been considered "one of the most contradictory 
consequences of tunneling theory. "27 

Let us find out what the occurrence of a state of non- 
equilibrium in the junction leads to. In the experiments re- 
ported in Refs. 26 and 27 the constant voltage potential 
across the junction was equal to zero ( j <j,), but the junc- 
tion was located in a microwave electromagnetic field. Let us 
therefore go over in (3  1 ) to the limit V --+ 0, and let us deter- 
mine the equilibrium function n, from the kinetic equation 
in the presence of an external high-frequency field. Under 
these conditions we can neglect the branch imbalance and 
set n& = n - , in (3  1). As a result, from (30) and (3  1 ), we 
obtain for the conductivities [ai  = lim ., , ( ji / V )  ] the ex- 
pressions (in units of 2/R) 

dn. E~ d~ 
(32) 

(the junction is, for simplicity, assumed to be symmetric). 
The fact that the conductivities are functionals of the deriva- 
tives dn, /a& makes them very sensitive to the form of n, . 
This is enhanced by the presence of the resonance denomina- 
tors in (32). From (32) we obtain, after simple transforma- 
tions, the general relation 

Since near Tc n, + . -- 1/2 and a, is small [ a ,  ( Tc ) = 01, it 
follows from (33) that the u, values are shifted as a whole 
into the region of positive values, and can become negative 
only under conditions of strong deviation from equilibri- 
um." It remains to investigate the behavior of a, ( T). In the 
experiments reported in Refs. 20,26, and 27 the microwave- 
field frequency w, was comparable to the Josephson plasma 
frequency and exceeded the characteristic damping rate (in 
energy terms) y of the quasiparticles (we assume y to be a 
constant), where the linear response of the junction was ana- 
lyzed. 

Therefore, it is sufficient to use here the linearized solu- 
tion of the electron kinetic equation.32 As a result the non- 
equilibrium correction to the distribution function can be 
written as 

where a = (e/c)'D AdAd is the strength of the action of 
the field on the electrons, D is the coefficient of diffusion of 
the electrons, and A, is the vector potential of the field, 
which is assumed to be monochromatic. Setting 
n, = nE(0) + n,(') (n,(O) is the Fermi distribution function 
for the electrons) in the expression (32) for u, gives rise to 
divergent integrals for both the equilibrium and nonequilib- 
rium parts of the conductivity, for the obvious reason that 
the attenuation is not taken into account. Smearing out the 
singularity in the density of single-particle states by virtue of 

FIG. 1. Temperature dependence of the interference conductivity u,, 
(35) [in units of Q ln(2A/y); we have set aZ/ J = 2mdAI. 

the damping rate y, we find 

The resulting dependence (35) is depicted in Fig. 1. 
Thus, the Eliashberg mechanism,32 by redistributing 

the equilibrium excitations in energy space, leads to a situa- 
tion in which the derivative an, /d& oscillates between posi- 
tive and negative, and there occurs as a result a change in 
sign of the interference conductivity as the temperature is 
varied under conditions of fixed (and small) external-field 
intensity. (The quasiparticle conductivity behaves similarly 
in the process, but it does not change sign.) This conclusion 
is in accord with the experimentally observed 
From (35) we can find the temperature To at which u,(  T) 
changes sign. Assuming that a2/y2 > wd2A (otherwise the 
expression (35) does not change sign), we obtain 

(here we have used the relation A = a(  1 - T/Tc )'IZ for 
T- Tc , with a z 3.2Tc ) . The strong dependence of To on the 
external-field intensity awo2 is rather unexpected. Refer- 
ences 26 and 27 contain no data for the direct determination 
of a dependence of the type (36), but the large spread in the 
experimental data does not exclude the existence of such a 
dependence. In this connection, the measurement of T,(a) 
would be desirable, since it would help us to better under- 
stand the nature of the "interference" conductivity para- 
dox." 

§6. KINETICS OF THE ELECTRONLIKE EXCITATIONS 

Let us now consider the steady-state solutions to the 
kinetic equation 

O = ~ , l i , = l ( ~ - p ~ )  (n,) +QT (n,) (37) 

in the case when the voltage potential across the junction 

limiting ourselves to the case of the symmetric junction, 
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FIG. 2. Distribution functions for the electronlike n + , (upper curves) 
and holelike n - (lower curves) excitations in the pre-threshold regime 
at different temperatures: a )  and b) at T =  0.4 A,; c )  and d )  at 
T = 0.3 A,. In all cases v/y = 0.1; V/A, = 0.1. The dashed curve is a plot 
of the Fermi distribution; A, = A ( T =  0, V= 0).  

when we can set in (20) n, = n'_, and n -, = n:, which 
simplifies the analysis. 

In almost the entire temperature range from 0 to T,, 
with the exception of a very narrow region around the transi- 
tion point, the times corresponding to (38) are small com- 
pared to the times characterizing the single-particle excita- 
tion kinetics. Therefore, for the voltage potentials (38) the 
effects connected with the coherent phase difference in the 
excitation system are negligible (cf. $3). Nevertheless, the 
region of voltage potentials (38) is quite interesting, since 
the applied constant field is capable of breaking up the pairs 
in the course of the tunneling. 

We numerically solved Eq. (37) with allowance for 
(2 1 ), (28), and the self-consistency equation for the order 
parameter A, which has the form 

(the computational procedure is described in Ref. 11 ). The 
nonintegrable singularities in QT ( E )  and J ( E )  were cut off 
by allowing for the damping y in the density of single-parti- 
cle states. 

FIG. 3. Same as in Fig. 2, but for a different set of temperatures: a )  and b) 
T = 0.15 A,; C )  T = 0.1 A, (in the last case the behavior of the electron- 
like excitation branch is practically the same as that of the holelike excita- 
tion branch). 

FIG. 4. Distribution functions for the electronlike (continuous curves) 
and holelike (dashed curves) excitations in the post-threshold regime at 
temperature T = 0.1 A,; v = 0.001 y. The applied voltage potential is 
equal to: 1) V= 1.9 A,; 2) V= 2.01 A,; 3 )  V= 2.5 A,. The degree of 
imbalance increases as the voltage potential is increased from the thresh- 
old value ( V = 2 A= 1.84 A,). The equilibrium-excitation distribution is 
not shown: under the present conditions the Fermi function is exponen- 
tially small. Also not shown is the small "tail" of the nonequilibrium 
electronlike-excitation distribution function in the region E > V - A. 

The behavior of the excitation distribution function is 
illustrated in Figs. 2 and 3. Let us first of all point out the 
existence of an imbalance between the electronlike (n, ) and 
holelike (n - & ) excitations, which occurs in both regimes 
below ( V< 2A) and above ( V> 2A) the threshold. In the 
below-threshold case the excitation distribution function ex- 
hibits "spikes," and, furthermore, tends to undergo a global 
shift into the region of higher energies. This, in the final 
analysis, stimulates the superconductivity, and produces the 
phonon-deficit effect (an effect which is similar to what oc- 
curs under the action of a microwave field32,34). AS the tem- 
perature is decreased, the relative degree of nonequilibrium 
increases, and an ever-increasing number of peaks separated 
by distances Vin E space appear on the distribution function 
(Fig. 3). In the region of very low T, where the thermal 
smearing is negligible, the distribution function acquires a 
"saw-toothed" character, and is different from zero in the 
region where the equilibrium Fermi function is negligible. 
Notice that the number of significant spikes increases as the 
voltage potential decreases (cf Figs. 2 and 3). 

Beyond the threshold regime almost the entire bulk of 
the excess excitations is concentrated in the region above the 
gap (see Fig. 4), the "tail" adjoining this region being ex- 

FIG. 5. Dependence of the nonequilibrium gap A on the voltage potential 
V. For the curves 1 and 2 T/A, = 0.1 (the same curves are obtained at T /  
A, = 0.2) and v = 0.01 y; for the curve 3 T = 0.4 A, and v/y = 0.1; the 
dashed line indicates the equilibrium value. 
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FIG. 6. The current-voltage characteristic with hysteresis (T= 0.2 A,; 
v = 0.01 y ) .  

tremely small. Therefore, we can speak of a "quasilocalized" 
nature of the nonequilibrium quasiparticle distribution. This 
localization, which does not disappear when the thermal 
smearing is taken into account, leads to a remarkable mani- 
festation of the phonon deficit effect (see $7) in supercon- 
ductors with excess quasiparticles. 

Let us note two characteristics of the behavior of the 
nonequilibrium gap A. First, there exists a voltage-potential 
region where below-threshold and above-threshold values 
coexist (cf, curves 1 and 2 in Fig. 5).  This leads to hysteresis 
in the current-voltage characteristics (Fig. 6), as well as in 
the dependence of the nonequilibrium chemical-potential 
shift on the applied voltage potential (Fig. 7).  Secondly, in 
the region T- T, the curve A (  V )  rises slightly as the voltage 
V is increased, i.e., the superconductivity is stimulated. 
Compared to the case of the microwave field, when the stim- 
ulation was ~onsiderable ,~~ and the "heating up" and other 
A-suppressing factors of the electromagnetic influence had 
to be taken into account in order to achieve agreement with 
the experimental data,36 the tunneling mechailism of extrac- 
tion is quite weak (this is due to the smallness of the "tunnel- 
ing frequency" v in comparison with the decrement y),  and 
the stimulation does not exceed one percent of the values 
even when we allow for the "heating up" and other processes 
that lead to the suppression of the gap. 

FIG. 8. Spectral dependence of the phonon emission in the pre-threshold 
regime: a )  at T = 0.2 A,, V= 0.5 A,, and v = 0.2 y; b )  same as in a ) ,  but 
with V = 0.1 A,. The inset shows the electronlike-excitation distribution 
function corresponding to the case a ) :  P(o, ) = 02, J ( N k  ) (TALI; )/ 
8&, A: ) - '. 

57. SPECTRUM OF THE PHONON RADIATION 

Within the framework of the above-employed approach 
to the kinetics of the nonequilibrium junction we can use the 
scheme developed in Refs. 12 and 36 for the computation of 
the phonon radiation. The number of phonons emitted per 
unit time from a film of the junction in the spectral interval 
do, is equal to 

where p(w, ) = Yw;/25?u3 and J ( N 2  ) is the operator 
(29) in which NO,, is the equilibrium Bose distribution func- 
tion for the phonons at the thermostat temperature. The fact 
that the density of electronlike-excitation states enters into 
(29) twice makes the phonon radiation (40) very sensitive 
to the form of the electron distribution. 

Figure 8 shows the phonon-radiation spectrum occur- 
ring below the threshold. The dip in the spectral dependence 
at w, )2A indicates the occurrence of a phonon-deficit effect 
in the system. It has the same nature as in the case of irradia- 
tion of a junction by a microwave field, and does not, there- 
fore, need to be commented upon in detail (see Refs. 31, 12, 
and 37). Some difference is exhibited in the fact that there 

FIG. 7. Dependence of the nonequilibrium chemical potential shift Sp on FIG. 9. Phonon-radiation spectrum in the above-threshold regime: 
the applied voltage potential Vat v = 0.01 y. The temperature T is equal T = 0.1 A,, v = 0.01 y. and a )  V = 3 A,; b )  V = 4 A,. The scale along the 
to: a )  0.4 A,; b )  0.3 A,; C) 0.2 A,; and d) 0.1 A,. abscissa axis is in units of A,. 
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FIG. 10. The phonon deficit effect in the post-threshold regime: 1 ) recom- 
bination peak; 2) relaxation-related dip (magnified a hundred times); 3) 
spectral dependence of the absorption coefficient n(o, ) (in arbitrary 
units). The parameters V = 2.05 A,, T = 0.2 A,, and v = 0.01 y. 

are in the present case two (and not one) relaxation-related 
peaks (in the case a; in the case b the peaks are indistinguish- 
able on the scale used) whose origin is connected with the 
"serrated nature" of the nonequilibrium excitation distlibu- 
tion function (see the inset in Fig. 8).  

The behavior of the phonon-radiation spectrum in the 
above-threshold regime (Fig. 9) is interesting. Let us note 
that similar curves are obtained in Ref. 38 (in a simplified 
model, in which the imbalance is neglected). But there is no 
indication in Ref. 38 that the phonon fluxes are negative in 
the region of small o, (see Fig. 10). 

The phonon-deficit effect, when it occurs under condi- 
tions when the system contains excess quasiparticles pro- 
duced by the field from the condensate, is not trivial. It is 
apparently a consequence of the "quasilocalization" of the 
excess-excitation distribution in energy space near the gap 
edge, as a result of which, in the process of phonon scattering 
by the excess electrons, scattering events accompanied by 
the emission of phonons with frequency higher than the 
limiting frequency turn out to be impossible. At the same 
time events accompanied by the absorption of a phonon are 
possible, and therefore the scattering mechanism brings 
about a phonon deficit in a definite spectral interval. There 
arises here the pertinent question: Is the deficit not connect- 
ed with the phonon instability (i.e.,with the reversal of the 
sign of the phonon-absorption coefficient) at the relaxation 
frequencies? As the computations showed (the curve 3 in 
Fig. lo),  the absorption coefficient does not change sign. 
Apparently, the reason for this is that even though its contri- 
bution to the phonon radiation is equal to zero, the small 
(equilibrium) distribution-function "tail" makes a nonzero 
contribution to the absorption coefficient, thereby compen- 
sating for the small negative dip that arises as a result of the 
deviation from equilibrium. 

Let us note that effects similar to those shown in Figs. 9 
and 10 occur in a broad range of junction-parameter values. 
We shall not, for lack of space, carry out further quantitative 
analysis of these effects here. 

"This circumstance, like the vanishing of u, (T),  can lead to the onset of 
current instability in the nonequilibrium j u n c t i ~ n . ~ ~ . ~ '  

"Let us note that, in Ref. 33, the sign variability of u, (T) is explained on 
the basis of an allowance for the interaction of the tunneling electrons 
with the boson modes of the barrier. It remains, however, to explain the 
sign of u, in other weakly connected  structure^,^'-^^ the existence of 
boson modes in which is highly hypothetical. 
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