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A bion (a soliton with intrinsic precession) localized near the end of an anisotropic chain ofs = 1 
spins is investigated quantum-mechanically. The coherent state /@(t )  ) in which the evolution of 
the mean spin components S a n d  the mean energy of the system are described by the solution to 
the Landau-Lifshitz equations is found. The state I@(t) ) is a nonspreading superposition of spin 
complexes. 

1. INTRODUCTION 

To investigate the dynamics of ferromagnets we often 
use the phenomenological equations of motion of the mag- 
netic moment (the Landau-Lifshitz equations) 

Here W is the energy functional for the system in question. 
In quantum theory the equations of motion for spin op- 

erators S $ in the Heisenberg representation have the form 
(ti = 1) 

A 

By formally replacing the operators S, in the Hamiltonian 
H and in the equations (2)  by vectors S, of fixed length s, 
we can obtain in the continuum limit the functional Wand 
the equations ( 1 ) (in this limit the discrete spin distribution 
is replaced by the vector field M(r ,  t).3 It is more consistent 
to regard the equations ( 1 ) as obtained through appropriate 
averaging of the operator equations (2).  In Ref. 2 arguments 
are presented concerning the derivation of the Landau-Lif- 
shitz equations by averaging (2)  over a density matrix. 
These arguments do not exclude the possibility of deriving 
the relations ( 1 ) by means of another type of averaging, spe- 
cifically, by averaging (2) over pure quantum states. In the 
case of the linearized equations this possibility is, in essence, 
demonstrated and used in Refs. 4 and 5. The appropriate 
state over which the equations (2)  are averaged is1' the 
Glauber coherent state.5 In this state the evolution of the 
mean S",s described by a classical spin wave. Let us also 
note that the linearized Landau-Lifshitz equations for a un- 
iaxial ferromagnet with exchange anisotropy are exact for 
any value of the spin s. 

Numerous investigations of the nonlinear properties of 
ferromagnets have been carried out in recent years within 
the framework of the phenomenological t h e ~ r y . ~ . ~ . ~ - ~  Com- 
parison with the exact quantum-mechanical results shows, 
in particular, that the solutions to the Landau-Lifshitz equa- 
tions describe a number of nontrivial properties of the Hei- 
senberg spin chaim3 It is impressive that the quasiclassical 
soliton energies are equal to the energies of the spin complex- 
es (the magnon bound states), a result which was first 
proved for the isotropic chain,7 and later generalized to a 
number of anisotropic spin-4 models.1° Also equal are the z- 

spin-component densities in the soliton and ~ o m p l e x . ~ . ~  
Nearly equal are the contributions of the two-magnon bound 
states and the solitons to the dynamical form factor of a one- 
dimensional spin-1 system. " 

It may be conjectured that these coincidences are a con- 
sequence of some deeper connection between the phenome- 
nological equations ( 1) and the microscopic theory (2)  in 
the nonlinear region. The establishment of such a connec- 
tion would, besides justifying the relations ( 1 ), resolve the 
question of the existence of solitons in quantum systems. 
Such a connection can, as is clear from the foregoing, result 
from the states over which (2 )  is averaged to obtain the 
Landau-Lifshitz equations ( 1 ) . 

Since a general derivation of the relations ( 1 ) has so far 
not been published, we are justified in attempting to solve the 
narrower problem of demonstrating the existence of and de- 
termining the states I@) in which the temporal evolution of 
the mean S $ and the mean energy of a specific system are 
described by a particular characteristic solution of the non- 
linear Landau-Lifshitz equations. 

In Ref. 9 we found that linear combination /ao ) of the 
heavy spin complexes I Y n  ), 

m 

which is the full quantum analog of the classical domain wall 
in a chain with the Hamiltonian 

(Here ch is the hyperbolic cosine.) The mean values 
(@, IS",@, ) and the energy coincide with the values that 
follow from the static solution to Eq. (1) (more precisely, 
their discrete analog). We then have the identity 

which, in our opinion, corresponds to the assumption made 
in the phenomenological approach ( 1 ) that the vector M ( r )  
has a constant length. 

The state (3) can also be represented1' in the form of a 
direct product of one-site coherent spin states: 
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where 8, is a solution to the nonlinear difference equation 
8 W/88, =, A peculiarity of the coherent state I@, ) is that 
it is stationary. The existence of a stationary state of the 
unbounded chain (4)  in the form (6) for arbitrary spin was 
first demonstrated by Pokrovskir and Khokhlachev. l3 The 
stationarity of I@, ) corresponds to the phenomenological 
theory of the excitations of the system (4).  

Also well known are the time-dependent soliton solu- 
tions to the equations ( 1 ) . 3  The temporal evolution of the 
solitons has a number of characteristics that also attract 
especially the attention of researchers. The simplest solu- 
tions to the Landau-Lifshitz equations of this type describe a 
bion (a soliton with intrinsic precession). 

In the present paper we investigate quantum-mechani- 
cally a bion localized near the end of an anisotropic chain 
(4) of spins of magnitude s = 4. We find the coherent state 
I @ ( t ) ) ,  the system's mean energy and the evolution of the 
mean spin components in which are described by the corre- 
sponding solution to the Landau-Lifshitz equations. The 
state I@ ( t )  ) is a nonspreading packet of spin complexes. 

2. THE STATE I@> AS A LINEAR COMBINATION OF SPIN 
COMPLEXES 

The solution to the equations ( 1 ) that describes a non- 
linear excitation localized near the end of the chain (4) has 
the following form (s = 4) 14: 

Smx='/2 sin On, cos at, SmU=--'/, sin 0, sin at, S,z=L/, cos Om, 

Here w is the frequency of the intrinsic precession of the 
bion; N is the conserved value of S;  and a is a parameter 
characterizing the form of the bion (or the degree of nonlin- 
earity). Three regions can, depending on the value of a, be 
distinguished: the region a( l  which is the region of weak 
nonlinearity, where the equation ( 1 ) reduce to the nonlinear 
Schrodinger equation; a - 1, the intermediate region; and 
a )  1, the region of strong nonlinearity. The limit a - + w  cor- 
responds to a domain  all.^.'^ In the present paper we shall 
not discuss the case of weak nonlinearity. Furthermore, the 
analysis is performed in the continuum approximation, 
which presupposes a weak interaction anisotropy, i.e., that 
u(1.9,10,14 

Let us choose the initial state I@) in the quantum pic- 
ture in the form (6),  where the anglesf, are taken from the 
solution (7).  The mean values (@ IS ", @) then coincide 
with the values of the S ",from (7)  at zero time t = 0. The 
mean energy does not depend on the time, and will likewise 
be equal to the energy W. We are interested in the evolution 
of the quantum-mechanical averages: 

Let us first of all establish the connection between the 
state I@) and the stationary states of the system (4).  In the 

case u( l  and a 2 1 under consideration here we can show 
that I@) can be represented as a linear combination of the 
spin complexes of the chain (4). To do this, let us first find 
the expansion of I@) with 8, set equal to 2 arctg ( A  /ch Bm) 
in terms of a set of orthonormalized vectors of the following 
type: 

I xn ( B )  >=Z,-lb ( B )  

XZ (ch Bm, . . . ch Bm.)-'b,-Sm,-. . . 6. 10). (8) 
(mr) 

where the sum over the {mi) denotes summation over m,, 
m ,,..., m, with the condition O<ml < m2 < ... < m, . Notice 
that the reciprocal of the square of the normalization con- 
stant 

Zn (8) = (ch Bm, ch Bm, . . . ch Bm.) -' 
f m 0  

formally coincides with the partition function of an ideal 
fermion gas with the single-particle spectrum Em = In ch2 
Bm at T =  1. 

For the coefficient Cn = (@Ixn) we can derive the 
expression 

Cn=AnZn" ( B )  Z-'" (A2, B )  , (9) 
where 

is none other than the partition function of the same gas 
within the framework of the grand canonical ensemble ( A  is 
the activity). It is well known that the partition function Z,  
and Z are connected by the relation 

ea 

From this it follows that 

i.e., the state I@) can be expanded only in terms of the set of 
lxn ) vectors (evidently, the Ix, ) do not be themselves form 
a complete set). Thus, we have the exact equality 

m 

n=O 

The state Ix, ) is localized near the end of the chain. In 
the general case this state with n flipped spins is not a station- 
ary state for the system (4). It follows from (8) that, for 

As shown in Ref. 9, the vector IT, ) of the spin complex 
localized near the end of the chain (4)  can also be written in 
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this form (in the same limiting case n + ~  and with B = a ) .  
Consequently, for n- co and B = a ,  we have Ix, ) = I \I/, ), 
and I@) is the linear combination (3)  of spin complexes. It 
turns out that, even when n is finite in the chain (4)  with a 
weak anisotropy, the state Ix,  ) with B = o-th a is close to the 
state IY, ). To prove the latter assertion, it is sufficient to 
compute the mean energy2' En = (x, IH Ix, ). From the re- 
lations (9)  and ( l o )  we obtain 

Treating the functions W(A '), Z ( A  '), andA 2n as func- 
tions of the complex variable A (A 2+A ), and using the 
Cauchy theorem, we can write 

where the L, are closed contours around the point A = 0 in 
the complex plane. The first ofthe equalities ( 12) is the well- 
known definition of the partition function Z, in terms of the 
partition function of a gas in the grand ensemble. 

For small avalues we can compute the integrals in ( 12) 
by the method of steepest descent, choosing the contours Li 
in the form of circles A = r, exp ip. The equation for the 
saddle point r, has the form 

th + 5 th2 yo+O ( 0 3 ) ,  ro-sh2 yo. on = - 
t h a  2 

(13) 

In such a calculation the expressions for Z, (B) and z,, 
are obtained in the form of expansions in powers of a. As will 
be seen below, for our purposes it is sufficient to find En up to 
and including the terms of order 2. The function W(A, B, a) 
is obFined from the Hamiltonian H by replacing the opera- 
tors S ,  by classical vectors of length f. With the aid of the 
Euler-Maclaurin summation formula we can write W to the 
required accuracy in the form 

rn 

Carrying out the indicated computation, we arrive at the 
following expression for the mean energy: 

a sh a-sh a T ( I - T + ~ T '  sh2 a )  (14) 
f ( a )  = a )  sh2 a -  7 1 1  ( a )  = - 2a (I+T)' sh2 a ' 

where r=k / sh  2a. 
With the aid of similar computations we can find the 

coefficients C, as well. Retaining only the n-dependent fac- 
tors, we can, as a result, write 

If we are not interested in the weak dependence on n of the 
factor in the square brackets and in the insignificant shift in 

the index of the exponential function, then from the solution 
to Eq. ( 13) we obtain the following simple expression for the 
C, (k=n - N ) :  

ok2 (1+22) cth a . (15) 

It can be seen from the latter result that the width of the 
distribution C, is of order The function f2(a) is 
monotonic: f2( w ) = 1 and f2 ( 1 ) =: 1.15. Thus, in the region 
a 2 1 the width of the packet ( 10) decreases slowly with de- 
creasing a. 

Using ( 14) and ( 15), we can assess how close the state 
Ixn ) is to the spin-complex state / Y, ). 

The complex IY, ), which is localized near the end of 
the chain (4),  is the ground state in the substate of the n- 
particle states of the Hamiltonian H. The exact solution for 
the wave function I Y, ) and the energy E,  is found in Ref. 15. 
For small a and n u 2  1, the expression for E,  assumes the 
form 

E,,='/~O th on+O (03) .  (16) 
The gap in the spectrum of the n-particle states of the system 
(4)  is equal to3' 

It can be seen that, for n a  2 1, the gap A, is of order 2. For 
n - NS a-'I2, we have4' A, = B 2/2 + O ( 2 )  recall that 
B = 0th aN) .  

Let us write the general form of the expansion of Ix, ) in 
terms of the stationary states of the Hamiltonian (4): 

where the /Y,, , ) are the excited states in the n-particle sec- 
tor. The mean energy En is then equal to 

Taking into account the fact that 

we find from a comparison of ( 14) and ( 17) in the case when 
n - N 5 a- ' I2  that 

In the cases when the right-hand side of this inequality is 
small, Ix, ) is close to the state I Y, ). We can obtain an esti- 
mate for the overall contribution of the excited states I Y,, , ) 
in the expansion of I@) at once. Writing 

n v V  

and carrying out a simple calculation, we obtain 

The functionsJ f1, and f2 are defined in ( 14) and (15). 
In the cases when the condition 
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is fulfilled, we have the equality 
rn 

For a ) l  the value of v(a) is exponentially small 
(v-aec4" ); in the limit a-co we have v(a) = 0, and the 
equality ( 19) is exact. An investigation of the function v(a) 
shows that the condition ( 18) is fulfilled for virtually all 
a 2 1. The function v(a) is monotonic: V,,, = v(0) = 6 ,  
with u (  1) -00.10 and v(2) ~ 0 . 0 0 5 .  From this we can con- 
clude that, in the entire a 2 1, the state I @) can be explained 
only in terms of the spin complexes. Or, more precisely, we 
should say that the corrections to the expansion (19) are 
small both to the extent that a is small and to the extent that 
the numerical function v(a) is small. 

3. COMPUTATION OF THE AVERAGES (@(t)lg, I@(t)> 

Using the results ( 15) and ( 19), we easily find the state 

Indeed, for k 5: u-'I2 and a< 1, the energy of the spin com- 
plex consisting of N + k magnons can, as follows from ( 16), 
be written in the form 

E N + ~ ~ E N + ~ o ,  (20) 

where w is equal to the precession frequency of the classical 
vectors S, [see (7)  1. From this it follows that 

1 @ ( t )  ) = e - ' e ~ t  EC,~-"~'I Y r + k ) .  (21) 

It is not difficult to find yet another form of the state I@ ( t ) ) :  

h 

It is easy to verify that the mean values of the operators S ", 
in this state coincide with the values of S ",hat follows from 
the bion solution (7)  to the Landau-Lifshitz equations: 

4. PROPERTIES OF THE STATE I@(t)) AND CONCLUSION 

Let us enumerate the main properties of I @ ( t )  ) . This is 
a nonstationary state for the system (4),  that preserves its 
functional form (22) in time. It is a direct product of one- 
spin (or Bloch) coherent states, whose properties have been 
studied in detail by Perelomov and Radcliff.I6 It follows 
from these properties and the form of (22) that I @ ( t )  ) at all 
times minimizes the products of the uncertainties and fac- 
torizes the correlation functions: 
- 7- 

S,,"'S ma "2=S,,a'S,,"', m,Pm,. 

The averaging of the operator equations (2)  with the 
aid of I@)  leads to the phenomenological Landau-Lifshitz 
equations. Consequently, we have constructed for the sys- 

tem (4)  a coherent state that establishes a connection 
between the quantum theory and the solution (7)  to the 
equations ( 1 1. The state 1 @(t)  ) furnishes a complete de- 
scription of a bion localized near the end of the quantum spin 
chain (4) .  

In the s = f case under consideration here the ~ + C O  

limit exists in which v(a) = 0, and the Landau-Lifshitz 
equations are exact in the strict sense of the word. It should 
be emphasized that this limit is not the classical f i 4 ,  s-co 
limit discussed in Ref. 17. The possibility, demonstrated 
above, of describing the evolution of the quantum-mechani- 
cal averages S ",n a chain of s = 4 spins by phenomenologi- 
cal equations in practically the entire a 2 1 region is, in our 
opinion, interesting. It may be that this possibility is due to 
the total integrability5' of the system (4) in both the quan- 
tumI8 and ~ lass ica l '~  cases. In any case the question of the 
existence of nonspreading packets with the properties of the 
state I@(t)) (this is a question of the existence of coherent 
states) is important for all quantum systems. This question 
has been completely resolved only for Hamiltonians that are 
quadratic in the Bose or Fermi operators. The search for 
such packets in more complicated situations has been con- 
ducted even in the last few years almost exclusively in sys- 
tems with several degrees of freedom.20 

It is to be expected that in the model (4) with arbitrary s 
the function v (a )  in ( 18) will contain an additional factor of 
the type (2s) -' that will make the value ofv(a) in (18) go to 
zero in the limit as S-+CO. To carry out an analysis of thes)t 
case by the method proposed here, we must have the explicit 
solution to the spin-complex problem, a solution which, for 
the chain (4),  it known only in the s = 4 case." For others 
values the exactly soluble generalized ferromagnet model2' 
may turn out to be useful for this purpose. 

~scanbeseenf rom (15) and (19), thestate I@(t)) isa 
linear combination of the spin complexes6' IY, ). The con- 
nection between the complexes and the soliton solutions to 
the equations ( 1 ) has been pointed out repeatedly in the 
l i t e ra t~re .~ '~- ' ' , '~  The main results confirming this connec- 
tion are presented in the Introduction. Here we must explain 
how these results can be reconciled with the fact that I@(t)) 
is a superposition of the complexes, and not simply a single 
complex. Since the spectrum of coupled states (20) is equal- 
ly spaced and the C, - distribution - (15) is symmetric, the 
packet's mean energy E ( N )  (N is the mean magnon num- 
ber) is equal to the energy E, ( n * ,  E*;) of a complex. 
The equality of the S', densities in I@) and IT, ) is more 
easily understood within the framework of the statistical me- 
chanics problem which was used for comparison throughout 
this analysis. Equal occupation numbers for the canonical 
and grand canonical gas ensembles corresponds to equal S ', 
averages in the two states. 

The other important property (5),  however, is peculiar 
to I@ ( t )  ). The condition (5)  shows that the mean values of 
S",t any site m determine a vector of fixed length 4, and, as 
we note in Refs. 9 and 12, it cannot, in principle, be fulfilled 
for the individual complexes I Y, ) . We can expect that in 
other cases the coherent states will possess both the charac- 
teristics of the individual complexes and specific properties 
such as property (5 ) . 
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Our results are inapplicable in the region of weak non- 
linearity. The characteristics of the spectrum of the com- 
plexes and those of the gap A in the region a( 1 require an- 
other type of analysis. It is possible that I!@(t)) in the form 
(22) will describe a bion in this region as well, but, besides 
the complexes I Y, ) a continuous spectrum may equally well 
be present in the expansion ( 19). 

Summarizing, we can say that we have studied quan- 
tum-mechanically with the aid of the solution (7)  to the 
Landau-Lifshitz equations and the exact spectrum (20) of 
the spin complexes a bion localized near the end of the chain 
(4). We hope that our method is applicable also to the more 
complicated moving-soliton and soliton-soliton-collision 
problems in unbounded systems. 

The author is extremely grateful to A. M. Kosevich and 
A. M. Perelomov for a discussion of the results of the present 
investigation. 

' )  In the spin-wave approximation the Hamiltonian is quadratic in the 
boson operators. It is for these operators that the equations of motion 
must be written. 

'' For finite n it is difficult to prove the assertion by directly comparing the 
vectors Jx, ) and JY, ). 

'' In computing A,, we need only take into account the fact that the first 
excited states describe the scattering of a magnon with energy 
r ,  = 42 + O ( d )  by the (n - 1 )th partial spin complex. 

4, The maximum n - N values for which the analysis is being performed 
are determined by the C, distribution [see (15)]. 
Let us nonetheless point out that, in Refs. 18 and 19, total integrability is 
proved for the unbounded systems (4)  (or systems with periodic 
boundary conditions). Here we are investigating a semifinite chain. 
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