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Where the wave scattering amplitude of a rough surface can be calculated by perturbation theory 
(Bragg scattering), and the slopes of the boundaries can be assumed small, it becomes possible to 
construct an approximation which holds for an arbitrary roughness height. To first order in the 
slope, the scattering amplitude can be factored into a geometric factor and a kernel which de- 
scribes Bragg scattering. To a large extent, this approximation solves the problem of describing 
the scattering by rough surfaces by a common approach combining perturbation theory with the 
tangent-plane approximation. 

1. INTRODUCTION 

A scattering of waves by an irregular boundary arises in 
many branches of physics. For example, the diffraction of 
thermal molecular beams by the surfaces of single crystals (a  
process used to determine the characteristics of the corre- 
sponding interaction potentials) may be thought of as a scat- 
tering by an irregular potential barrier of infinite 
The interaction of surface plasmons in a metal with bound- 
ary irregularities gives rise to optical emission, which is ex- 
ploited to measure the properties of the plasmons.' A similar 
principle underlies the excitation of the plasmons which sub- 
stantially enhance Raman scattering in a thin organic filme6 
The problem of wave scattering by irregular surfaces also 
arises in radio a s t r~nomy ,~  and r a d i ~ p h ~ s i c s . ' ~ ' ~  
The practical importance of this problem has made it the 
subject of a special study in underwater  acoustic^.'^ Finally, 
it is one of the classical problems of diffraction theory. Al- 
though the theory of wave scattering by irregular surfaces 
has been the subject of many studies, nearly all of the analyt- 
ic work has been confined to two appr~aches,'~.'' which em- 
ploy essentially perturbation theory 16,17 and a semiclassical 
a p p r o ~ i m a t i o n ~ " ~ " ~ * ~ ~  (either the Kirchhoff approximation 
or the tangent-plane method). 

Not uncommonly, however, situations arise which can- 
not be dealt with by either of these approaches alone. An 
example is the scattering of sound or electromagnetic waves 
by the wavy surface of the sea. In these cases, the so-called 
two-scale surface model is u ~ e d ' ~ . ' ~ . ~ ~ ;  the scattering calcula- 
tions in this model are carried out by combining the two 
classical approaches given above. The boundary irregulari- 
ties are put in two classes: the scattering by large-scale 
smooth components is described in the Kirchhoff approxi- 
mation, while the small-scale irregularies are dealt with by 
perturbation theory. This arbitrary classification of the irre- 
gularities in two groups unavoidably introduces in the the- 
ory at least one parameter whose choice is somewhat arbi- 
trary. This is an inconvenience; it complicates the 
calculation of the corrections to the two-scale model; and it 
acts as a noise in an analysis of the inverse problem, i.e., in 
determining the spectrum of irregularities from the charac- 
teristics of the scattered field. 

There is another way to approach the problem of wave 
scattering by irregular boundaries. This other approach is 
free of the disadvantage discussed above. It requires only 
that a parameter associated exclusively with the geometry of 
the boundary-its slope-be sufficiently small. This param- 
eter is indeed small in many cases of practical interest (for 
the wave motion of the seas, for example, it is 5 0.1 ). This 
alternative procedure allows one to write an asymptotic ex- 
pansion of the wave scattering amplitude in this parameter. 
This expansion has a rather simple structure and is easily 
calculated. Since the assumptions underlying this approach 
to the problem are quite general, it is possible to outline a 
universal procedure for deriving an expression for scattering 
in the small-slope approximation, as in the approach which 
uses an expression describing the Bragg scattering of waves 
by boundary irregularities. In the statistical case, this ap- 
proach reduces to a simple redefinition of the correlation 
function of the elevations. The corresponding expression for 
Bragg scattering can then be used (the redefined correlation 
function admittedly depends on the parameters of the inci- 
dent and scattered waves). 

After introducing this approach we examine in more 
detail the very simple problem of the scattering of scalar 
waves, for which the boundary condition is a Dirichlet con- 
dition, and we offer a direct derivation of the expansion in 
small slopes which does not lean on any general assump- 
tions. In particular, we find in the latter case that the high- 
frequency limit for the scattering amplitude found by using 
only the first two terms of this expansion agrees exactly with 
the corresponding expression derived in the Kirchhoff ap- 
proximation. 

2. SMALL-SLOPE APPROXIMATION: THE GENERAL 
APPROACH 

We introduce a Cartesian coordinate system with z axis 
directed vertically downward, and we denote by r = ( x ,  y )  
the horizontal components of the radius vector R = (r, z).  
We assume that the uniform half-space has an irregular 
boundary z = 7 (r) at its bottom, and we assume that a mo- 
nochromatic plane wave of frequency w is incident in the 
upward direction on this boundary: 
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Y,,=v,-'" exp ( ixor+ ivoz ) ,  ~ ~ ~ + v ~ ~ = k ~ = o ~ / ~ ~ ,  
where c = const is the propagation velocity (the normaliza- 
tion factor is chosen to normalize the energy flux density in 
the vertical direction). Here and below, x and v are the hori- 
zontal and vertical components of the wave vector, 
Y = Y ( X )  = (k  - X )  'I2, Imv>O, and the index 0 specifies 
the incident wave. Mathematically, the problem reduces to 
one of solving the Helmholtz equation ( A  + k ') Y = 0 with 
the corresponding boundary condition and the radiation 
condition. We assume everywhere below that the boundary 
is noncompact and is, on the average, planar. In the region 
z < minq ( r ) ,  the field can evidently be written as a superpo- 
sition of plane waves, so that the total field Y is 
Y = Yin + Y,, where 

Y..= s ( x ,  X . )V- .  exp ( ixr - i v z )  d ~ .  (1)  

The scattering amplitude S is completely analogous to the 
quantum-mechanical amplitude and has corresponding 
properties. In particular, a reciprocity theorem must hold 
[S(x, x,) = S(nO, - X )  1, as must a corresponding unitar- 
ity condition." In principle, knowledge of the scattering am- 
plitude is equivalent to knowledge of the Green's function, 
into which it can easily be converted. Although finding the 
Green's function is frequently the ultimate goal of the solu- 
tion of a given diffraction problem, the scattering amplitude 
is considerably more convenient to work with for a theoreti- 
cal analysis. 

Our approach is based on the simple properties of the 
scattering amplitude. Specifically, if the irregular boundary 
z = q ( r )  is displaced as a whole horizontally by a distance a, 
q ( r )+q( r  - a),  the scattering amplitude evidently trans- 
forms in accordance with 

S ( x ,  x , )  -+S ( x ,  x o )  exp  [ - i  ( x - x , )  a ] .  
Analogously, lifting the boundary a distance h, 

q ( r )+q( r )  + h, leads to the transformation 
S ( x ,  x o )  +S ( x ,  x,,) exp [ i  ( v + v , )  h ] .  

Working from these elementary comments, we see, the scat- 
tering amplitude in the form of the expansion 

d r  x - e i W  ( x ,  X O ;  E ;  [q]) dE7 
(2nY 

(2) 

where 

Here the q (<) are the Fourier components of the irregulari- 
ties: 

r l ( r )  = 5 1 ( 5 )  exp (iEr) d l .  
An integration is to be carried out over the variables <,, ..., 
<n. The @, are functions, symmetric with respect to gi ,  
which do not depend on the shape of the surface. Since @ is 
essentially an arbitrary functional of the elevations q which 
is written as an integral-power series, it is legitimate to seek S 
in the form (2). We seen that a factor has been singled out in 
(2) which by itself provides the required transformation 

properties for S. The reason for the 6-functions in (2)  is the 
law according to which S transforms under horizontal trans- 
lations. Although, strictly speaking, this is not a conse- 
quence exclusively of the transformation property of S when 
the surface as a whole is raised, it is natural to assume (and 
this assumption is supported by the more specific calcula- 
tions below) that the functional @ must not transform at all 
under the substitution q (<)-+q (6) + h6 ({) . It follows im- 
mediately that the functions @, , n > l ,  must vanish for 
li = 0, i = 1, 2, ..., n. We can thus set 

@ n = L  . . . En%,, 
@ = s ( b ) $ o + s ( E - E l ) ~ t E t q  ( E l )  

+6(E-E1-E2) 5 2 E l r 1  (E1)Ezq ( E 2 )  + - . . , 
where 6, = 6, (x, x,; <,, ..., 6, ). Since 

S iEq ( I )  exp  ( i b )  a= r 1, 
series (3)  turns out to be essentially an integral-power series 
in Vq; the kernels 6, are dimensionless. The question of the 
validity of our expansion (2), (3)  reduces to the require- 
ment that the functions 6, be bounded for a11 {,, ... , {, . In 
particular, the absence of singularities from 6, at li = 0 is 
equivalent to our assumption that @ is invariant under the 
transformation q ({)+q ({) + h6 ({) . The boundedness of 
@, for all li ( 16, I < C, ) means that we can estimate the 
successive terms of the series as quantities of order C,E", 
where E - I Vq 14 1. This circumstance allows us to speak of 
expansion (2),  (3) as an expansion in small slopes. It is easy 
to see that we are essentially nowhere making use of the 
scalar nature of the problem, so that the scattering ampli- 
tude S can in general be regarded as a matrix-valued ampli- 
tude describing the conversions of various types of waves 
into each other. Accordingly, the quantities and a, [and 
also B(x, x,); see below] are generally matrices. 

It turns out that the kernels 6, in expansion (3)  can be 
found easily by taking the limit of ordinary perturbation the- 
ory, with 7 7 4 ,  if we assume that we know the expansion of 
the scattering amplitude in an ordinary integral-power series 
in the elevations (the latter expansion is found from ordi- 
nary perturbation theory; usually, no difficulties will arise). 
However, we are forced to appeal to an additional assump- 
tion. Specifically, expression (2)  for has some gauge arbi- 
trariness, since we could add to 6, any arbitrary function 
which vanishes for x - x, = <, + ... + 6,. The substitu- 
tion 
+ ( x - - -  . . . g G , + l + ~ n + l - i ( v + ~ o ) G , g ,  
where g is arbitrary, does not change the magnitude of the 
scattering amplitude in (2).  In other words, if we single out 
from 6, a part which vanishes on this hypersurface, then an 
integration by parts will "correct" this part to a term of or- 
der n + 1. Using this circumstance, we can eliminate from 
6, the dependence on one of the integration variables (e.g., 
gn 1, by setting{, = x - x, {, - ... - 6, - , in 6,. Sub- 
stituting this expression for @, into (2),  we can perform in 
the resulting expression an operation which is the inverse of 
that which we have just described; specifically, we can inte- 
grate over the variable E;, . As a result, we find a factor 
- iVq, which we can then eliminate by an integration by 
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parts. As a result, we find the following equation, which 
holds within quantities of order (Vv)" : 

n 

x Sn ( x ,  XO;  El, . . > En) IT t i q  ( t i )  dgi dE 
i=l 

It is not difficult to see that this expression has the structure 
of the term of (n - 1 )-st order in expansion (2),  (3).  

We thus see that these transformations make it possible 
to eliminate from expansion (3)  any preselected term of in- 
dex greater than one, by writing 6, as 

by transforming the first term into a term of order n - 1 in 
accordance with (4), and by transforming the second term 
into a term of order n + 1 through an integration by parts. 
There is the further meaning that the functions an can be 
chosen such that n terms of expansion (2),  ( 3) make it possi- 
ble to calculate S with an accuracy up to (n + 1)st order 
inclusively in the parameter V7. We now seek the structure 
functions. To within quantities of first order in 7, the scatter- 
ing amplitude can be written in general as follows: 

S ,  ( x ,  x , )  =So [6  ( x - x , )  +2 i (vvo) , ' "B (x ,  X O )  q (x-x.11 (5) 

(Bragg scattering). The dimensionless function B(x, x,) is 
determined by the particular scattering problem; the term 
S@(x - x,) describes reflection from a horizontal plane, 
and the factor of ( ~ v , ) " ~  is separated for convenience. In 
particular, for problems involving the scattering of scalar 
waves by a free boundary (the boundary condition is that the 
total field vanishes), we have 

So=-1, B ( x ,  x o ) = l ,  
and in the case of the scattering of electromagnetic waves by 
an ideally conducting surface we have, in a basis of circularly 
polarized waves, 

3 

~ o = ( ~ t ,  B ( x ,  xo) x ~ n o n .  

n-0 

where 

0, arethe Pauli matrices, and the upper sign in B o,, refers to 

B,. For the case 7 (r)  = h = const, 7 (6) = ha({) in the lim- 
it h 4  we have 

S o e Z i v h ~ x - x , )  =So (1+2ivh) 6  ( x - x , )  
=So [ 6  ( x - x o )  +2ivB ( x ,  x , )  h6 ( x - x , ) ]  . 

It follows that the condition 

always holds. 
The further calculations can be outlined as follows. We 

identify in (2)  terms of up to first order in 7, assuming that 
there is no term with n = 1 in (3  ). We have 
S ,  ( x ,  x o )  =(Do ( x ,  x o )  6  ( x - x o )  + i (v+vo)  D o  ( x ,  x o )  q ( x - x u ) .  
Comparing this expansion with (5 ), we find @,: 

@ o  ( x ,  ~ 0 )  =2S0 (vvo) ' B  ( x ,  xo)l  (v+vo) ; (7) 

here we have @,(x, x )  = So by virtue of (6).  Calculating the 
Bragg scattering described by the function B(x, x,) in the 
lowest order, we can thus transform to the approximation of 
simple slopes by simply replacing the form factor 7 ( x  - x,) 
by an integral of the type in (2): 

2  (vvo)  '"B ( x ,  x , )  
S i )  ( x ,  x , )  =So * 

v+vo 

In contrast with expression (5) ,  which describes the scatter- 
ing correctly only if the Rayleigh parameter is small 
(k7cosO( 1, where 0 is the angle of incidence), expression 
(8) holds under the assumption I V7 1 ( 1 for an arbitrary val- 
ue of the Rayleigh parameter (the criterion for the applicabi- 
lity of the approach formulated here requires some refine- 
ment; see $3 ), 

We now find @,. For this purpose we first write an 
expression for the scattering amplitude which holds to with- 
in quantities of second order in 7: 

S, ( x ,  x , )  =so[ 6  (x -x . )  +2i ( w . ) ' ~ B  ( x ,  x , )  q  ( x - x , )  

where the kernel B,, like B = B,, can be found easily by stan- 
dard perturbation theory. Singling out terms through sec- 
ond order in 7 in (2)  and (3),  we find 

- So(vvo) '"  1 (B , (x ,  xo ;  X-6 , )  +B, ( x ,  x.; x-6.)  1q ( Z i ) q  (b) 
2 x 6 (x-xo-gt-6,) &,z. 

Since 7 is arbitrary, this relation determines the symmetric 
function @, to within an arbitrary term which vanishes in 
the case 9, + f, = x - x,. As we have already seen, how- 
ever, this term can be transformed into a term of third order 
in V7 and incorporated in @,. Using (7), we can therefore 
set 

@. ( x ,  X O ;  6%) 6.)  =SO ( v v O ) % [ B Z ( x ,  X O ;  X -6%)  
+Bz ( x ,  X O ;  x - b )  +2 (v+vo)B ( x ,  ~ 0 )  112. 

Once the kernel a, has been determined in this way, we can 
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simplify the resulting expansion, by eliminating from (3)  
the n = 2, term which we have just calculated. According to 
(4),  we find 

=- 
iso (vvo) 'I* 

[B2 (x, XO;  x-E) +Bz (x, XO; xo+E) 
2 (v+v0) 

We have thus derived a small-slope expansion with an accu- 
racy of order (Vq)'. This procedure can be continued to 
calculate structure functions of any order. Specifically col- 
lecting from expansion ( 3 ) ,  from which the n = 2 term is 
now absent, quantities of order q3, and comparing the result 
with the known power-law expansion, we find a,. We trans- 
form it, in accordance with (4), into a term with n = 2: etc. 

In the two examples mentioned above the kernel B2 (x, 
x,; x ' )  can be put in the form2' 

B2 (x, XO;  xr) =-2v ( X I )  B(x, xl)B (xl, %a). (10) 

Expression (10) apparently holds for a wide range of scat- 
tering problems. In these cases, the small-slope expansion 
incorporating terms of order (Vq)' inclusively is 

st2) (x, x0) =so - (vvo) 'I* J - dr 
vsvo ( 2 ~ ) ~  

x e ~ p [ - i ( x - x ~ - ~ ) r + i ( v + v ~ ) ~  (r) ] 

The expression in brackets vanishes if 6 = 0 and 6 = x - x,. 
we can therefore divide it by 6 ( x  - x, - g); we then imme- 
diately see that the second term in ( 11) transforms into a 
term of second order in (2)  and (3  ) . We do not find a singu- 
larity in 6, at 6 ,,, = 0. 

We now consider a spatially uniform Gaussian statisti- 
cal ensemble of elevations, q ( r )  . The mean scattering ampli- 
tude can be written in general as 

S(x ,  xo) =V (x) 6 (x-xo) , 

where 7 is the so-called mean reflection coefficient. The 
average in ( 11 ) can be carried out without difficulty; as a 
result we find 

where G(6) is the spectrum of irregularities, and W(r) is the 
corresponding correlation function. The first term in this 
expression is the same as the expression for 7 derived in the 
Kirchhoff approximation,10-'3 while the correction term re- 

flects scattering by small-scale components of the irregulari- 
ties. 

Writing the scattering amplitude as a sum of the mean 
and fluctuating parts, 

S (x, x0) =V (x)  G (x-xo) +AS(%, xo) , 
we can write 

AS (xi, xz) @ASt (x3, x4) 

Any second moment of the random fields can be axpressed in 
terms of Q by means of quadratures. In practice, we are in- 
terested in the scattering coefficients, which are related to Q 
in the following way: 

ma-vvoQ(x, ~ o ;  X,  xo). 

The expression for m, derived in the approximation SzS'" 
is 

The integral containing the statistical characteristics of the 
elevations is of precisely the same form as that used in the 
Kirchhoff approximation, and it is essentially of purely geo- 
metric origin. The scattering properties of the surface, on the 
other hand, enter m, in the approximation SzS"' in the 
form of a factor which has the same structure as when we 
used expression ( 5 ) for Bragg scattering: 

m?' =SJ3 (x, xo) @ (SOB (x, xo) ) +.4v2v02 

Comparing the latter expression with ( 13 1, we can say that 
the transformation from the small-perturbation method to 
the small-slope approximation reduces to a redefinition of 
the correlation function, 

1 
W (r) + W ( B )  (r) = - 

(v+vo)' 
x[exp{ - (~+v~)~ [W(O)-W(r )  l)-ex~{-(v+v0)~W(O)1 I ,  
after which we should use expression (14), which follows 
from ordinary perturbation theory. An analogous rule can 
be formulated easily for Q [and even for q in (8)  1 .  This 
procedure would appear to be appropriate only when we are 
using the first approximation in the expansion in small 
slopes, in which case the geometric effects which stem from 
large-scale irregularities and the "actual" Bragg scattering, 
by irregularities with horizontal scale dimensions on the or- 
der of the wavelength, are factored out. 

3. CASE OF SCALAR WAVES AND A FREE BOUNDARY 

Since the arguments used in $2 in the derivation of the 
small-slope expansion and in the calculation of the structure 
functions a, were quite general in nature, we would like to 
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derive this expansion by some other methods, which does 
not make explicit use of those general considerations. In the 
present section of the paper we show how this can be done in 
the very simple scalar problem with a Dirichlet boundary 
condition (this situation corresponds to the scattering of 
sound waves by a free surface or to the scattering of TE 
electromagnetic waves by an ideal surface in the two-dimen- 
sional case). We employ the Rayleigh equation, which can 
be found by calculating the scattered field at z = 7 ( r )  direct- 
ly from Eq. ( 1 ) and substituting the result into the boundary 
condition Y 1, = ,,,, = 0 

1 
=- - exp[ixor+iv0~l (r) 1. 

Yo 

This equation is valid if the Rayleigh hypothesis applies to 
the irregularitiesz2 However, this is not an important point 
since we are involved in deriving representations (2),  (3) 
and in calculating the functions @, without discussing the 
convergence properties of the expansion.23 Multiplying the 
Rayleigh equation by exp[ - ixr + ivv(r) ]/Y"~, and inte- 
grating over r, we can easily put in the form 

Here we have used the following identity, which is easily 
found through integration by parts: 

dr j exp[-i (x-xf) r] {exp [ i  (v-v') q (r) ] -1)- (an)" 

We see that the integral term in (15) contains the small 
parameter which we need-the slope-and that this equa- 
tion can be solved by iterations. The result can easily be put 
in the form in (2); we find the following representation for 
the functional @: 

where 7, = ~ ( r ,  ), X ,  + , , E X ,  v, + , =Y and n = l  for 

n = 0. Obviously, @ does not change as a result of the verti- 
cal displacement v-7 + h; it thus follows directly, as we 
have already mentioned, that an expansion of 4) in an inte- 
gral-power series is actually an expansion in gradients of the 
elevations. The situation is equivalent to the absence of sin- 
gularities form the structure functions &, forl i  = 0. We see 
from ( 16) that in the expansion of 4) in the integral-power 
series the corresponding kernels are rational-fraction fun- 
cions of x, v, x, , v, ; their denominators consist of products 
of binomials of the form Y, + , + Y, . It follows that 6, has 
no singularities for any finite real x. A direct calculation of 
the functions 6, with the help of ( 16) shows that the first 
two terms of the expansion of S in the small slopes can in fact 
bewrittenintheform (11) withso= - l a n d B =  1. 

Transforming to the equation for the high-frequency 
limit, k- a,, with 

we can easily put ( 1 1 ) in the form 

1 
S ( x ,  x,) =- - 

(vvo) Ib ( + v ("-"".) (v+vo) 

Interestingly, this expression for the scattering amplitude is 
identical to the expression derived in this problem by the 
Kirchhoff appro~imation,'~ although, generally speaking, 
the agreement should extend only to quantities of order 
(Vq12. The requirement that the terms in (1 1) fall off sys- 
tematically with increasing order leads to a further restric- 
tion in the case of grazing angles of incidence or scattering, 
as can be shown. As result, the condition for the applicability 
of the small-slope approximation in our problem becomes 

IVqIa1 for X, x0B1,  (17a) 

I V q  1 a m i n  (x, XO) for x a 1  or X O ~ I ,  (1%) 

where ,yo and ,y are the grazing angles of the incident and 
scattered waves. The latter condition arises formally because 
the quantities Y + v l ,  Y,, + vl, which appear in (16) because 
of the corresponding denominators, are small at grazing an- 
gles. Condition ( 17b), which means that there is no geomet- 
ric shadowing of the rays of the incident wave or of the scat- 
tered wave by irregularities, should remain in force for other 
scattering problems also, although there is the possibility in 
principle that further restrictions will arise, in this case be- 
cause of the structure of the function B(x, x,). 

The method used in this section to derive an expansion 
of the type in (2)  for the simple scalar problem can obviously 
be generalized in a straightforward way to other scattering 
problems. 

4. CONCLUSION 

This study has shown that the amplitude (S) for the 
scattering of waves by irregular boundaries calculated by the 
perturbation method (Bragg scattering) can be used, under 
the assumption that the slopes of these boundaries are small, 
to construct an approximation which holds for an arbitrary 

69 Sov. Phys. JETP 62 (I), July 1985 A. G. Voronovich 69 



height of the irregularities. Specifically, this height need not 
be small in comparison with the length of the incident wave. 
This is done by introducing in the expression for the scatter- 
ing amplitude a factor which imparts certain transformation 
properties to S. This factor is of essentially purely geometric 
origin; it reflects the circumstance that different rays in the 
incident wave travel unequal paths because of the boundary 
irregularities, and an originally plane phase front of the wave 
becomes distorted. It turns out that in a first approximation 
in the slope of irregularities the expression for the scattering 
amplitude can be factored into this quantity of geometric 
origin and a kernel which describes Bragg scattering, the 
resulting approximation [in particular, expression ( 1 1 ) 1 
substantially solves the problem of describing the scattering 
by irregular surfaces in an approach which combines pertur- 
bation theory with the Kirchhoff approximation. The as- 
sumption of small slopes need not be a substantial restric- 
tion, since in the case of a surface of a general type, with 
slopes on the order of unity, a repeated reflection of waves 
will necessarily arise in the high-frequency limit, and the 
Kirchhoff approximation in its standard formulation will 
become inapplicable. 

In particular, we find from these results the following 
experimental condition under which the slopes of the irregu- 
larities at the rough surface being probed are small [see 
( 13 1, ( 14) 1 : The ratios of the second moments for the scat- 
tering amplitudes for waves of different types or of different 
polarizations, under the condition that the wave vectors of 
the incident and scattered waves are equal, must not depend 
on the spectrum of irregularities, and they must agree with 
the results calculated in first-order perturbation theory [i.e., 
in accordance with ( 14) 1. 

I am deeply indebted to V. I. TatarskiY and V. I. Klyats- 
kin for a useful discussion of this study. 
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