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We study the collective motions in an ensemble of coupled dynamic structures-autostructures 
described by the discrete analog of the Ginzburg-Landau equation. We show that there exists a 
range of parameters where all motions in the form of stationary traveling waves are unstable and 
where either rather complex regular regimes (in particular, quasiperiodic ones) or chaotic ones in 
the form of a multidimensional strange attractor arise. We obtain an upper estimate for the 
entropy of the chaotic motion and of the dimensionality of the strange attractor. We evaluate the 
way these quantities depend on the coupling parameter in the structures in one- and two-dimen- 
sional ensembles-lattices with an arbitrary though finite number of elements. We discuss the 
relation between the dimensionality of the strange attractor and the number of unstable solutions 
in the form of stationary waves. The theory we have constructed qualitatively explains the results 
of a numerical experiment. 

1. THE MODEL 

As a result of the development of spatial instabilities 
regular formations in the form of ensembles of identical (or 
similar) elementary cells or dynamical structures are often 
established in nonequilibrium dissipative media. Examples 
of such dynamical structures are rolls (ridges) observed 
when there is thermal convection in a plane horizontal lay- 
er,' Taylor vortices in Couette flow between rotating cylin- 
d e r ~ , ~  and so on. If we increase the amount by which we 
exceed criticality-the amount by which the medium devi- 
ates from equilibrium-the stationary state consisting of a 
set of fixed structures becomes unstable and is, generally 
speaking, destroyed. In many cases, however, before the spa- 
tial regularity is totally destroyed and turbulence or com- 
plete chaos develops in the nonequilibrium medium, several 
stages occur associated with gradual complication and the 
formation of increasingly autonomous structures. One of the 
most common ways this complication occurs is through the 
excitation of individual or collective degrees of freedom su- 
perposed on the regular background structure. As a rule, the 
structures become oscillatory initially-for instance, bend- 
ing oscillations of convective rolls' or azimuthal waves on 
Taylor vortices2 arise. Later, when we get further away from 
criticality the coupling between "neighbors" weakens and 
one can consider the nonequilibrium medium (in a certain 
range of parameters) to be a discrete ensemble of oscillating 
structures which interact with one another. 

We emphasize that when there is a well-defined mecha- 
nism leading to the formation of nonequilibrium states in a 
medium it goes over to an ensemble of oscillating structures 
(or autostructures) directly from the rest state, skipping the 
stationary dynamical formation stage. This is the mecha- 
nism which gives rise to pulsating cells on the horizontal 
surface of a fluid in an oscillating gravitational field,3 the 
rectangular and hexagonal cells on the surface of a fluid di- 
electric or ferroliquid placed, respectively, in uniform oscil- 
lating electrical4 or magnetic5 fields, etc. The increase in 
autonomy and stability of similar elementary oscillating 
structures as we pass further beyond criticality is indicated, 

in particular, by the formation of dislocations6 and the sub- 
sequent occurrence of chaos7 in an ordered ensemble. 

The nature of the transition to chaos when the auto- 
structures interact with each other is determined in the first 
instance by the number of degrees of freedom of the struc- 
tures and the size of the ensemble. If the individual struc- 
tures are not stochasticized and the number of elements in 
the ensemble is small, the stochastization process is connect- 
ed with the complete or partial formation of structures- 
fusion, granulation, change of size, e t ~ . ~  If, on the other 
hand, the ensemble consists of a large number of autostruc- 
tures, collective effects rather than elementary processes of 
strong interaction between the autostructures will be the de- 
termining factor. The transition to chaos in the ensemble 
then takes place with no change in the composition of the 
ensemble, thanks to the change in the dynamics of the sepa- 
rate autostructures (due to their coupling to one another). 

We consider here the dynamics of an ensemble of auto- 
structures, assuming that in each of them only one degree of 
freedom is excited: 

daj/dt=aJ (1-861aj1 ') , (1)  

where a, ( t )  is a complex variable characterizing the state of 
the structure, while 6 = 1 + ia is a complex parameter de- 
termining the amplitude and frequency of its oscillations in 
the stationary regime. A two-dimensional ensemble of such 
interacting structures under the simplest assumptions about 
their coupling is described by a differential-difference equa- 
tion of the form 

dajk/dt=ajk- ( l+iP)  I ajkI 'aJh+vLajh, (2)  
A A 

where L is a linear difference operator. I fL is a second-order 
difference, Eq. (2)  will be the discrete analog of the Ginz- 
burg-Landau e q ~ a t i o n . ~  The magnitude of the coupling 
between neighboring cells in (2)  is determined by the com- 
plex parameter v. Correspondingl~in the one-dimensional 
case when k=const and vL( ... ) = e ( l - i c ) ( a , + ,  
+ a, - , - 2 5  ) we shall have 
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where P,c,e > 0. In what follows we restrict ourselves to the 
analysis of ensembles with periodic boundary conditions 
a, ( t )  = a, + ( t ) ,  where Nis the number of structures in the 
ensemble. 

We emphasize that Eq. (3)  for a discrete ensemble of 
autostructures in many cases directly follow from the equa- 
tions for the complete field in nonlinear nonequilibrium me- 
dia. Here the structures may, for example, be solitons the 
oscillations of which are connected with the presence of an 
external periodic wave or a parametric wave. For instance, 
for the high-frequency field described by the well-known 
sine-Gordon equation for a weakly nonequilibrium medi- 
um'' we can in the presence of a low-frequency wave write 
( ~ 4  1) 

dZrp d2rp -- coZ - + sin rp 
at2 ax2 

Here the perturbation ap, is responsible for the departure 
from equilibrium of the medium and yp : for the nonlinear 
damping; a slow (up, = w/k<co)  low-frequency wave of 
amplitude A,  is assumed to be given. Because E( 1 a solution 
of (4) exists in the form of a chain of solitons which are 
weakly coupled to one another. When the amplitudes of the 
oscillations of these solitons in the field of the low-frequency 
wave are complex we obtain the set (3) (see Appendix 1 ) . 

By means of numerical experiments a rather extensive 
amount of information has been accumulated about the 
properties of the solutions of nonlinear systems of the form 
(2)  and (3)  .I1-" The present paper is devoted to an analyti- 
cal study of these systems. We show, in particular, that in a 
well-defined range of parameters all collective motions in 
the form of stationary traveling waves are unstable and that 
in the ensemble either quasiperiodic or chaotic motions re- 
sult." We give an upper bound for the Kolmogorov-Sinai 
entropy of the chaotic set and determine the fractal dimen- 
sionality of the strange attractor. We find how the entropy 
and dimensionality depend on the magnitude of the coupling 
between structures and ensembles with an arbitrary number 
of elements. We establish a connection between the dimen- 
sionality of the strange attractor and the number of solutions 
of unstable stationary waves which occur in the medium. 
The theory proposed here is compared with a numerical ex- 
periment performed earlier.I6 

where the A, are the Lyapunov characteristic indices ar- 
ranged in decreasing order: A1>/2,> ... >A, >0> ... >A ,,,I8 
and the dimensionality DA of the attractor which is defined 
as2' 

where M is found from the conditions 

We emphasize that the entropy HA depends solely on 
the number of unstable directions at the attractor and the 
relative rate of dispersal of close trajectories along these di- 
rections. The magnitude of HA will clearly always be less 
than the dimensionality DA of the stochastic set, which si- 
multaneously characterizes also the number of effective 
(normal) variables necessary to describe the established 
chaotic motion. 

It is very important to obtain an approximate analytical 
description of the development of chaos when e decreases in 
one- and two-dimensional lattices for a large number of ele- 
ments N in the ensemble, and to elucidate the physical na- 
ture of the change in the dimensionality of the strange attrac- 
tor when the autonomy of the structures changes. For 
systems of arbitrary form the solution of that problem is 
extraordinarily difficult. However, in the present case it is 
possible to solve this if we take into account the form of the 
nonlinearity and the symmetry properties of the systems (2)  
or (3).  One can show (see Appendix 2) that for estimates of 
the entropy and the dimensionality it is sufficient to evaluate 
averages of the eigenvalues a, ( t )  of the auxiliary matrix 
B( t )  = [B(t)  + B +(t)]/2, where B( t )  is the matrix of the 
original system (2)  or ( 3 )  written in real form and linear- 
ized near a typical solution belonging to the stochastic set; 
correspondingly B + ( t )  is the Hermitian conjugate matrix. 
The sum of the first characteristic indexes h, necessary for 
the evaluation of the entropy and the dimensionality of the 
stochastic set is connected with u, ( t )  as follows: 

1 
h, ):hi< lirn y-- oj (T) dr, 

2. DEVELOPMENT OF CHAOS 
where u , ( t )>u2( t )>  ... >u, ( t ) .  

Assuming that for some parameter range a stable sto- We use Eq. (7)  to estimate the dimensionality of the 
chastic regime (or, if the chaos is transitory, one with a long stochastic set in the phase space ofthe system (3) .  Bearing in 
lifetime) develops in the ensemble (2)  or ( 3  1, we determine mind the translational symmetry ofthe we restrict our 
how the characteristics of the On the Param- discussion to spatially uniform regimes which ore stochastic 
eters of the ensemble, viz., the number of elements Nand the on the average: 
magnitude e of the coupling between the autostructures. 

To estimate how far the multidimensional chaos has (Iajo12)t=1a01z, (aj02)t=a02. (8) 

evolved we shall use the following properties of stochastic Moreover, we assume that the average pulsation intensities 
sets: the normalized Kolmogorov-Sinai entropy are  mall:^' 
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Numerical experiments validate these a~sumptions.'~ Under 
the assumptions made one can write the system 5 = f, 
where 

g= (x1, y1, Xz, yzr . . . r xxr Y X )  3 

xj=Re (aj-a:) , yj=Im (a,-a,') 

in the form 

where 

@!=Re (l+iP) aoZ,  - az=Im ( I+ip)  ao2,  
- 

Z,=Re ( I t @ )  (a;-aoz),  zj=Im ( l+iP)  (a;-a'l2) 

To first order we can neglect the pulsation terms zjLZj, Z,; 
One then easily finds all eigenvalues of the matrix B( t )  in 
which we are interested: 

where 8, = & 27~n/N ( n  = 0,1, ... , N /2). There are here 
2N eigenvalues, all degenerate, except those corresponding 
to 8, = O,T.~' 

In accordance with the definitions ( 5 ) and (6), to esti- 
mate the entropy HA and the dimensionality D, of the sto- 
chastic set it is necessary to find the sum of all positive a, and 
the number of the first few a;. , the sum of which is close to 
zero from the left. In order that the result of the estimate 
depends as little as possible on the choice of the trajectories 
we perform the calculation for fl = 3. It is clear from ( 1 1 ) 
that then the first N eigenvalues a, = a, + , are completely 
independent of aO(t) ,  while errors due to the contribution of 
UN+ , + , to the estimates ofHA and DL change little whenfl 
is changed. 

In the present case a, = 1, so that the upper estimate for 
HA will simply be a sum of positive aj : 

m 

(clearly m<N). Bearing in mind that 

0 ,  ( 2 k + l )  s in[ (2k+1)eo /2]  ( g o = % ) ,  
n = l  

4 4 s in  (Oo/2) 
(13) 

we get from ( l l ) ,  (12) 

s in  ( m n / N )  
H,=m ( I -2e )  +2e 

sin ( n l N )  ' 

where m is determined from the condition a,,, >0, 
a, +, < 0. Thus H, (e) is a piecewise linear function, un- 
dergoing a jump in derivative at the points en = [4  sin2(8, / 

2)]  -'. We give the function H, (e) in Fig. l a  for arbitrary 
N. It is clear that the entropy increases fairly rapidly with 
increasing autonomy of the structures. 

To estimate the dimensionality DA for strong coupling 
(e > 1/2), just as for the estimate ofHA, we need know only 
the values a, + , . If e < 1/2, however, it is necessary also to 
take into account UN + , + , [see ( 1 1 ) 1. The fact is that when 
e = 1/2 and M = N [see ( 14)] the sum H, (e) = 0, i.e., for 
the given value of the coupling parameter, D, (N. When 
e < 1/2 we have accordingly DA > N and when e < 1/2 we 
have D, < N .  For strong coupling (e > 1/2) an upper esti- 
mate on DA is obtained directly from the equation 

s in  (D,.n/N) 
Hn A ( e )  =DA (1-2.5) +2e = 0. 

sin ( n l N )  

In the case of weak coupling (e < 1/2) we must add to 
the sum of the N  eigenvalues a, + , , which according to ( 14) 
for m = N equals HN (e) = N ( l  - Ze), another r values 
a,+, + , , the sum of which 

can also be written in the form ( 13). Bearing in mind that 
almost all a satisfy the inequality (aN+, + , ()a, + , we may 
assume for large r that rgN. In that case we get, expanding 
the sine ( 13 ) in a series for small arguments, 

,' 

and from the condition 

we finally find (la012=: 1) 

We show in Fig. lb  how DA depends on the magnitude 
of the coupling between structures, using Eqs. (15) (for 
e > 1/2) and (16) (for e < 1/2). 

For two-dimensional lattices the dynamics of which ac- 
cording to (2)  is described by the equation 

one can construct in a similar way estimates for the entropy 
and the dimensionality of the stochastic set. Instead of the 
eigenvalues ( 1 1 ) of the we-dimensional chain we shall in 
this case have 

o,,+,,(1+,,=1-4e+2e(cos 0,f  cos e l )  + [( l+p2)111-2]  laa12, 
0 (~+,+~, (~+1+~,=1-4e+ 2e (cos On+ cos el)  - [ ( l+pZ)  "+2] lao I Z ,  

(18)  
where 8, = +_ 2m/K (n = 0,1, ... , K/2),  8, = + 2 r / J  
(I  = 0,1, ... , J /2 ) .  Repeating the considerations and calcu- 
lations given above we find, for instance, for e < 1/4 
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D,=JK(I+ ( I - 4 e ) )  { [ ( I+P2)  lh+2] Jao12-1)-1. 

It is natural to compare the dimensionality of the stochastic 
sets in the one- and two-dimensional ensemble of structures 
with identical parameters and identical number of elements. 
The corresponding results are for a square lattice 
(J= K = N ' I 2 )  shown in Fig. 1. It is clear that the dimen- 
sionality of the chaos in the two-dimensional ensemble for a 
given magnitude of the coupling between the structures is 
always smaller than in the one-dimensional case for the same 
number of elements. One can explain this simply. The fact is 
that the degree of autonomy of the structures (where the 
dimensionality of the chaos increases when this decreases) is 
determined not only by the magnitude of the coupling 
between neighbors but also by their number-as the number 
of bonds increases the autonomy of the elementary structure 
is effectively decreased and, hence, the order of the collective 
motions increases. This in turn corresponds to a lower value 
of the dimensionality. 

3. CONNECTION BETWEEN THE DIMENSIONALITY OF THE 
CHAOS AND THE UNSTABLE STATIONARY WAVES 

In order to explain the physical nature of the increase in 
the dimensionality of stochastic motions with increasing 
autonomy of the oscillating structures, i.e., when e de- 
creases, we turn to an analysis of the properties of the regular 
collective motions in the form of stationary traveling waves 

a j ( t )  =An exp [ i  (ont+jen)]  . (19) 

Substituting ( 19) into (3) yields the dependence of the 
intensity of the stationary waves on their propagation con- 
stant 8, in the form 

I Anl '=1-4e sin2 (8,/2) (20) 

and the dispersion law for these waves 

where 6, = + 2m/N, n = 0,1, ... , N/2. The collective ex- 
citations (19) are for n = 0 spatially uniform oscillations 
and for n = N /2 T-oscillations, while for n # 0, N /2 they are 
waves traveling to the right or to the left. It is possible to 
study the stability of such waves in detail thanks to the ap- 
preciable symmetry of Eq. (3)  which, in particular, allows a 
continuous transformation of the form 

aj new=aj eip, (22) 

where q, is real. We use the invariance of ( 3 ) under the sub- 
stitution (22) to study the stability of the solutions of ( 19), 

FIG. 1. (a)  The entropy HA as function of the cou- 
pling constant e in a one-dimensional chain of N 
structures; (b) The dimensionality DL of the sto- 
chastic set in an ensemble of N autostructures as 
function of the coupling constant e; the upper curve 
corresponds to a one-dimensional "lattice" (e: 
= N2/4d), the middle one to a square lattice 
(e: = e:/2N), the lower one to a cubic lattice 
(ey = e?/3N4l3). 

in particular, to evaluate the characteristic Lyapunov in- 
dices corresponding to them. 

For waves with a propagation constant 6,  we make the 
substitution 

bj=a, exp [-i(ont+jO,)]. (23) 

In the new variables the traveling wave stops propagating 
there corresponds in the new variables to a limiting cycle in 
the phase space of the system (3) a circle, each point of 
which is an equilibrium state. As each of these equilibrium 
states is changed into another through a simple rotation, it is 
sufficient to determine the index of only one of them. Substi- 
tution of (23) reduces (3) to the form 

6,= ( I - i on )  b,- (I+ip) I b,12bj+e (I- ic)  

(bj+leien+bj-le-ien-2bj). (24) 

The equilibrium state of interest to us is ( b  : I Z  = A 2 , .  We may 
assume here that A, is real because (3 ) is invariant under the 
substitution (22). We make the substitution 5, = bj - by 
= b, - A,. We then get for the variable 6, the equation 

ij=- (l+ip)  A,' (gj+r) +e ( I - ic )  (%+,eien 
+Ej-,e-'"-2 cos B n E j )  - ( I+@) ( g j l  gj12+2AnIgj12+AnEjZ). 

(25) 
Separating the real and the imaginary parts lj = x, + iyj 
and linearizing (25) we shall look for a solution of the sys- 
tem obtained in the form 

where 6,  = + 2 ~ 1  /N, I = 0,1, ... , N /2. From the condition 
that the system for X,Y be soluble we get the characteristic 
equation 

0 1 yl,=-4e sin2 - cos On+2eci sin el sin On, 
2 

(26) 

81 pln=4ec sin2 - cos On+ 2ei sin el  sin en, 
2 

whence follows an expression for the characteristic indexes 

kin=yin-A,2* (An4-pln2+2~plnAn2) I h .  (27) 

Altogether there are here 2N indexes-the number of inde- 
pendent directions in the phase space of a system of N de- 
grees of freedom. The analysis of (27) enables us completely 
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to study the properties of the elementary excitations of the 
form (19). 

As we noted in the first section, immediately above the 
threshold for the occurrence of structures, i.e., just above 
criticality, the coupling between the cells is rather strong. 
The ensemble of the structures then demonstrates only a 
trivial regular behavior. We show this by considering 
e-e* = 1/4 sin2 (.rr/N). We emphasize that it is clear from 
(20) that when e > e* no solutions of the form ( 19) exist in 
the system except a spatially uniform one, n = 0. According 
to (27) the stability of the spatially uniform regime is deter- 
mined by the indexes 

whence it follows that when 

e>e,=(pc-1) [2 (1i-c" sin2 (n/N)]- '  (29) 
whereR,, (0 and the regime of spatially uniform oscillations 
in an ensemble of N cells is stable. We note that as N-+m 
from (29) we obtain the well known19 condition of stability 
for the continuum model, PC< 1. 

IfPc > 1, when e decreases from the value eo associated 
with the trivial equilibrium state aj = 0 there originate in the 
system consecutively (for e = en ) new collective motions 
( 19) with, respectively, n = 1,2, ... , N /2. In the phase space 
of the system (3) this corresponds for e = en to the weak 
creation from the equilibrium state of a pair of limiting cy- 
cles (corresponding to direct and counter waves) and all 
periodic motions thus created are unstable. One can verify 
this by considering the characteristic indexes of the trivial 
equilibrium aj = 0: 

Comparing (30) with (20) one notes easily that the number 
of unstable directions, i.e., the number of positive ReA, for a 
given e0 is the same as the number of stationary waves pro- 
duced when e is decreased from eo to eO, while the growth 
rates along the unstable directions are determined by the 
intensities of these waves, ReA, = IA, 1 2 .  We emphasize that 
as long as the periodic motions appear from the trivial equi- 
librium in a weak fashion they inherit (at the time when a 
new unstable direction is produced) the index of the equilib- 
rium state along the remaining independent directions. 
Thus, at the time when the periodic motion with I = 1 is 
generated it is characterized by a single unstable direction (it 
corresponds to the growth of spatially uniform perturba- 
tions), the motion with I = 2 by three, and so on. If we now 
assume that again the newly unstable motions pertain to a 
strange attractor one can easily interpret the above result 
that the dimensionality of the chaos increases monotonically 
with the increase in the autonomy of the structures-as e 
decreases trajectories appear in the attractor, and the num- 
ber of unstable directions among them is of the order of the 
number of the generated cycle (periodic motion with 
8 = 8, ). The number of unstable periodic solutions of the 

form ( 19) existing for a given e gives thus a lower bound for 
the dimensionality of the attractor. 

4. COMPARISON WITH THE RESULTS OF A NUMERICAL 
EXPERIMENT 

Numerical experiments with two-dimensional12213 and 
~ne-dimensional" . '~~~~ chains described by equations such 
as (2) have demonstrated the possibility of establishing as 
t -+m in such systems irregular stochastic motions. A 
strange attractor describes their form in phase space. We use 
here the results of Ref. 16 in which the system (3)  was stud- 
ied with periodic boundary conditions and with 
N = 9,10,50. One observed, in particular, that the regime of 
spatially uniform oscillations which arises for strong cou- 
pling changes when e is decreased to the beat regime (to 
which a two-dimensional torus corresponds in phase space). 
When e = e O  (when N = 9  and Q = c =  1.71, the value 
e0 = 1.033) the quasiperiodic regime with two incommensu- 
rate frequencies is destroyed and a regime is established, 
characterized by a positive Kolmogorov-Sinai entropy, to 
which a strange attractor corresponds. 

We show in Fig. 2 how the entropy and the dimensiona- 
lity, obtained in the numerical experiment of Ref. 16 depend 
on the parameter e. It is clear that as the coupling e decreases 
in the stochastic regions both the entropy and the dimen- 
sionality increase-the motion at the attractor remains ever 
more unstable as the autonomy of the structures increases 
and chaos becomes more and more developed. We draw at- 
tention to the ranges 0 . 7 5 ~ e ~ 0 . 9  and O(e(0.125 in which 
HA = 0 and DL = 1 (periodic motion) or DL = 2 (quasiper- 
iodic motion with two incommensurate frequencies). In 
these ranges a regime of regular pulsations is established as 
t+m; however, also for those values of the coupling param- 
eter transitional (nonstationary ) oscillations may be chaotic 
(Fig. 3).16 

We show in Fig. 2 by the dashed line the dimensionality 
as function of the magnitude of the coupling e [for the one- 
dimensional chain ( 3) ] calculated using Eqs. ( 15) and ( 16) 
for the same values of the parameters as in the numerical 
experiment. It is clear that in this case we have excellent 
agreement if we exclude relatively narrow ranges of e (e in 
the range 0.5-0.65 or 0.75-0.91, where as a result of the 

FIG. 2. Comparison of the estimate for DL with a numerical experiment 
for a one-dimensional lattice with N = 9 (@ = c = 1.7 1 ): the solid curve 
corresponds to the numerical experiment of Ref. 16, the dashed curve to 
the analytical estimate (the dotted curve is the experimental function 
 HA(^)). 
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synchronization of separate modes only transitional chaos is 
observed. 

5. CONCLUSION 

The estimates obtained for the entropy and the dimen- 
sionality of the chaos arising in nonequilibrium media of the 
form (2 )  or (3)  enables one not only to predict the way 
several properties of the turbulent regime depend on the pa- 
rameters but also to understand the physical mechanisms of 
the development of the chaos. The connection of the chaos 
dimensionality with stationary waves means that when the 
parameter changes at the moment when the next stationary 
wave is generated at the strange attractor (to be more precise 
at the trajectories belonging to it), a new unstable direction 
appears. The parameters of the stationary waves, for in- 
stance, their amplitudes and phases, can thus be considered 
as new normal variables, the number of which (less than or 
equal to 2N) determines roughly the chaos dimensionality in 
the ensemble of structures. This estimate is suitable also for a 
continuous ring-shaped system (with a finite number of ele- 
ments in the ring). We note that the chaos dimensionality 
for such a system can directly be expressed in terms of the 
length of the ring and one can easily find the connection 
between the dimensionality and the effective Reynolds num- 
ber. 

In a two-dimensional system the chaos dimensionality 
depends strongly for given parameters (number N of ele- 
ments and coupling strength e )  on the geometry-the ratio 
of the number of elements along and at right angles to the 
lattice. It turns out that the smallest dimensionality occurs 
for a square lattice, which is natural as its spectrum of sta- 
tionary waves is very sparse. 

We add in conclusion that the results given here can 
rather easily be generalized also to the case of three-dimen- 
sional ensembles of autostructures. We give in Fig. 1 the 
results of this generalization. 

APPENDIX 1 

When E = 0 (4) has a solution in the form of a soliton 

In the case E( 1 we shall look for a solution of (4)  as a sum of 
a forced solution 

FIG. 3. Transitional one-dimensional chaos observed in a 
one-dimensional chain.16 The departure from the periodic 
regime for large times shows the existence of a stable cycle 
inside the stochastic set (on the left we give the power spec- 
trum of the transitional chaos). 

and a perturbed soliton solution, for which we get from (4)  
(ci = 1) 

Looking for the solution of ( 5 ) in the form of a series ( T = t ) 

and applying an asymptotic methodz0 we get for the pertur- 
bation of the velocity v of the soliton in the presence on a 
nonresonant low-frequency wave 

a? v av 8 --=--- v3 
7 ---;-;;; f A sin (at-kx) , 

at (I-vZ)'" (1-v2)% 3 (1-v ) 
(A1.4) 

Hence we have for the relative coordinate y = x - vph t of the 
soliton center of mass when v2,vih 4 1 

3 
- A  sin k y +  - A  (:)I sin k y  

2 

According to ( A  1.5 ) solitons perform in the field of a wave 
oscillations near the equilibrium state A sin ky , zav-  
,, + O(vih ). For not too large an amplitude they are de- 
scribed by an equation for S = y -yo of the form 
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In the case of small deviations from equilibrium, 
a <a,, = 8y(3/vih - 3) - ', these oscillations are damped 
and a stationary structure (a soliton) develops. If, however, 
the deviation from equilibrium is somewhat larger, i.e., 
a >a,, , the equilibrium state S = 0 becomes unstable and 
the soliton becomes oscillatory-it performs undamped self- 
oscillations in a "well" [whena = a,, a stable limiting cycle 
is formed from the equilibrium state in the system (A1.6) 1. 
Considering further the interaction between neighboring so- 
litons which are at a distance apart y,, ! - y, -L = ( 2 ~ /  
k ) l  (I = 12,  . and bearing in mind that 
IS,,, -SjI = j(yj+, -yj)  -L I(Land(S,/(lweobtain 
for the coordinate of the jth soliton a differential-difference 
equation5' 

S , = E S , - B S ~ " - ~ / ~ Q ~ ~ S ] ~  

where R2 = Ak. Going over to new variables 

and averaging over the time we arrive at the required model 
(3).  The meaning of the coefficients will in this case be the 
following: 

and the dot indicates differentiation with respect to the time 

When the degree of deviation from equilibrium of the 
medium increases further ( cc a)  the solitons are no longer 
"trapped" and can collide with one another. As a result of 
this strong interaction the number of solitons in the general 
case is no longer conserved and the description of the dy- 
namics of an ensemble of solitons is thus no longer possible 
in the framework of the model (3) .  

APPENDIX 2 

We write the system (3)  in real form u = Fu where 
u(x1,y,,x,,y2, ... ,x, ,y, ) and we linearize it near an arbitrary 
solution u,(t). As a result we have for the variation g( t)  

One checks easily that the first (maximum) Lyapunov index 
has as an upper bound the time-average of the maximum 
eigenvalue of the matrix B(t) .  Indeed, by definition 

1 1 1  
lim - InllEll= - lim- l n ( F  ( t ) t ( t )  ) (A2.1) 
t t 2 t,, t 

(Vazhevskii inequality) or, using the relation 

we get 
t 

1 (E'Bt) h< lim-j d r .  
t -m t , (8%) 

The maximum value of the integrand at time t is the maxi- 
mum eigenvalue a, ( t )  of the matrix B ( t )  . Therefore 

t 

We obtain a similar upper estimate also for the sum of 
the first characteristic indexes 

1 

h,= hi. 

According to a theorem due to OseledetsZ2 h, is connected 
with the I-dimensional volume V, in phase space (almost 
everywhere) : 

Choosing the basis vectors 6, to be orthonormal we find 

Using then the Courant-Fisher theorem about mini-maxi- 
mum relations we finally get (see in this connection Ref. 23) 

t l  

where the ai ( t )  are the eigenvalues of the matrix B( t )  or- 
dered as follows: u,)u,>...>a,. In many cases Eq. (A2.3) 
enables us to estimate explicitly the entropy and dimensiona- 
lity of the stochastic set. 

"As a result of the synchronization of the quasiperiodic motions periodic 
motions may also be established in some regions of the coupling param- 
eter. 

"The dimensionality D, is an upper estimate for the HausdoriT (or frac- 
tal) dimensionality of the strange attractor.'' 

3'This assumption is certainly valid for the so-called "phase chaos" which 
was, in particular, observed in Ref. 16. 

4'Taking into account small perturbations of the matrix 3 proportional to 
z, 5, Z, removes the degeneracy and leads to a splitting of the eigenvalues. 
Because of the symmetry of the splitting the result for the sum of the 
indexes is not changed to first order. 

"Similar equations were obtained in Ref. 10 (see also Ref. 21) for the 
interaction of two solitons. 

'F. H. Busse, in Hydrodynamic Instabilities and Transition to Turbu- 
lence (Eds. H. L. Swinney and J. P. Gollub), Springer, Berlin, 1981, p. 
97. 

'R. C. DiPrima and H. L. Swinney, in Hydrodynamic Instabilities and 
Transition to Turbulence (Eds. H. L. Swinney and J. P. Gollub), Spring- 
er, Berlin, 1981, p. 139. 

3S. Ciliberto and J. P. Gollub, Phys. ~ e ' v .  Lett. 52, 922 (1984). 
4E. A. Kuznetsov and M. D. Spektor, Zh. Eksp. Teor. Fiz. 71,262 (1976) 
[Sov. Phys. JETP 44, 136 (1976) 1. 

'M. D. Cowley and R. E. Rosenswieg, J. Fluid Mech. 30,671 (1967). 

58 Sov. Phys. JETP 62 (I), July 1985 Aranson etal. 58 



"K. J. Donnelly, K. Park', R. Shaw, and R. W. Walden, Phys. Rev. Lett. 
44,984 (1980). 

'A. B. Ezerskii, P. I. Korotin, and M. I. Rabinovich, Pis'ma Zh. Eksp. 
Teor. Fiz. 41, 129 (1985) [JETP Lett. 41, 157 (1985)l. 

'D. V. Lyubimov, G. F. Putin, and V. N. Chernatynskii, Dokl. Akad. 
Nauk SSSR 235,554 (1977) [Sov. Phys. Dokl. 22,360 (197711. 

'A. V. Gaponov-Grekhov and M. I. Rabinovich, Nelineinaya fizika; 
khaos i struktury (Nonlinear Physics; Chaos and Structures) in Fizika 
XX beka; razbitie i perspektivy (Physics of the Twentieth Century; De- 
velopments and Perspectives) (Ed. E. P. Velikhov) Nauka, Moscow, 
1985, p. 219. 

''1. S. Aranson, K. A. Gorshkov, and M. I. Rabinovich, Preprint No. 51, 
1982, of Inst. Appl. Phys. Akad. Nauk SSSR, Gor'kii. 

"V. S. L'vov and A. A. Predtechenskii, in Nelineinye volny; stokhastich- 
nost' i turbulentnost' (Nonlinear Waves; Stochasticity and Turbulence) 
Inst. Appl. Phys. Akad. Nauk SSSR, Gor'kii, 1981, p. 57. 

12Y. Kuramoto and S. Koge, Progr. Theor. Phys. 66, 1081 (1981). 
"I. S. Aranson, M. I. Rabinovich, and I. M. Starobinets, in Nonlinear and 

Turbulent Processes in Physics (Ed. R. 2. Sagdeev) Gordon and 
Breach, New York, Vol. 3, p. 1139. 

59 Sov. Phys. JETP 62 (I), July 1985 

I4T. S. Akhromeeva er al., Dokl. Akad. Nauk SSSR 279,346,591 ( 1984) 
[Sov. Phys. Dokl. 29,911,991 (1984)l. 

15Y. Kuramoto, Progr. Theor. Phys. Suppl. No. 64, 1978. 
16A. V. Gapanov-Grekhov, M. I. Rabinovich, and I. M. Starobinets, 

Dokl. Akad. Nauk SSSR 279, 596 (1984) [Sov. Phys. Dokl. 29, 914 
(198411. 
\ - - - . , A -  

"H. T. Moon, P. Huerre, and L. G. Redekoppe, Phys. Rev. Lett. 49,458 
(1982). 

18F. Ledrappier, Commun. Math. Phys. 81,229 (1981). 
"K. Nozakki and N. Bekki, Phys. Rev. Lett. 51,2171 (1983). 
'OK. A. Gorshkov and L. A. Ostrovsky, Physica 3D, 428 (1981). 
"I. S. Aranson, K. A. Gorshkov, and M. I. Rabinovich, Zh. Eksp. Teor. 

Fiz. 86,929 (1984) [Sov. Phys. JETP 59, 542 (1984)l. 
'*V. I. Oseledets, Trudy Mosk. Mat. Obshch-va 19, 179 (1968). 
"D. Ruelle, Characteristic Exponents for a Viscous Fluid Subjected to 

Time Dependent Forces, Preprint No. 1, IHES, 1984. 

Translated by D.ter Haar 

Aranson eta/. 59 


