
Near zone of an antenna in a magnetoactive plasma 
V. I. Karpman 

Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, USSR Academy of Sciences 
(Submitted 6 March 1985) 
Zh. Eksp. Teor. Fiz. 89,71-84 (July 1985) 

The structure of the electromagnetic field and of the plasma density in the near zone of an antenna 
located in a magnetized plasma is investigated both in a linear approximation and with allowance 
for the ponderomotive force exerted by the electromagnetic field. An expression is obtained for 
the distortion of the external magnetic field by the antenna field. It is shown that the plasma can 
be either expelled from or drawn into the strong-field region by the ponderomotive force. A 
threshold-dependent effect is pointed out and investigated. It implies that when the antenna 
current exceeds a certain critical value the nonlinearity qualitatively alters the near-zone struc- 
ture and produces at a certain distance from the antenna a narrow region in which the field and 
density have very large gradients. 

1. INTRODUCTION 

In the antenna near zone, i.e., a region whose dimen- 
sions are small compared with radiation wavelength A, the 
electric field intensities attain their maximum values. For 
electromagnetic waves generated in a magnetoactive plas- 
ma, this region can be quite large (of order lo2 m)  for waves 
of low frequency, i.e., lower than the electron gyrofre- 
quency. Since the fields in the near zone are strong, the major 
role should be assumed by nonlinear effects due to alteration 
of the plasma state in the external field. At any rate, the role 
of these effects and of their influence on the impedance and 
on other antenna characteristics must be estimated first in 
the near zone. 

The present study was prompted by an attempt to esti- 
mate the role of nonlinear effects of electromagnetic-wave 
emission in experiments carried out in laboratory and in out- 
er-space plasma. We confine ourselves here to nonlinearities 
due to the ponderomotive forces exerted by a field of the 
form 

on a plasma." A number of linear-approximation topics of 
importance to the nonlinear theory are also dealt with. The 
basic equations are considered and analyzed in Sec. 2. The 
starting point is a system consisting of the Maxwell and hy- 
drostatic equations, with allowance made for the pondero- 
motive forces. These equations are applied in Sec. 3 to one of 
the nonlinear effects, viz., the distortion of an external mag- 
netic field by the electric field ( 1.1 ). The near zone of a long 
(compared with the "dispersion length") electric red an- 
tenna is considered in Sec. 4. The equations discussed de- 
scribe not only the near-zone structure but also the so-called 
"resonance" cones in which the radiation field is electrostat- 
ic. The resonance cones (more accurately, layers) that ex- 
tend into the wave zone are of importance in understanding 
the near-zone structure and are considered in the present 
paper from just this standpoint. Investigation of the nonlin- 
ear structure of the near zone shows that the plasma can not 
only be expelled from but also drawn into the strong-field 
region by the ponderomotive force (Sec. 4.2). Section 5 
deals with the near zone of a magnetic antenna (a current- 

carrying loop of finite radius, with its plane perpendicular to 
the external field). It is shown that there are no resonance 
cones even for a "point" source (Sec. 5.3). Nonlinear effects 
are investigated in Sec. 5.3. It is shown, in particular, that 
these effects have a threshold. It is found that when an an- 
tenna threshold current I, is exceeded there exists on the z 
axis passing through the center of the loop a point z, at which 
the field derivative is dE /dz = rn . The field itself becomes 
discontinuous at the point z, (if dispersion is disregarded). 
Estimates show that the current attained in experiments 
(e.g., in Refs. 2-4), is either close to I, or exceeds it. 

2. BASIC EQUATIONS AND THEIR ANALYSIS 

In the near zone one can neglect the displacement cur- 
rents, so that the basic equations for the field take the form 

rot H=- (4n/c) j, (2.1) 

rot E=- (l lc)  dHIdt, (2.2) 

div D=4np. (2.3) 

Here .? = (E, ) is the plasma dielectric tensor and depends 
on the plasma density N(R)  and on the external magnetic 
field B(R); j andp are the current and charge densities in the 
antenna. Introducing the vector potential 

H=rot A, div A=O, (2.4) 

we get from (2.1 ) 

AA=- (4nlc) j. 

Equations (2.1 ) and (2.5) do not contain E, . The magnetic 
field in the near zone is therefore determined by the same 
equations as the static field in a vacuum. The plasma proper- 
ties, however, particularly its anisotropy and nonlinearity, 
play a substantial role in the equation for E. Substituting 
(2.4) in (2.2) and assuming that the time dependence is 
determined by the phase factor exp( - iwt), we obtain 

E=i (o/c)A-V$, (2.6) 
where is a scalar potential whose equation is obtained by 
substituting (2.6) in (2.3) : 

div( iv4)  =i(olc) d i v ( ^ e ~ )  -4np. (2.7) 
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This equation must be considered jointly with the material 
equations. We assume here that the plasma is collisionless 
and "cold," i.e., 

(we assume for simplicity that TII = T, ). We can then use 
the magnetohydrodynamic equations, which take for time- 
independent source amplitudes the form 

Vp+(1/4n) [ B  rot B ] = f .  (2.9) 

Here p = 2NT, T = ( Te + Ti )/2 (we assume that T 
= const ), and f is the volume density of the ponderomotive 

force exerted by the antenna on the plasma. Under these 
assumptions, this force can be chosen in the form (see Refs. 5 
and 6 and the literature cited there) 
f = (1116n) { ( ~ i j - G i j )  V (Ei8Ej) +M+VBr+[B rot MI) ,  

(2.10) 

where M is the density of the magnetic moment induced by 
the oscillating electromagnetic field, 

We now designate the density and the external magnet- 
ic field at large distances from the antenna by No and B,, 
respectively, and introduce the relative quantities 

Analysis of Eq. (2.9) shows that condition (2.8) makes b 
small: 

so that the terms that contain b can be linearized in (2.9) 
[Eq. (2.13) will be corroborated below by the results of the 
corresponding solution]. As a result we have 

wherep, = (zm, + mi )NozmiNo and c: = B$/47rp0. We 
emphasize that (2.14) was derived without assuming that v 
is small. 

Since b, is small, we can put B = B, in the expressions 
for E ~ .  The nonzero components E, are thus E,, = E~~ = E, 
E, = - E~~ = - ig, E~~ = 7, where 

The summation here is over the particle species (a = e, i) ,  
a,, (N) is the plasma frequency at the density N, and w,, is 
the cyclotron frequency at B = B, (B, is assumed directed 
along the z axis ) . 

We assume hereafter that the antenna axis coincides 
with z and introduce the cylindrical coordinates r, p ,  and z, 
assuming that all the derivatives with respect to p are zero. 
Then 

Substituting (2.19) in the z component of (2.14) and 
recognizing that the quantities eii - Sii are proportional to 
the plasma density N, we obtain2' 

N=No exp{ (32nNoT)- '[  ( & , - I )  (IEr12+IE,12) 
+ (qo-1) IEz12+igo(E,'E,-E,'E,) I ,  (2.20) 

eo=e ( N O ) ,  qo=q ( N o ) ,  go=g(No). 

Substituting (2.18) in the r component of (2.14) and taking 
(2.20) into account, we get 

With this equation we can, in principle, express b in terms of 
the antenna electric field E (see Sec. 3). 

The study of the antenna near zone reduces thus to solu- 
tion of Eq. (2.7) jointly with (2.5), (2.15), and (2.20). An 
important feature of Eq. (2.7) is that the coefficients E and 7 
can differ in sign and in frequency dependence. This circum- 
stance manifests itself substantially even in the linear ap- 
proximation, i.e., when it is assumed in (2.15) that N = No. 
In this case we can in fact rewrite (2.7) in the form 

Assuming that (2.5) has been solved, we can regard the 
right-hand side of (2.22) as known. Equation (2.22) is an 
inhomogeneous equation which is elliptic if the signs of E, 

and 7, coincide and parabolic if they differ. The latter occurs 
if 

max (o,,, a,,) <O<OUH ( ~ ( 0 ,  q>O), (2.23a) 

oLH<o<rnin(oce, ope) (e>O, q<0),  (2.23b) 

O<o<o,i ( 0 0 ,  q<O), (2 .23~)  

where w ,  and wLH are the upper and lower hybrid frequen- 
cies: 

In the remaining frequency bands, however E and 7 are of 
like sign, which can be easily determined by using (2.15). 
Relations (2.23) are known to be the conditions for the exis- 
tence of electrostatic waves. It can be easily seen that the 
latter propagate precisely along the characteristic directions 
of Eq. (2.22). If the right-hand side of (2.22) contains a a 
function or its derivatives (point sources), the characteris- 
tics originating at the sources form resonance cones. These 
cones (including the cases when account is taken of the spa- 
tial dispersion, which we neglect here) have been extensively 
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studied (see, e.g., Refs. 7-9 and the literature cited therein). 
All these factors, which become much more complicated 
when allowance is made for nonlinear effects, must be taken 
into consideration when Eqs. (2.7) and (2.22) are solved 
and investigated, and their manifestations in various cases 
will be discussed, in particular, in the sections that follow. 

3. DISTORTION OF EXTERNAL MAGNETIC FIELD BY THE 
ANTENNA-INDUCED FIELD 

From the equation div B = 0, i.e., 

( l / r )  d (rb,) /dr+db,ldz=O, 

it follows that 

b,=-dx/dz, b,= ( l l r )  d ( r ~ )  ldr, (3.1) 

wherex(r, z )  is some function. Substituting (3.1) in (2.21) 
we obtain 

This equation yieldsx(r, z)  if the electric field excited by the 
antenna is known. To solve (3.2) we take the Hankel trans- 
form with respect to r and the Fourier trransform with re- 
spect to z: 

00 m 

where J, is a Bessel function andi (p ,  s )  is the corresponding 
transform. Substituting (3.3) in (3.2) and using the equa- 
tion for J ,  (rs) we obtain ultimately 

4 (rl-r) + ((z-z) " 
~ ( r ,  Z )  =- - J dzl drrrluQI( 1+ 

BE- 0 
2rr1 

where Q , , , ( x )  is a Legendre function of the second kind. It 
is useful here to bear in mind the relations 

where P i s  a hypergeometric function and K and E are com- 
plete elliptic integrals. It follows from (3.5), in particular, 
that 

Q,,, ( x )  -2-% (x> I), Q,/, ( x )  -In [32 ( x -  1 )  -"I (s-t l )  . 
Equation (3.4) determines in principle the distortion of 

an external magnetic field in the near zone of an antenna. 
This equation leads, in particular, to the estimate (3.13). 

Although b(l in a "cold" plasma, this quantity may be of 
interest for the analysis of geomagnetic perturbations pro- 
duced by an antenna in space plasma, as well as for the analy- 
sis of the generation of geomagnetic pulsations if the radiat- 
ed electromagnetic waves are amplitude-modulated. We 
intend to consider these questions, which are outside the 
scope of the present article, elsewhere. 

4. NEAR ZONE OF A LONG ELECTRIC-ROD ANTENNA 

By way of one important example we consider a long 
electric-rod antenna consisting of two close ideally conduct- 
ing rods of length L oriented along the z axis. If the wave- 
length is /1>21rL, the linear charge density at each point of 
the antenna, except at the end points of the rods, can be 
regarded as constant; we can then write for the volume den- 
sity p: 

where a = const stands for the linear-charge-density ampli- 
tude. This expression can be deduced from Gauss's theorem. 
We note also that in an isotropic medium (4.1 ) represents 
the limiting case of the known current distribution over an 
ideally conducting rod antenna (see, e.g., Ref. 1 1 ) : 

By substituting this expression in the continuity equation di/ 
dz = iwq(z)  and putting kL(1 we arrive at (4.1 ). 

We will be considering only the region outside the tran- 
sition layer that screens the antenna charge (the structure of 
this layer at B, = 0 was investigated in Ref. 1). We neglect 
also effects due to the plasma-particle collisions with the 
antenna. Furthermore, since we use expressions (2.15), i.e., 
we neglect spatial dispersion, the antenna dimensions must 
be regarded as much larger than the Debye and Larmor 
radii. 

4.1. Linear theory 

We consider first the rod-antenna electric field (4.1 ) in 
the linear approximation, i.e., using Eq. (2.22). It is easily 
verified that in the near zone we can neglect the first term of 
the right-hand side of (2.22). Introducing the quantity 

and taking the Fourier transform of (2.22) with the A term 
omitted, we get 

where J,  is a Bessel function. If E,  and 7, are of like sign,  the^ 
denominator in (4.4) does not vanish. If the signs of E,  and 
7, are opposite (this is precisely the case considered below), 
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the integrand has a pole that must be integrated around in 
accord with the condition that the field is adiabatically 
switched on at t = - oo . This is equivalent to assuming that 
w has an infinitesimal positive imaginary part that must tend 
to zero after we calculate (4.4).12 

Recognizing that at w = w, + ia(a(w,) we have 

Im y ( a )  =ay (0,)  ( E ~ ~ / E ~ - ~ ~ ~ / ~ ~ )  /2, eof=deo/doo>O, 

we obtain at y (w,) > 0 

sign Im y ( o )  =sign e0 ( a o )  =-sign qa ( a o ) .  (4.5) 

Evaluating the integral with respect top in (4.4) yields then 

To regularize the integrals in (4.6) we make the substitution 
J,  -, J,, with v > 0, and let next Y - 0. The -v-  ' terms are 
then cancelled if 

sign (z*L) =sign z .  (4.7) 

If (4.7) is satisfied we have 
Fl(r ,  z )  =ln[Po+ (po2-1)'h] -1n[P*,+(PI~"1)'"] 

(z>o), (4.8a) 
F ,  (r, z) =-ln[-~o+(poZ-l) 'h] + l n [ - ~ * ~ +  (P+iL1) "1 

(z<o), (4.8b) 

where 0, = y(z + nL)/r, n = 0, f 1. If furthermore (P, I 
< 1, it must be assumed that in (4.8) 

l n [ ~ P , , + ( ~ , , 2 - l ) ' h ]  =-i sign q arccos(*!3.) (IP.l<t). (4.9) 

If (4.7) is not satisfied, the integral representation 
(4.6) does not hold for F ,  (r, z).  At such values of z the 
functions F, (r, z)  can be obtained by analytically continu- 
ing the functions (4.8) from the regions where the condi- 
tions (4.7) hold. It follows that (4.8) and (4.9) are valid 
also outside the regions (4.7). 

Equations (4.31, (4.8) and (4.9) describe fully the 
electric field in the rod antenna near zone. The potential $(r, 
Z )  has a substantially different behavior in the different sec- 
tors indicated in Fig. 1. The field is thus real in the sectors 
A + (and is determined by the sum of expressions (4.8) with 
0, > 1 ). In sectors 0, the function $(r, z)  acquires an 
imaginary part. As the straight line yz = f r f L is ap- 
proached in sectors C ,  , the real part of $ vanishes, so that 
the potential in the sector D+ + D- is purely imaginary. 
The transition of $(r, z) from sector to sector is continuous, 
but the derivatives of $, i.e., the components of E(r, z), 
become infinite on the boundaries of the sectors that are sep- 
arated from one another by the cones yz = f r + C, C  = 0, 
+ L. It can easily be verified that the latter are the charac- 

teristics of Eq. (2.22). The singularities on the sector boun- 

FIG. 1. Diagram of the various characteristic regions for the near zone of 
an electric rod antenna. 

daries are due to the end points z = 0 and z = + L ( r  = O), 
whose influence "persists" along the characteristics. 

We consider next the potential $(r, z)  at large and small 
distances from the rod antenna. Thus, at R>L and y'z2 - ? 
)L we have from (4.3), (4.8), and (4.9) 

where p = a L  is the amplitude of the antenna dipole mo- 
ment. 

Equations (4.10) determine the potential of a point di- 
pole. In this approximation, both the field intensity and the 
potential $(r, z)  have singularities on the resonance cone 
r = + yz, with $ real and purely imaginary inside and out- 
side the cone, respectively. For a rod of finite size the cone 
spreads to form a conical layer of thickness 2L (which can be 
called the resonance layer), within which the field decreases 
very slowly with increasing distance from the source 
($-R - ' I2)  and changes gradually from real (in the A re- 
gion) to purely imaginary (in the D region). This situation is 
typical not only of rod antennas but also of other  source^.^ 
Allowance for the spatial dispersion which is completely ne- 
glected in our case) leads to the oscillating resonance-layer 
fine structure considered for certain sources in Refs. 8 and 9. 
We note that since the field decreases very slowly in the reso- 
nance layer, its structure is preserved only in the wave zone. 
This is precisely the region where the electric field is irrota- 
tional also at large distances (electrostatic waves). 

Expressions (4.10) can be represented in the form 
$ = 4?rp(d/dz)G(R), where G(R - R') is the Green's 
function of (2.22) (i.e., G(R)  defines the potential of a sin- 
gle point charge located at R = 0)  : 

G ( R )  =(sign q /4z)  Ieoqol-'" (y2z2-rZ)-'1r ( I Y ~ I > ~ ) I  
(4.1 la)  

G ( R )  = ( i /4n)  1 &orlo 1-lh(r2-y2z2)-Ih (I yz I+). (4.11b) 

Expressions (4.1 1 ) coincide with the Green's function ob- 
tained in Ref. 9 for Eq. (2.22) by another method. At <O 
Eq. (4.1 1 ) leads to the Green's function for the case ET > 0 
(Ref. 12, 5 13). The transition from EV > 0 to EV < 0 (just as 
from 1 yz ( > r to ( yzl< r )  is thus via a corresponding analytic 
continuation. The problem, however, is how to choose cor- 
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rectly the cuts and sheets in the complex planes of the 
branching functions. 

We consider now the field at short distances from the 
rod antenna, where the conditions ylz + L I s r ,  ylzl >r  are 
satisfied. In this case it follows from (4.3) and (4.8) that 

E,-sign z (2o/~, r )  BE,. (4.12) 

It was recognized in the derivation of (12) that, e.g., at 
L > z > 0 (region B '+ in Fig. 1 ) and at r(y (L - z)  we have 

y (2-L) +[ y2 ( z - L ) ~ - P ] ~ ~ = - P / ~ ~  (L-z) +o ( P ) .  

The results (4.12) agree with those obtained from Gauss's 
theorem in the calculation of the flux of the induction D 
through a cylindrical surface of small radius surrounding an 
antenna section in the region where the influence of the 
points z = L and z = 0 can be neglected. 

4.2. Some nonlinear effects 

Applying the Gauss theorem as before, but using the 
expression for E(N), we readily obtain an approximate 
expression for the field at short distance from the antenna, 
with allowance for the density change due to the pondero- 
motive force. We then obtain in lieu of (4.12) 

E ( N )  E , s 2  sign z (olr) ,  E-- I E,  I. (4.13) 

Here E (N) is defined in ( 2.15). Recognizing that E (M) 
= 1 + (eo - l)N/No and introducing the new quantities 

(we assume that E~ > 1, as is the case when w < wce ), we ob- 
tain for the field an equation in the form 

which can be easily solved graphically. This equation is valid 
because of the inequality r(L. Equation (4.15) becomes 
particularly simple in the important case E,) 1 which occurs 
at 6.1; )a;,. We have then in place of (4.15) 

E exp E2=ro/r. (4.16) 

The linear equation (4.12) follows from (4.15) at r>ro. At 
r(rO we have 

As r -+ 0 the nonlinearity thus leads to a slower growth of 
the field than in (4.12). 

It follows also from (4.15) that at small r the density 
behaves as 

iV (r) =No exp B2-N,r,lr, 

i.e., it increases with decreasing r. The ponderomotive force 
thus draws the plasma into the stronger-field region. The 
reasons are that the principal role is played in this region by 
the radial component of the electric field and that E, > 1 (i.e., 
w < wce 1. In the other regions the plasma can be either drawn 
in or expelled. 

Let us estimate, for example, the change of the density 
at large distances, where the dipole approximation (4.10) 

can be used. In this case we have (eo> 1, 17,) ) 1 

(the validity of this equation is restricted by the condition 
IN - No[ (No). We conclude from (4.18) that 

and that N - No < 0 in the remaining regions. We plan to 
investigate the stability of configurations containing regions 
with both NSNo in another paper. 

5. MAGNETIC ANTENNA 

Assume that the antenna is a circular loop of radius a in 
a plane perpendicular to B,, carrying a current I. Equation 
(2.7) takes the form 

it is recognized that A ,  = A ,  = 0 in this case. ThenI2 

wheres is the modulus of the complete elliptic integralsK(s) 
and E(s) ,  

As before, we neglect spatial dispersion and also the colli- 
sions between the plasma particles and the antenna. 

5.1 Magnetic dipole (linear approximation) 

Equation (5.2) leads at 9 + z2>a2 to the following for- 
mula for the magnetic-dipole vector potential: 

Equation (5.1 ) can in this case be written in the linear ap- 
proximation, i.e., for N = No, in the form 

where y is defined in (4.1 ) , 

(For the sake of argument it is assumed in (5.5) and else- 
where that E > 0 and q < 0. This frequency range includes, in 
particular, whistlers with w < wce and waves of lower fre- 
quency.) 

Equation (5.5 ) contains only one dimensional param- 
eter a (with units of electric charge). A solution that de- 
creases as R + oo is therefore sought for it in the self-similar 
form 

$=a/ zIVf ( t )  , t=P/y2z2. (5.7 

Substituting it in (5.5 1, we obtain v = - 1, and for f(t) we 
get the inhomogeneous hypergeometric equation 
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t  (l-t)j"+[1-5/2t]f'-'12f='/p[3(l+r"t)-'/~ 
- ( l + y ~ ) - " 2 ] + 6 ( z )  I z I  [f ( t )  + 2 t f T ( t ) ] .  (5.8) 

The general solution of (5.8) at z#O can be written in the 
form 

(R-r) (R-a)s 
R Z  s2 a  (P)" "(&, s) 

+ (R+r) (R4-a) s  ( : ) I h I I (  -%, s ) }  , (5.13) 
a  R-r 

f (t) =C(1-t) -"- ( l + y 2 )  - I  ( l+yZt)  -'I3, (5.9) 

where the first term is the general solution of the homogen- 
eous equation (Cis an arbitrary constant), and the second is 
the particular solution of the inhomogeneous equation (5.8) 
without the &function term (the latter solution was chosen 
not to have singularities at t = 0, 1, UJ ). We consider now 
the term with the S function. Substituting (5.9) in it, we get 

f ( t )  +2tff ( t )  =C(1-t) -%- ( l+yZ)- i ( l+yZt)  -.h. 

We see hence that if C +O this term leads to a non-integrable 
singularity at the origin if r -t 0 along some line, e.g., 
rZ = y22 - const zp + ', p > 4/3. We therefore put C = 0 in 
(5.9). The solution accordingly takes the form 

Substituting (5.10) and (5.4) in (2.6) we obtain the follow- 
ing expressions for the electric-field components in the near 
zone of a magnetic-dipole antenna: 

E,=i ( o l c )  MrR-3. (5.11) 

As for the magnetic-field intensity, it is of the same form as 
for a static magnetic dipole. 

We emphasize that, in contrast to an electric dipole, the 
potential (5. lo),  and accordingly the intensity (5.11 ), have 
no singularities on the resonant cone. 

5.2 Magnetic antenna of finite radius (linear approximation) 

We subdivide the inner area of the current loop into 
elements ds (JJds = rra2). The field produced by the cur- 
rent-carrying loop can then be represented as a superposi- 
tion of fields produced by elementary magnetic dipoles with 
moments dM = (I/c)ds. We can write accordingly for the 
potential 

q,=- dx' dy' (5.12) 
~-X')~+(~-~')~+(Z-Z')~]'~ ' 

where the integration is over the area bounded by the cur- 
rent. Assuming 

where R is the distance from the origin (from the center of 
the circle), and integrating first with respect to r' and next 
with respect to p, we obtain as the end result 

Here K and E are complete elliptic integrals of the first and 
second kind with the moduluss given by (5.3), and rI (v,s) is 
a complete elliptic integral of the third kind: 

a/; 

"(v ,s ,= S d~ 
a ( l+v sin2 q)  (1-s2 sin2 rq) ' 

It is more convenient to use another expression, which is 
obtained by integrating first with respect to p: 

(I 

while s, is obtained from (5.3) with a replaced by r,. As 
a + 0 and at constant M, (5.10) can be easily obtained from 
(5.14), which is a simple integral representation of (5.13). 
It follows from (5.13) or (5.14) that at r = 0 

5.3. Nonlinear effects 

We present first a simple expression for AN = N - No 
at I AN I (No. Assuming that the dipole-approximation equa- 
tions can be used for the electric field and substituting these 
equations in (2.20), we get 

ANIN,--DZ ( l + y 2 )  -' (a lR)  ', (5.16) 

where sin 0 = r/R. It can be seen from (5.16) that, in con- 
trast to the electric dipole, N < No for a magnetic dipole at all 
8. 

We consider now the nonlinear self-consistent solution. 
In the general case this problem calls for the use of rather 
complicated numerical methods. The situation is somewhat 
simpler when 1~1>1, 1~1>1. In this case we can assume 
E Z  (N/N0)&,, 7~ (N/No)g,. Substituting these in (5.1) 
and taking into account (2.20) and also the fact that 7 < 0 
and E < 0, we obtain the following equations: 

d(rE.) dE, + d l n N (  y2--- y2Er + - 
rdr dz dr 

go" A.) 
lllolc (5.18) 

d l n N  -- ~ g o  a(rA,) dEr dEz E,=- -- - = -. 
dz clqol rdr ' dz dr ' 

Equation (5.18) has thus a cubic nonlinearity that is con- 
tained, however, in the terms with the higher-order deriva- 
tives. These equations are still quite complicated. There is, 
however, an interesting case when simple analytic results 
can be obtained and shed light on the character of the nonlin- 
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ear effects in our problem. Consider, in fact, the field near 
the z axis (i.e., r(z) and assume that ?(I; this is the case 
when (w/wce ) 2 <  1. We take into account here the finite radi- 
us of the loop. 

Expanding all the functions in (5.1 ) in powers of r/z, 
we have 
A,=Mr(a2+zZ)-"';+O(r2) ,  E,=O ( r ) ,  dE,/dz=O ( r ) ,  

(5.20) 
N=No e x p [ - - p Z ( z )  ] + O ( ? ) ,  (5.21) 

p=- ( a p e / m )  (32nN,T)-'"E,(z,  0 ) .  (5.22) 

Substituting (5.20) and (5.21) in (5.18) and retaining 
only the terms of first order in 9, we obtain for p (z) the 
equation3' 

( 1 - 2 p 2 )  dp/dz=-2DaZ (a2+zZ)-%, (5.23) 

where D is defined in (5.17). Solving (5.23) under the con- 
d i t i o n ~ ( ~ )  -+ O(z + m ), we get 

At large distances from the antenna, when the cubic term 
can be neglected, (5.24) leads to (5.16) if f <  1. 

We investigate next the polynomial P(p) = p - 2/3p3 
(Fig. 2). Its roots a r ep  = 0 and 5 (3/2)'12. The roots of 
P1(p) are +p+ where p+ = (1/2) '12~0.71, so that 
P(p+ ) = (2/9) 'I2 + 0.47. It follows from the foregoing 
that (5.24) has three real roots (two positive and one nega- 
tive) if 2D[ 1 - z(z2 + a2)  -'I2] < (2/9) 'I2. One of the posi- 
tive roots determines the p ( z )  branch that vanishes as 
z + m and determines therefore the desired solution that 
goes over into a linear expression at large z. We call this the 
physical branch. If 2 0  < (2/9) 'I2, i.e., 

p (z) increases monotonically, on approaching the antenna, 
from zero at z = m top,,, z 2 0  + 16/30 at z = 0. If, how- 
ever, D > Do there exists, as the antenna is approached, a 
point z, such that p (z, + 0)  = p + = ( 1/2) 'I2, P(p+ ) 
= (2/9) 'I2. The physical branch ofp (z) merges at the point 

zo with the other positive branch. From the condition that 
the roots merge, we obtain the following expression for z,: 

In the vicinity ofz,, the positive roots of (5.24) are approxi- 
mately equal to 

p p + *  (0,4010)  ( 2 D - D o ) " 4 [ ( z - z o )  la]'", (5.27) 

with the minus sign corresponding to the physical branch. It 
can be seen from (5.27) that dp/dz + m as z -+ z, + 0. At 

FIG. 2. Plot o f  the polynomial P ( p )  = p - 2/3p3: OA = p+ 
=2-1/2- -0.71, P ( / ~ + ) z ( 2 / 9 ) ' / ~ z 0 . 4 7 ,  OB = ( 3 / 2 ) 1 1 2 z 1 . 2 2 .  

FIG. 3. Plots of  the solutionsp(g) of  Eq. (5.24) ( 6  = z / a )  for different 
values of  D: 1 )  D = 0.15, 2 )  D = 0.30, 3 )  D = 1 .  Only the physical 
branches of  the curves are shown for D > D,z0.24.  

z<z, Eq. (5.24) has only one real (negative) root, and 
p (z, - 0) = p- = - a, i.e., p (z) has a jump discontin- 
uity at the point z, (Fig. 3). 

The jump is due to neglect of the effects of the finite 
Debye and Larmor radii. Certain estimates show that in the 
vicinity of the point z,, where the field and the state of the 
plasma vary so abruptly, the plasma is in general unstable. A 
detailed investigation of the effects that are produced in the 
vicinity of z, is a problem outside the scope of the present 
paper. 

In sum, we can state that the nonlinear effects described 
by Eq. (5.24) have thresholds. At D <Do the field is contin- 
uous at O<z< m, withp,,, =p(O)(p+z0 .71  and N(0) 
z0.61No(N(0) < N(z) < N o ) .  The variations of the field 
and of the density differ only quantitatively from those that 
follow from the linear theory. At D > Do the near-zone struc- 
ture is qualitatively altered. A singular point z, > 0 appears, 
for which dE/dz = m and E(z, + 0)  #E(z, - 0)  (within 
the framework of the hydrodynamic description of the medi- 
um). Generally speaking, kinetic effects become important 
in the vicinity of z,; a large field gradient should heat the 
plasma in this case. 

The antenna current corresponding to D > Do is deter- 
mined according to (2.10) by the condition ( (w/wCe )2< 1 ) 

where I, is the critical value of the current (in amperes) and 
T is given in degrees. For the upper ionosphere at heights 
H = (1-3) x lo3 km and at w = 0.03 w,, we have I,=: 50 A 
to 80 A, close to the current used in the experiments of Ref. 
4. In the magnetosphere at a height of 3-4 earth radii the 
experiments are usually performed at @/ace - 0.3-0.5 (the 
condition (w/oc, )'<I can be regarded as satisfied to first 
order; in this case T- lo4 deg. This yields the rather low 
threshold value I, = 10 A. The same order ofI, follows from 
(5.28) for laboratory experiments, in which case the condi- 
tionA> 27~a is satisfied (A is the wavelength). The foregoing 
estimates show that the nonlinear effects described above 
can occur (and possibly do occur) under real conditions, 
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and must therefore be taken into account when the experi- 
mental results are interpreted. 

In conclusion, I take the opportunity to express sincere 
gratitude to L. P. Pitaevskii for helpful discussions of a num- 
ber of results and to N. A. Ryabov for numerically solving 
Eq. (5 .4) .  

Note added in press (30 May 1985). The analysis of the 
transition toz -+ 0 in Eq. (5 .8)  contains an error. A recently 
developed consistent approach leads to the expression C 
= - a /? (  1 + y2 ), which yields for a magnetic antenna 

$=-a( l+y2)-1R- ' -  [a /y( i+y2)  ] (yZz2-r2)-'A, 

Expressions (5.10) and (5 .11)  pertain in this case to a 
source consisting of a magnetic dipole and of a point 
charge located at R = O  and having an amplitude 
a 1 v 0 ( ( l + ? ) - ' .  Equations (5.12)-(5.15) determine 
accordingly the field of a magneto-electric sheet (MES) 
consisting of a circular current I enclosing a distributed 
surface charge with a density of amplitude u 
= ( a / n a 2 )  lvol ( 1  + ?)-I .  The analysis presented in Sec. 
5.3 pertains precisely to the MES, which is a convenient 
model for the analytic investigation, since its field has no 
singularity as 9 -+ 0. It is probable that the conclusion that 
the MES is threshold-dependent is valid also for antennas of 
the magnetic type and other types. The threshold at y24 1 

can in this case be even lower than (5 .28) ,  since the effective 
amplitude of a magnetic antenna increases with decreasing 
y. This question is now being investigated numerically. 

''Various aspects of nonlinear penetration of an alternating electromag- 
netic field into a magnetoactive plasma have been studied in many pa- 
pers. As to the problems dealt with here, we point out the paper by 

Gurevich and Pitaevskill and the literature cited in it, as well as a num- 
ber of papers referred to below. 

"Ifw is considerably higher than the lower hybrid frequency, Eq. (2.20) 
goes over into Eq. (20) of Ref. 1, although the expression given in Ref. 1 
for f differs from (2.10). This difference is significant only for the r 
component of Eq. (2.14). 

3'It is important here that, for the solution that goes over in the linear 
approximation into (5.13), the terms of the expansion in powers of r are 
not singular as y + 0. This is not the case for an electric antenna, where 
the presence of the resonance cone ? = $2' produces in the solution a 
singularity as y + 0 even in the linear approximation, as we have seen in 
Sec. 3. 
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