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A general theory is derived for the natural and forced quasistatic oscillations of a homogeneous 
and isotropic plasma with the shape of a triaxial ellipsoid. Closed analytic representations are 
derived for the frequencies, radiative damping constants, and multipole moments, including the 
magnetic and toroidal moments of the polarization currents which result from the nonspherical 
shape of the plasma, for dipole, quadrupole, and octupole oscillations. The force exerted on the 
plasma in an incident plane wave is derived. In the case of a double resonance, this force has a 
lateral component comparable to the longitudinal component. 

1. INTRODUCTION 

Resonant effects play a special role in the interaction of 
a high-frequency electromagnetic field with a small volume 
of plasma, and they become progressively more intense as 
the dimensions of the plasma become smaller in comparison 
with the wavelength of the external field. An analysis of 
these effects requires that we first study the natural oscilla- 
tions of the plasma, i.e., find the frequencies, damping rates, 
and spatial structures of these oscillations. So far, this prob- 
lem has been solved rigorously only for the simplest model, 
that of a uniform plasma sphere.' In the case of a small plas- 
ma in which we are interested here, the approximate quasi- 
static theory works quite well. That theory was used in Ref. 2 
to derive dispersion relations for the real natural frequencies 
of a plasma spheroid. 

The symmetry (the geometric degeneracy), of the mod- 
el of a spheroid or, especially, a sphere however, may conceal 
certain features which are characteristic of plasmas of arbi- 
trary shape. A flexible geometric model for such plasmas is a 
triaxial ellipsoid with arbitrary ratios of axes. Our purpose in 
this paper is to derive a theory of the resonant effects in a 
homogeneous and isotropic plasma ellipsoid. 

We use the following general method for analyzing qua- 
sistatic oscillations of plasma formations of zrbitrary shape. 
We denote by P(r ,  t )  the polarization distribution in the 
plasma, and we denote by v(r, t )  the velocity field of the 
plasma electrons. We assume that the plasma is uniform, 
isotropic, and cold (there is no spatial dispersion). We then 
obviously have P = nev, where n is the density, and e is the. 
charge of an electron. The polarization P creates an electric 
field Ep, which in the quasistatic theory is simply the Cou- 
lomb field of the exchange polarization charges, p = divP, 
and the surface charges, a = P,, where n is the outward nor- 
mal to the surface of the plasma. 

If, in addition to the field produced by the plasma itself, 
Ep, there is a field produced by external sources, E,,, (r, t) ,  
the equation of motion of an electron can be written 

where w, = (4me2/m) 'I2 is the plasma frequncy, and Y,, 

the effective collision rate. In particular with Y,, = 0 and 
E,,, = 0, Eq. ( 1.1 ) becomes the quasistatic equation 

which determines both the real frequencies Z and the distri- 
butions P ( r )  of the natural oscillations. For these oscilla- 
tions, the vectors v and Ep are 17/2 out of phase, and the 
dynamics of the quasistatic natural oscillations involve 
pumping the energy of the electric field, U, = U i  
cos2(Et + $1, into the kinetic energy of the particles, 

K( t )  = K 'sinz (Et + $) . Here 

are the peak values of these energies. Obviously, a necessary 
condition for the occurrence of a natural oscillation is 
KO = U i ,  from which we immediately find E<wo. The equa- 
lity here holds only in the case of completely localized oscil- 
lations, in which the field vanishes in the volume V, outside 
the plasma. In general, introducing the dimensionless natu- 
ral frequency a= Z/wo, we have 

K0=2nP2 J I P 12dV, Ui=P2K0, = (1-P) KO, ( 1.2) 

where KO is the total (peak kinetic) energy of the natural 
oscillation. 

Since the quasistatic fields of the natural oscillations are 
electrostatic, P = - VII, Ep = - V@, and since we have 

in free space, by introducing the operator 

we can transform from the vector equation Ep = - 4 d 2 P  
to the standard scalar equation of the eigenvalue problem: 

For unlocalized oscillations, with < 1, the dielectric con- 
stant of the plasma, E = 1 - W 2 ,  is nonzero, so that the 
fields are harmonic: V211 = 0. The operator 9 thus con- 
tains only a surface integral. 

If problem ( 1.4) has been solved, we need only find the 
damping constants to obtain a complete description of the 
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natural oscillations. The collisional loss is evidently 
y,, = 1/2 v,. In the case of a collisionless plasma, on the 
other hand, we would also have to take into account the 
small radiative loss, which gives rise to a radiative damping 
rate y,,, . This rate can be found by, for example, the method 
of Ref. 3, which is based on simple energy considerations. 
Corresponding to the oscillatory polarization P exp( - iwt) 
is a polarization current j = - iwP, which creates in the 
wave zone in free space (this method also works in regions 
with boundaries) a radiation field 

eikr 

H=kZ- [vG], E=[HvJ, 
r 

where k = w/c, v is a unit vector along the direction to the 
observation point, with G is the interference vector 

Since the dimensions of the plasma are small, we need to 
consider only the first nonvanishing term of expansion 
( 1.5 ) . The radiated power is 

where the superior bar means an average over the solid an- 
gle. Calculating J, we immediately also find the radiative 
damping rate y,,, = J / ( 2 K  O), where K O is given by ( 1.2). 

2. NATURAL OSCILLATIONS OF A PLASMA ELLIPSOID 

For an object of arbitrary shape, numerical methods 
would have to be used to solve the functional equation ( 1.4). 
The situation simplifies dramatically, however, in the case of 
an ellipsoid, where-as follows from results derived in the 
19th century by Ferrers4-a polynomial distribution of the 
function f (x, y, z)  corresponds to an operator Y {  f) 
which has the form of a polynomial of the same degree,5 with 
coefficients which contain internal potential factors 

abc 
(21-1) !! (2m-i) !! (2n-1) !! - 

2 

D ( h )  =[ (a2+k) (b2+h) (cZ+h) 1". (2.1) 

Here a, b, c are the semiaxes of the ellipsoid, whose center 
coincides with origin of a Cartesian coordinate system x, y, z, 
whose axes are oriented along those of the ellipsoid. In parti- 
cular, MI,, = Ma,  Mole = Mb , Moo, = Mc are the ordinary 
depolarization factors (Ma + M, + Mc = 1 1, while all the 
other MI,, can be expressed in terms of M, , Mb , and M, by 
means of the recurrence relations given in Ref. 5. 

In Ref. 5, using the results derived by Ferrers, we solved 
the problem of a dielectric ellipsoid in a nonuniform static 
field, and we found certain eigenfrequencies of a plasma el- 
lipsoid. In Ref. 5 we took a "head-on" approach to these 
problems: We studied linear algebraic equations for the coef- 
ficients of the polynomial distributions n ( x ,  y, z )  which 
arise when these distributions are substituted into equations 

like ( 1.4). In this head-on approach, the calculations are 
extremely complicated, and the final results are excessively 
complicated in places. Fortunately, the mathematical ar- 
senal of the 19th century furnishes essentially a ready-made 
solution of this problem. Specifically, it follows from the 
Liouville equations (see Ref. 6, for example) for Lam6 ellip- 
soidal harmonic functions that the internal Lam6 harmonics 
are eigenfunctions of Eq. ( 1.4). Although both the Liouville 
equations and the Lam6 harmonics themselves are conven- 
tionally written in ellipsoidal coordinates, they can be re- 
written in Cartesian coordinates, where (as Niven has 
shown7) the Lam6 functions have a polynomial structure 
and are described by 

where each Oi is given by 

and the values of the quantities Bi are found from the har- 
monic condition. Expression (2.3) differs from that in Ref. 7 
in that the signs of the 8, have been changed (so that the 
latter become positive). From the Liouville equations we 
also find the following general expression for the eigenvalues 
of Eq. ( 1.4) corresponding to the eigenfunctions in (2.2) : 

m 

Here R ( A )  is the product of the factors (a2 + A), ( b  + A) 
and (c2 + A ) , each of which corresponds to x, y, and z braces 
in (2.2), and factors (Oi +A)', which correspond to qua- 
dratic functions of Oi in (2.2). 

Let us examine in more detail the dipole, quadrupole, 
and octupole oscillations, designating them by the following, 
sequence of numbers (in addition to suitable indices): 1-3 
for dipole modes, 4-8 for quadrupole modes, and 9-15 for 
octupole modes. Furthermore, we supplement the dimen- 
sionless frequency fl = o/oo by the dimensionless damping 
rate I? = y/wo, and we write all the polarization potentials of 
the natural modes in dimensionless form. All the factors 

L =  J I ~ j 2 d v =  J ( v n ) z d v  

will then have the dimensions of length. 
Dipole oscillations (which were studied back in Ref. 3) 

correspond to a uniform polarization. There are three such 
modes, and they are described by the polarization potentials 

For the potential Ha in expansion ( 1.5), the very first term, 
G, = V/a, is nonzero; this term is equal to the total dipole 
moment of the plasma. In this case we have La = V/a2, 
R ( A )  = a2 + A, so that for a mode with potential n, we have 

Cyclic substitution leads to expressions for the two other 
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dipole modes. 
Of the five quadrupole modes, three are described by 

the potentials 

For these potentials, the first term in expansion ( 1.5) is zero, 
while the second term, like the other integrals of the powers 
of the coordinates over the volume of the ellipsoid, is evalu- 
ated with the help of the Lagrange formula: 

Substituting the calculated results into ( 1.6), and taking an 
average over the solid angle, we find the following results for 
the potential n4 = nab : 

I ,  k 5 V  (a2+b2)2 k5 V2 (a2- b2) --- +- 
o 500 a2b2 300 azb2 ' 

(2.8) 

where the first term corresponds to the radiation of an elec- 
tric quadrupole whose tensor components are given by the 
general formula 

In our case, the only nonvanishing components are 

The second term is the radiation of a magnetic dipole pro- 
duced by the polarization currents 

ik 
j=-ioP, m=- - I [ r P ] d ~  

2 
for which the only nonvanishing component is 

ikV a2- b2 
mz=- -- 

10 ab ' 

Furthermore, for 114 = n a b ,  it is easy to show that 
v 

L4=- ,(a2+b2), R (A) = (a2+ h)  (b2+h), 
5a b 

so that 

Expressions analogous to (2.8) and (2.9) for the modes n, 
and n, can be found through cyclic substitution. 

Two other quadrupole modes are described by poten- 
tials of the form 

where a ,  p, and y have the structure in (2.3) (Oi = 8) .  The 
harmonic condition V2n = 0 gives us the relation 
( a )  = a + /3 + y = 0, from which we find a quadratic equa- 
tion for 8: 

Here and below, the angle brackets mean the sum of the 

three terms found through cyclic substitution. The roots 8 ' 
and 8 "  of this equation correspond to the two sets of 
numbers a',B ', y' and a "  ,/3 " , y", which give us two indepen- 
dent solutions of problem ( 1.4) : n' = n, and n "  = II,. On 
occasion below we will omit the primes, with the under- 
standing that any expression without primes stands for two 
expressions, referring to the If' and n "  modes. 

From (2.3 ) we find 

so that a ,  8, and y satisfy the relations (a2a) = 3, 
(aza2) = 87, where 7 = (aZ);  these relations will simplify 
the calculations below. 

For oscillations with potential n, and n,, expansion 
( 1.5) also begins with the second term, which corresponds 
to the nonvanishing components of the quadrupole electric 
tensor: 

12 12 12 
D, = - vea, D,, = 7 vep, D,, = - voy. 

5 5 
The magnetic moment of the polarization currents is zero. 
Furthermore, in this case we have L = (4/5)V87 and 
R = ( 8  + R )', SO we can finally write 

Finally, of the seven octupole oscillations, six are de- 
scribed by three pairs of potentials: II, = n:,, , n ,, = n:,, ; 

nll = nLbb, n12 = Wbb, and n,, = ny,,, n,, = IIJCc, 
where, say 

and a, ,Pa and y, are given by (2.3 ) with Oi = 8, . It follows 
from the harmonic condition VZIl,,, = 0 that the relation 
3aa + /3, + y, = 0 holds; this relation gives us a quadratic 

equation for 8 : and 8 :: 

From relations of the type in (2.12) we easily find the rela- 
tions 

3a2aa+b2~a+~2ya=5, 3a2a,2+b2~,2+c2ya2=B.~., 
3a4a,Z+b'p,2+ c4y,Z=5+82it,,, .C,=~CC,~+ pa2+y.Z, 

which substantially simplify the calculations. For the octu- 
pole potentials, expansion ( 1.5) begins with the third term, 
and for potential (2.14) the radiative power is 

I,, 12k7v2 02 
-=-- 

o (7!!)3 a2 

The first term in braces here corresponds to the radi- 
ation of an electric octupole 

for which the following components are nonvanishing in our 
case: 
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For the seventh octupole mode the polarization poten- 
tial is n,, = n,, = - xyz/abc, and we have 

b/a  a / b  

FIG. 1. Dipole and quadrupole frequencies of a plasma ellipsoid ( b  = 2c). 

The second term corresponds to the radiation of a magnetic 
quadrupole produced by the polarization currents 
j = - imp. Its tensor 

has the following nonvanishing component in our case: 

The third term in (2.16) results from the radiation of the so- 
called toroidal or anapole moment,8s9 

1 
T = - { ( r j ) r - 2 r z j ) d V ,  

ioc  
which is equivalent to the radiation of an electric dipole with 
a dipole moment p q  = - ( l / c ) ~  = i k  T. For currents j 
= iwVII,,, the only nonzero component is 

The potential n,,, corresponds to 
2  v 0 ,  

L,, = -(2a2+0.) T,, R= (a2+h)  (0a+h)2,  
35a2 

so that we finally find 

Cyclically permuting the indices, and restoring the primes, 
we find a complete description of the six octupole modes 9- 
14. 

. . 

where the first term corresponds to the radiation of an elec- 
tric octupole 

Ow,= (VJ7abc)  ( a 2 b 2 > ,  

and the second to that of a magnetic quadrupole 
2ikV 

{Qar Qpv, Q r z ) = -  -{a2 abc (b2 -c2 ) ,  b2 ( c2 -a2) ,  c2 ( a 2 - b 2 ) ) .  

In this case the toroidal momentum is zero." For n,, we 
have 

so that 
Q , ~ ~ = Q , & = ( ~ ~ ~ ~ > M , , ~ ,  (2.19) 

Figures 1 and 2 show curves of the resonant frequencies 
of a plasma ellipsoid with a semiaxis ratio b /c = 2. The di- 
pole and quadrupole frequencies are shown in Fig. 1, and the 
quadrupole and octupole frequencies in Fig. 2. Plotted along 
the left half of the abscissa in each figure is the ratio b /a, 
while a/b is plotted along the right half. The range of the 
reduced resonant frequencies 0 is from 0 to 1 and is shown 
entirely in Fig. 1. Figure 2 shows only the most important 

FIG. 2. Quadrupole and octupole frequencies of a plasma ellipsoid 
( b  = 2c). 
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part of this range: that which contains all the curve intersec- 
tions. The curves are designated in accordance with the no- 
tation used in the text proper. The vertical lines separating 
regions I, 11, and I11 correspond to the degeneracy of the 
ellipsoid into a spheroid (a  = b or a = c).  

3. RESONANCE EXCITATLON OF A PLASMA ELLIPSOID 

The Lame-Niven ellipsoidal harmonics, the simplest of 
which were discussed in the preceding section, have the orth- 
ogonality property 

This property can be proved in general form by returning to 
the original Lame notation for all the II, in ellipsoidal co- 
ordinates. For the 15 potentials which we have been discuss- 
ing here, written in Niven's polynomial form, the validity of 
(3.1) can be established by a straightforward check. For 
most of the pairs P,, P, the orthogonality can be seen imme- 
diately from the fact that the integrand is of odd parity with 
respect to one of the coordinates. Nontrivial cases are repre- 
sented by pairs of the type II, = II,, IIaaa = II, , ,  (the orth- 
ogonality follows from the relation 3a2aa +b2P,  
+ c2ya = 5)  and pairs of the type ll' = II,, II" = ll, and 
II;,, = II,, ngaa = II,,, for which the orthogonality is a 
consequence of the relations 

which follow from definitions (2.3) and Eqs. (2.11) and 
(2.15). 

In the class of harmonic functions, the Lame harmonics 
form a complete system, so that the polarization distribution 
inside the ellipsoid can be written in the form 

8 

It then follows from v = ~ / n e  and (3.1) that the kinetic 
energy of the plasma is equal to the sum of partial energies: 

The complete electric energy can also be written as a sum of 
partial energies: 

I 

Furthermore, a dissipative function describing the internal 
loss due to collisions will be additive, since the rate of this 
loss is 2ve, K ( t ) .  If we ignore the loss due to radiation, we 
conclude that the natural oscillations of the ellipsoid have all 
the properties of the normal modes of analytic dynamics, 
and each can be analyzed indepenently. Since for the vector 
eigenfunctions P, we can write an equation 
E, {P, ) = - 477Q:P,, substitution of (3.3) into the general 
equation ( 1.1 ) gives us 

from which we find the following system of independent 
equations, where we are making use of the orthogonality: 

The formal substitution 

makes it possible to also take into account the radiative loss 
in the case of a monochromatic external field (-e-'"') 
with a frequency close to the resonant frequency. This ap- 
proach is legitimate, of course, only for an isolated resonance 
in a single mode. 

If, for certain values of the parameters b /a and c/a, the 
frequencies of two modes agree, then a mixed term may ap- 
pear in the expression for the total radiated power, and the 
radiative decay constants derived above would be replaced 
by some new ones, found by solving the problem of two oscil- 
lators with a weak dissipative coupling. We will not pursue 
that case here, since the radiative loss is additive in the new 
ponderomotive effective with which we will be concerned 
below. We simply note that in the class of dipole and quadru- 
pole modes there is no mixed loss for any of the possible pairs 
oscillating at a common frequency, while for the octupole 
modes a mixed loss arises in the pairs (9, 10) ( 1 1, 12), and 
( 13, 14), since in each of these pairs there are identical ten- 
sor components of the magnetic moment and of the vector 
toroidal moment. Furthermore, for the pairs (9, 1 ), ( 10, 1 ); 
(11, 2),  (12, 1);  and (13, 3), (14, 3) there will be a mixed 
loss due to products of an equivalent dipole (or toroidal) 
moment of an octupole mode and a dipole moment of a di- 
pole mode. 

If collisions are infrequent, and the condition v,, (yrad 
holds for all of the modes of interest (for the higher-order 
multipole modes, this inequality is violated sooner or later), 
at the exact resonance o = w, we have 

and the reradiated power is 

Let us assume that the external field is a linearly polar- 
ized plane wave of unit amplitude: 

E,,,=e exp (ikxr) =e { I f  ik (xr) -'12kZ (xr) '+ . . .) , 
where e and x are mutually orthogonal unit vectors. The 
integral in k7, then takes the following forms for the dipole, 
quadrupole, and octupole modes, respectively: 

(eP.) V I - 3 ,  ik ( e ~ . )  (xr) dV (s=4-8), 
k Z  r -- 
2 

(eP,) (xr) dV (s=9-15). 

Since the reradiated power is, by virtue of the definition of 
the scattering cross S, equal to cwS ( c  is the velocity of light, 
and w is the average energy density of the incident wave, 
equal in our case to w = 1/8r),  we can write the following 
expression for the case of an exact single resonance, o = o, : 

Here A, = 277/k, = 277/koQ, are the resonant wavelengths, 
and the functions us depend only on the ratios of the axes of 
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the ellipsoid and its orientation. The explicit expressions are 

while the other as can be found from the expressions for a, ,  
u4, and u9,,, by cyclic permutation. 

In the case of a single resonance, a force Fs = wS, x is 
exerted on a plasma in the field of an incident wave. If in- 
stead the resonant frequencies of two modes are the same, 
then we would have 

where St,, is the total scattering cross section, and II is the 
total momentum flux carried off by the scattered field. For 
several multipole radiators, this moment flux is generally 
nonzero. In the wave zone (r>A ) we have 

and since IEI = IHl we have 
as, n =  $ v I ~ 1 2 -  8n ' 

where the integral is over a sphere of radius r. For the wave 
zone, the multipole expansion of the magnetic vector is 

Here p is the total electric dipole moment (which includes 
peq, due to the toroidal moment), and the vectors D, 0, and 
Q are related to the tensors of the electric quadrupole and 
octupole moments (D, and O,, ) and of the magnetic qua- 
drupole moment (Q, ) by D, = vj Dji , Oi = vj vk Ojki , 
Qi = v, Qji. Substituting (3.9) into (3.8), and taking an 
average over the solid angle, do = dS,/?, we finally find 

where E ~ ,  is the completely antisymmetric unit tensor. 
We find immediately from (3.10) that II,,, may arise 

when the resonant frequencies of only a pair of dipole and 
quadrupole modes or of a pair of quadrupole and octupole 
modes coincide. For such pairs there is no mixed loss in 
terms of radiation energy, so that all the results of $2 of this 
paper can be applied without change. The total number of 
possible versions is very large. For example, it follows from 
Fig. 1 that for b = 2c there are nine intersections of dipole 
(1-3) and quadrupole (4-8) curves for which the vector 

is nonzero. The number of quadrupole-octupole intersec- 
tions in Fig. 2 is far larger. 

We will accordingly content ourselves with a single ex- 

ample: f l b  = f l a b .  For a dipole mode we then havep, = ( V /  
b) f2, and for a quadrupole mode we have 

Substitution of these expressions into (3.1 1) leads to the 
following result at resonance: 

We can thus write 

With b = 2c, curves 2 and 4 in Fig. 1 intersect at a z 2b, 
so that we have 

If, for example, an ellipsoid is oriented with its axes along the 
"bisectors" of the octants formed by the vectors E, H, and x 
of the incident wave, with x, = xy = x, = ex = - ey 
= e, = 1/14 we would have a = 1/2, a,,, = (v'3/2)%. If 

we rotate the ellipsoid through an angle 11/2 around the x, 
axis, we have x, = - xy = x, = ex = - ey = - e, = 1/ 
v3 and u4 = 25/18, gin, = ( 5/214)xo. In these two cases we 
thus have ail = 1, a, = 1/10 and all = 14/9, a, = 5I0/6 for 
the accelerating force (parallel to x )  and the lateral force, 
respectively. 

4. CONCLUSION 

In summary, some effects disappear when an ellipsoid 
degenerates into a sphere. In th case of a sphere, the polariza- 
tion currents corresponding to the quadrupole and octupole 
modes no longer produce either magnetic or toroidal mo- 
m e n t ~ . ~ '  Consequently, the total power radiated by several 
modes at a single frequency does not contain cross terms, so 
that all the modes are also independent of each other in 
terms of radiative loss. Since oscillations of the same multi- 
polarity I have a single common resonant frequency, 
a, = (2 + 1/1)-1'2, in the case of a sphere, a double reso- 
nance at modes of adjacent multipolarity ($3) is not possi- 
ble, and the resonant momentum flux II is zero. 

We have yet another general comment. The problem of 
finding the resonant frequencies of quasistatic oscillations of 
a uniform plasma can be reduced to a macroscopic bound- 
ary-value problem for the Laplace equation in two regions: 

This problem has nontrivial solutions for a discrete spec- 
trum of negative values of the dielectric constant of the plas- 
ma: ci = 1 - fli-'. At E, = l/ci these solutions are obvi- 
ously also solutions of the problem which differs from (4.1 ) 
in the replacement of the second boundary condition by 

(am'ian) p = ~ ,  ( 80e ldn )  r. 

This other problem is the problem of the natural modes of a 
homogeneous plasma in which there is a vacuum cavity with 
the same shape as that of the plasma in the original problem. 

35 SOV. Phys. JETP 62 (I) ,  July 1985 M. L. Levin and R. 2. Muratov 35 



Since E, = 1 - a; 2,  the condition E ~ E ,  = 1 leads immedi- 
ately to the relation + = 1, which relates the resonant 
frequencies of the oscillations of identical structure for these 
two additional problems. 

"Unfortunately, the radiation by the magnetic and toroidal moments pro- 
duced by the potential polarization currents was not considered in Ref. 3 
in the calculation of the radiation constants of a spheroid. This expan- 
sion was camed out in a nonsystematic way in a methodological paper 
("The multiple expansion revisited") by Van Bladel,I0 and several of 
the results of the paper are wrong. 

*'When we take the limit of a sphere, the polarization potentials Il con- 
taining a factor @ should be renormalized, since in the case a = b = c we 
have 6 = a, and the coefficients a, 8, and y become infinite. 
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