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Cyclotron resonance in semiconductors with nonparabolic dispersion law is investigated in the 
balance-equation approximation. It is shown that at sufficiently large amplitudes of the external 
high-frequency field the system has stochastic behavior. This behavior leads to a dip of the 
frequency characteristic of the absorption coefficient (to clearing of the sample), and the high- 
frequency field radiated by the sample is an aperiodic noiselike signal with a continuous spectrum. 

1. INTRODUCTION 

Levinson and Shvartsl investigated in the balance- 
equation approximation cyclotron resonance in nonparabo- 
lic-band semiconductors and have demonstrated the possi- 
ble existence of hysteresis in the frequency dependence of the 
absorption coefficient. This effect is connected with the de- 
pendence of the cyclotron frequency on the electron-orbit 
radius in momentum space. Since the initial equations of the 
model correspond to the motion of an anharmonic oscillator 
perturbed by a periodic external field, the effect indicated 
constitutes in essence the well known property of nonlinear 
resonance. The solution obtained in Ref. 1 is exact only for a 
circularly polarized electromagnetic wave. In the case of low 
amplitudes of the external field (weak nonlinearity) this solu- 
tion naturally remains valid also for arbitrary polarization. 

The present paper deals with absorption and emission 
of electromagnetic waves by a semiconductor with nonpara- 
bolic dispersion law for high amplitudes of the external field 
(strong nonlinearity). In contrast to Ref. 1, linear polariza- 
tion is dealt with here. In this formulation, the problem is of 
interest from the viewpoint of the stochastic behavior re- 
cently observed in a number of systems that constitute non- 
linear oscillators perturbed by a periodic external 
The purpose of the present paper is to shed light on the possi- 
ble existence of such a regime in cyclotron resonance, and to 
investigate its manifestations in various physical character- 
istics. 

2. BALANCE EQUATIONS AND THEIR ANALYTIC 
INVESTIGATION 

The balance equation for the momentum components 
p, andp, transverse to the magnetic field are1 

d~=/dt=-p,Q ( p )  -p,la, dpuldt=p,Q ( p )  -p,/t--eE sin at, 
(1) 

where .r is the momentum relaxation time, f l  is the cyclotron 
frequency, e is the electron charge, and E and w are the am- 
plitude and frequency of an external high-frequency electric 
field. In the case of a nonparabolic but isotropic dispersion 
law, S1 depends only on the modulus of the momentum: 

The constant magnetic field B is assumed here directed along 
the z axis, and the high-frequency electric field is polarized 

along they axis. The criteria for the applicability of these 
equations are given in Ref. 1. 

Assuming that the dispersion law is that given by 
Kane,6 p e  obtain for the square of the cyclotron frequency 
the Lorentz relation f12(p) = @/(l  +p2/pi), where 
fl, = eB /m is the cyclotron frequency on the bottom of the 
band, m is the effective mass on the bottom of the band 
p, = ( m ~ , / 2 ) " ~  is the momentum that characterizes the 
nonparabolicity, and E, is the band gap. To simplify the anal- 
ysis that follows, we replace the Lorentz function by the 
Heaviside step function: 

Changing next to dimensionless variables 

po~oleE+po=B(~s /2m)"~ lE ,  o/Q,-to, t Q o + z r  tQo+t, 

(4) 
we obtain the following system of piecewise-linear equa- 
tions: 

dpddt=-pU0 ( p a - p )  - p d ~ ,  

dp,ldt=p,B ( p a - p )  -pula-sin ot. 
( 5 )  

It is convenient to write the solution of these equations 
in each of the momentum-space regionsp <p, andp >p, for 
the complex momentum q = p, + ip, , lq/ = p: 

where the constants Cl and C, are determined from the con- 
dition that these solutions be matched at the boundary 
IqI = p, of the indicated regions. Expressions (6) and (7) con- 
stitute a sum of three oscillations: the first two are induced 
harmonic oscillations in counterphase, having the frequency 
w of the external force, and the third is a natural damped 
oscillation of unity or zero frequency, depending on the val- 
ue of 191. Whenever the amplitude of the combined oscilla- 
tion reaches Iq/ = p,, a jumplike change of the amplitudes of 
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the component oscillations takes place, and furthermore in 
such a way that the resultant oscillation proceeds continu- 
ously. At certain values of the parameters, the steady-state 
combined oscillation take place wholly in the region Iql <p,. 
In this case the solutions of Eqs. (5) can be obtained analyti- 
cally. In fact, the oscillation that is in the steady state in the 
region Iq/ <p, is described by the first two terms of expres- 
sion (6), and these terms correspond in the complex q plane 
to motion of the representative point along an ellipse. The 
condition for this ellipse to be located in the region Iql <p,, 
and hence the condition that solution (6) is valid, takes for an 
arbitrary time the form 

When this inequality holds it is easy to calculate, using (6), 
various physical characteristics of the system. Of definite 
interest for the subsequent investigation are the frequency 
characteristics of the absorption coefficient 
K (a) a (8 ( p,  - Iq1)Imq sinwt ) (the angle brackets denote 
averaging over the time) and of the steady-state stroboscopic 
(at each period of the external force) value of the amplitude 
q, (a). If Eq. (8) is satisfied, the expressions for them are: 

qn (o) =io / (m2- l+  l / ~ ~ - i 2 / ~ ) .  (10) 

In the case I ( r  < 2p0 the inequality (8) is satisfied for arbi- 
trary frequencies and expressions (9) and (10) yield the com- 

FIG. 1. Frequency characteristics of the stroboscopic 
transformation of the modulus of the momentum (a) 
and of the absorption coefficient (b). 

plete frequency characteristics of the investigated quantities. 
At r > 2po, i.e., at sufficiently large amplitudes of the high- 
frequency field, the condition (8) is not satisfied in a definite 
frequency interval. To construct the trajectory of Eqs. (5) it is 
necessary in this case to match numerically the solutions (6) 
and (7). 

3. RESULTS OF NUMERICAL ANALYSIS 

The presence of simple analytic solutions in individual 
regions of phase space shortens substantially the computer 
calculations not only of the dynamics of the system, but also 
of such integral characteristics as the absorption coefficient 
and the spectral density of the signal, since the correspond- 
ing integrals can be evaluated analytically in individual re- 
gions and the task of the computer reduces to summing their 
contributions at the matching points. The calculation results 
are shown in Figs. 1-3. The order of magnitude of the chosen 
parameters is the same as in Ref. 1, p, = 3 and r = 10. In 
terms of the initial variables these correspond for n-InSb to 
the following choice: m = 0.013mo, E, = 0.23 eV, r = lo-" 
s, B = 740 G, E = 300 V/cm, and fl, = 1012s-'. At these 
values of the parameters the condition (8) is not satisfied in 
the next frequency interval: 0.85 < w < 1.15. It turns out that 
in practically this entire interval the system investigated ex- 
hibits a stochastic behavior, as can be seen from Fig. 1, which 
shows the frequency characteristic of the stroboscopic trans- 
formation of the modulus of the momentump, (w) = /q, (w) I. 
The plot was constructed in the following manner. The fre- 
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FIG. 2. Stroboscopic portrait of system in the total phase plane 
at o = 0.9. 

quency was varied from an initial value w = 0.2 in steps 
Aw = 0.01 first upward to w = 1.5 and then downward to 
the initial value. At each change of frequency, the initial 
values of q, (w) were taken to be the final values of the preced- 
ing transformation q, (w q Aw). This was followed by calcu- 
lating 200 idle periods and then marking on the diagram 20 
stroboscopicp, (w) points. It can be seen from the figure that 
stochastic dynamics is observed not only in the frequency 
band 0.85 < w < 1.15 indicated above, when the phase trajec- 
troy must cross the circle /ql =p,, but also in the region 
0.5 < w < 0.85, where the solution (10) is valid. Such a second 
solution is obtained in this region when the frequency is 
lowered from the region with the stochastic dynamics. We 
note that in the region with purely stochastic dynamics the 
solution is not single-valued, since the stroboscopic phase 
portrait depends on initial conditions that are connected 
with the direction in which the frequency changes. Besides 
the stochastic dynamics, the figure shows also the frequency 
region where multiperiodic cycles are realized. Thus, two 
three-period cycles with different frequency-change direc- 
tions are present in the region 1.09 < w < 1.12. All in all, dia- 
gram la recalls the stochastically smeared amplitude-fre- 
quency characteristic of a weakly linear oscillator. 

The bifurcation observed in the system dynamics when 
the frequency is measured is carried over also to the absorp- 
tion, and leads to a nonmonotonic (at times with fine struc- 
ture) dependence of the absorption coefficient (Fig. lb). In 
the calculation of K (a) ,  the power absorbed by the sample 
was averaged over 200 periods of the external field. Further 
increase of the averaging interval did not affect the calcula- 
tion result. An important factor in the frequency character- 
istic of the absorption coefficient is the dip in the frequency 
region close to resonance, where a linear or weakly linear 

oscillator has maximum absorption. The considerable de- 
crease of the absorption of a strong high-frequency field 
(clearing of the sample) is due here to the stochastic charac- 
ter of the current in the sample. This effect is probably a 
universal property of strongly nonlinear non-autonomous 
oscillators in their stochastic regime and can serve as a good 
indicator of such a regime. 

For a more detailed illustration of the stochastic regime 
in the investigated system, Figs. 2 and 3 show, for the parti- 
cular frequency w = 0.9, the stroboscopic phase protrait of 

FIG. 3.  Temporal realization of the velocity x-component u, (a) 
and spectral density of radiation power in a polarization vertical 
to the external field (b): o = 0.9. 
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q, in the total p, , p, phase plane, as well as the temporal range a practically continuous spectrum. Approximately 
realization ofthe velocity u, -p ,  8 ( p, - p)  and the spectrum 10% of the signal energy goes into the continuum, i.e., the 
of its derivative. The phase portrait in Fig. 2 is made up of energy of the harmonic high-frequency field is converted 
100 stroboscopic points, which outline the contours of the quite effectively into noise energy. 
strange attractor that is realized here. The best way to ob- The author is grateful to V. L. Bonch-Bruevich, I. B. 
serve directly the stochastic dynamics is by the sample radi- Levinson, and A. Yu. Matulis for a discussion of the results. 
ation in a polarization vertical to the external field. The mea- 
sured quantity in this case can be the spectral density of the 
radiatibn power W, (a), which is proportional to the spectral 'I. B. Levinson and M. L. Shvarts, Pis'ma Zh. Eksp. Teor. Fiz. 6, 981 

(1967) [JETP Lett. 6, 393 (1967)l. of the derivative of the ' X  j t  ) The 'pectrum 2K. Tomita and T, Kai, Progr, Theor, phys, Suppl. 64, 280 (1978). 
shown in Fig. 3b was obtained by expanding the derivative of 9, ~ ~ ~ i ~ ~ ,  phys. R~~~~~~ 86, 113 (1982). 
the u, ( t  ) signal in a Fourier series over an interval equal to 4B. A. Huberman and J. P. Crutchfield, Phys. Rev. Lett. 43, 1742 (1979). 

200 periods of the external field. It can be seen from the ~ ~ ; ~ . ~ ~ ~ , " ~ ~ , " , ~ ; , ~ ~ ~ \ ~ h l y , " i ~ ~ ~ i ~ ~ $ t  (1981) .  
figure that besides the sharp peak at the external-field fre- . - 

quency w = 0.9 the sample radiates in a wide frequency Translated by J. G. Adashko 
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