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Systems with low frequency toroidal-moment density oscillations are investigated in the vicinity 
of the phase transition point. Dynamical equations describing the toroidal oscillations and their 
interaction with the photons and phonons are derived within the framework of a model Lagran- 
gian. The behavior of the permittivity and permeability is investigated, and the singularities of the 
law of dispersion of the toroidal oscillations in noncentrosymmetric crystals are considered. The 
possibility of experimental observation of the predicted effects is discussed. 

81. INTRODUCTION 

The investigation of a new type of long-range order in 
crystals that is characterized by the appearance of a macro- 
scopic toroidal moment ("toroidal order") has lead to the 
discovery of new and quite unusual properties of these sys- 
t e m ~ . ' ~  From the purely phenomenological standpoint, to 
describe the type of order in question, we introduce a vector- 
ial order parameter with transformation properties similar 
to those of the velocity vector v (or, which is the same, of the 
electric current j). The crystal transformation group under 
consideration is classified within the framework of the mag- 
netic symmetry groups, and belongs to one of the 3 1 magne- 
toelectric classes that admit of the existence of an antisym- 
metric component of the magnetoelectric t e n ~ o r . ~ , ~  It is 
natural that the introduction of an order parameter with the 
indicated transformation properties does not by itself reveal 
the physical nature of the phenomena occurring in the sys- 
tem. The main achievement of the theory'-4 consists in the 
fact that it has, for the first time, been possible to analyze 
within the framework of a quantum-mechanical model the 
genesis of a new collective electron state in a solid, and estab- 
lish the characteristics of the behavior of this state in exter- 
nal fields. It has also been possible to establish a definite 
analogy between it and the classical system of distributed 
electric-charge fluxes, which admits, within the framework 
of a formal multipole expansion, of a description in terms of 
the classical toroidal moments.' The term "toroidal state" 
itself arose precisely on account of this analogy. 

It is natural to relate the establishment of the toroidal 
long-range order with the softening of some collective model 
of the electronic oscillations. In the microscopic model'g2 
such a mode is the transverse excitonic oscillation mode 
that, for a definite relationship Ap between the phases of the 
wave functions of the electron and hole in the electron-hole 
pair (Ap = 7~/2), characterizes the oscillations of the toroi- 
dal-moment density T(r,t). For a different phase relation 
(Ag, = 0) the corresponding excitonic mode characterizes in 
this model the oscillations of the electron-polarization den- 
sity. The softening of a specific excitonic mode implies the 
occurrence of a phase transition into a state with a spontane- 
ous toroidal moment or with spontaneous polarization. 

It is clear that, in such a formulation of the problem, it is 
reasonable to describe the toroidal oscillations in the unre- 

constructed phase as collective excitations in a background 
of the "normal" ground state. In the present paper we inves- 
tigate systems with low-frequency toroidal oscillations in 
the vicinity of the toroidal instability threshold. We assume 
that the magnetic-symmetry group of the unreconstructed 
(high-temperature) phase has as a subgroup one of the above- 
indicated magnetoelectric groups, and that the order param- 
eter T transforms according to the corresponding irreduci- 
ble vector representation. Furthermore, we consider only 
those systems in which the toroidal ordering can occur as a 
second-order transition (i.e., we assume that the symmetry 
of the high-temperature phase does not admit of invariants 
of the Lifshitz type8). These assumptions allow us to use in 
the analyze of the low-amplitude low-frequency toroidal os- 
cillations the effective-Lagrangian method, in which a pow- 
er series expansion in the order parameter T and its deriva- 
tives is carried out. It is shown that these oscillations interact 
in an unusual manner with light, and, thus, can manifest 
themselves in the optical properties of crystals that are prone 
to toroidal instability. 

The paper is organized as follows: 
In $2 we introduce a Lagrangian for the description of 

the toroidal oscillations in crystals with cubic symmetry, in- 
vestigate the spectrum of the longitudinal and transverse os- 
cillations without allowance for the retardation of the inter- 
action with the electromagnetic field, and find the frequency 
dependence of the dynamical permittivity &(a). We also 
show here that, as the frequency of the toroidal soft mode 
tends to zero, the static permittivity ~ ( 0 )  does not pass 
through any singularities. 

In $3 we analyze the effect of a homogeneous magnetic 
field (homogeneous magnetization in the case of a ferromag- 
netic crystal) on the dynamical permittivity &(a).  We find the 
natural frequencies of the toroidal oscillations in a magnetic 
field. Of importance is the result that the transverse static- 
permittivity components E,, (0) and &,, (0) diverge at the to- 
roidal transition point (the z axis is oriented along the direc- 
tion of the magnetic field), below which the system exhibits 
spontaneous polarization in the xy plane. 

In $4 we investigate the singularities of the dispersion 
law for the toroidal oscillations in noncentrosymmetric crys- 
tals, and demonstrate the possibility of the appearance in 
such crystals of an incommensurate toroidal structure (and, 
consequently, of a spontaneous current1) below the phase 
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transition point. This possibility is due to the existence of a 
minimum in the toroidal-mode dispersion law w,(q) at some 
quasimomentum value q # 0, which leads to the vanishing at 
the phase transition point of the soft mode frequency, i.e., to 
a situation in which w, + 0 at q = q,,, #O. 

In $5 we study the interaction of the transverse toroidal 
oscillations with light, and derive an expression for the law 
of dispersion of the toroidal-photon oscillations (we are in 
fact talking about new branches in the polariton spectrum). 

In $6 we investigate the relationship between the toroi- 
dal and lattice vibrations in polar crystals. We pay particular 
attention to systems that are close to a second-order struc- 
tural transition point. We find that the toroidal oscillations, 
by intermixing with the phonons, induce the softening of the 
frequency of the polar lattice vibrations, but do not cause a 
shift of the structural transition point in the absence of a 
magnetic field. If on the other hand an external uniform 
magnetic field is applied to the system (or if the system had 
earlier undergone a transition into the ferromagnetic state), 
then there is a rise in the structural transition temperature. 

In $7 we consider the behavior of the dynamical mag- 
netic susceptibility tensorx(w) in noncentrosymmetric crys- 
tals (in particular, in pyroelectric crystals, or in crystals lo- 
cated in an external electric field). One of the components of 
the static magnetic susceptibility diverges at the toroidal 
transition point, and a magnetic order occurs below this 
point. 

In conclusion ($8) we state the main results obtained in 
the investigation, and discuss the possibility of an experi- 
mental observation of the toroidal oscillations. In the Ap- 
pendix we compute the coefficients of the Lagrangian for the 
two-band semiconductor model. 

52. DYNAMICAL PERMITTIVITY OF SYSTEMS WITH LOW- 
FREQUENCY TOROIDAL OSCILLATIONS 

We shall describe the toroidal oscillations in crystals for 
the case in which there is no macroscopic toroidal moment 
in the ground state, and the system has not undergone any 
type of magnetic or ferroelectric ordering. It is assumed that, 
in the frequency region under consideration, the toroidal os- 
cillations are well-defined, weakly damped collective excita- 
tions occurring above the ground state (in the microscopic 
semiconductor model considered in the Appendix, these 
conditions are fulfilled, and the eigenfrequencies of the to- 
roidal oscillations lie within the forbidden band in the single- 
electron spectrum). 

It is most natural to use the Lagrangian formalism, 
within the framework of which we must write down the "ki- 
netic" and "potential" energies of the oscillations. The ki- 
netic energy in the case of low-amplitude, low-frequency to- 
roidal oscillations can be written in the form 

where T(r,t ) is the toroidal-moment density, P,, 0, > 0, and 
it is under certain conditions absolutely necessary to retain 
the second term in (1) (see below). For the two-band semicon- 
ductor model, the coefficients P, and 0, are computed in 
the Appendix, where it is found that P4/P2- E g 2,  Eg be- 

ing the forbidden-band width. The expansion (1) has mean- 
ing at oscillation frequencies w(Eg. Let us introduce the 
quantity M ,  = (2f12)-1, which plays the role of the "mass" 
of the toroidal oscillation. 

The potential energy in zero external electric and mag- 
netic fields can be written in the simplest form (in this section 
we consider only systems with cubic symmetry): 

UT=CLT'+: [ (div T )  '+ (rot T )  '1 , (2) 

where we have retained only the lowest-order coordinate de- 
rivatives and the terms that are quadratic in the amplitude. 
Here and below we assume that a, y > 0. Varying the La- 
grangian of the system in the absence of external fields 

LT=KT- UT (3)  

with respect to T(r,t ), we obtain the equation of motion, from 
which we find for the eigenfrequency of the toroidal oscilla- 
tions in the case when the second term in (1) is neglected the 
expression 

oorZ (q) =2MT (a+yq2).  (4) 

A characteristic feature of the interaction of the toroi- 
dal moment with external fields is that the source conjugate 
to the toroidal-moment density is the current,' and that in 
uniform stationary fields the toroidal moment is not induced 
in the absence of dissipation (in the approximation linear in 
the electric field E and the magnetic field B). Let us write the 
field-related corrections to the Lagrangian of the system in 
form 

A LE=hETE, ( 5 )  

ALs-(hB/c) T rot B. (6) 

The formula (6) clearly exhibits the relativistic smallness (c is 
the velocity of light) of the strength of the interaction with a 
magnetic field. 

Let a variable electric field E be applied to the system. 
Neglecting the effects of the retardation (i.e., assuming that 
c + a), and varying the Lagrangian L  = L ,  + ALE with 
respect to T, we find, when only the first term in (1) is taken 
into account, that 

In the presence of toroidal oscillations there arises the 
dynamical polarization 

The toroidal-oscillation-related correction to the dyna- 
mica1 permittivity has the form 

A E  ((9, 4) = - 4 7 t h ~ ~ o ~ M ~ /  (O'-WOT' (Q) ) . (9 

We shall consider below only the quantity A&(w, 0), i.e., 
the response to a uniform electric field. Introducing a special 
symbol for the eigenfrequency, i.e., setting wg, (q = 0) = a;, 
we rewrite (9) for q = 0 in somewhat different form: 

A E  ( a ,  0) = E  ( ( 0 )  -&'=-47th~'0~M~/ (O ' -QT~) ,  (10) 

where E' is that contribution to the permittivity which is not 
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FIG. 1 

connected with the toroidal degrees of freedom. It is clear 
that the expression (10) is invalid in the region of high fre- 
quencies w, where we must retain the second term in (1). It is 
not difficult to verify that allowance for this term in the re- 
gion w>SZ, yields A E ( ~ )  a - w-2 + 0, which ensures the 
fulfillment of the sum rules for the oscillator strengths." 

In the case of the semiconductor model considered in 
the Appendix allowance for the second term in (1) is essential 
in the computation of E(W) in the region of frequencies 
w-E,>SZT. 

Thus, the toroidal oscillations do not make a contribu- 
tion to the static permittivity ~ ( 0 ) .  In the case when the toroi- 
dal oscillation mode softens (i.e., when SZT + 0) the behavior 
of the frequency dependence is quite distinctive, differing 
essentially from the behavior in the case when ferroelectric 
phase transitions occur. Figure 1 qualitatively depicts the 
variation of the dependence ~ ( w )  as a, decreases (the curves 
1 and 2 correspond to the values 0, (1) > 0, (2) > 0). 

The interaction with the electric self-field produced 
during the toroidal oscillations leads to the renormalization 
of the frequencies of these oscillations. 

When the retardation is ignored, the transverse toroidal 
modes are not renormalized (since the transverse electric 
field is equal to zero), but the longitudinal modes undergo 
substantial modifications. In fact let us add to the Lagran- 
gian of the system the term 

connected with the energy of the longitudinal electric field 
produced by the longitudinal toroidal oscillations. 

We shall be interested only in uniform longitudinal os- 
cillations. Varying the total Lagrangian L = L, + ALE 
+ hL,, with respect to T and E, we obtain the equation of 

motion for the toroidal-moment density, 

The frequency of the transverse toroidal oscillation is 
not, as has already been noted, renormalized: 

The region of parameter values in which we must retain 
the term with the coefficient p4 in (1) can be seen at once 
from the formulas (14) and (15). Indeed, if MI,  > 0 and, more- 
over, 16M ;i p4a( l, then we have from the (14) the relation 

It is clear that the expression (17) is not valid when the quan- 
tity in the parentheses has a small positive or negative value. 
As soon as the condition 4&a>(4Mi)-1 begins to be ful- 
filled, the expression for wy changes: 

oTr 2= (a/P1) '". (18) 

Finally, when M I  < 0 and 4&a(( 4~ i )- l ,  we have 

The region of applicability of the relations obtained is, 
in principle, limited by the stipulation that the term with the 
coefficient p4 should be small in comparison with the term 
with the coefficient p2 in the expression (1) (otherwise the 
power series expansion   becomes invalid, and we fall within 
the region of high-frequency oscillations). This condition is 
met when wT 1124(2p4MT)-', and can be violated in the case 
of an arbitrary relation between the coefficients of the La- 
grangian (this applies especially to the expression (19), which 
is not applicable when / 1 - hAE2MT/&'I > 1). The relations 
(17) and (18) satisfy the condition for the frequency of the 
toroidal oscillations to be low at low values of the coefficient 
a (i.e., at values not too far from the toroidal instability 
threshold). 

Thus, when 4n-A ;MT/&' 2 2, the low longitudinal to- 
roidal oscillations cannot, in principle, be low-frequency os- 
cillations (in the semiconductor model the frequencies of 
such oscillations are of the order of E,). Therefore, below all 
the investigations are carried out under the assumption that 
4n-A MT /E'(  1. The case of high-frequency oscillations re- 
quires special treatment within the framework of a specific 
microscopic model. 

53. EFFECT OF A CONSTANT MAGNETIC FIELD ON THE 
DYNAMICAL PERMITTIVITY OF CRYSTALS WITH TOROIDAL 
OSCILLATIONS 

1 --- LE . T + P,+'-uT+ yl~$ -E=  0 ,  (12) Let us consider a nonmagnetic cubic crystal2' located in 
~ M T  2 a constant external magnetic field H and a variable electric - 

field E(t ). The system's Lagrangian, as compared with the 
and the Maxwell equation 

Lagrangian in $2, should include additional terms connect- 
E ' E - ~ ~ A ~ T = o ,  (1 3) ed with the effect of the magnetic field (we consider the ap- 

proximation linear in H): 
the simultaneous solution of which leads to the following (1)  

expression for the longitudinal-oscillation frequency wp (q) AL, =VH[TX T I ,  (20) 
for q = 0: AL:' =p[HEX IT. (21) 

1 1 '" 1 
@ . Y ' = - [ ( ~ + ~ ~ ~ - J )  --I, (14) The terms (20) and (21) are connected with the magnetoelec- 

2 p 4   MI, ~ M I I  tric effect in the system (E is the external electric field and 
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P a  T is the polarization of the system in the presence of 
toroidal oscillations). 

The "equation of motion" for the toroidal-moment 
density in the electric and magnetic fields has the form 

~ L ~ / ~ T + A ~ E +  ~ [ H X  El f 2 v  [ H X  TI =0. (22) 

It is not difficult to find the eigenfrequencies of the to- 
roidal oscillations in a magnetic field form (22) after setting 
E = 0. After simple computations we find for the frequen- 
cies of the oscillations in the (x, y) plane and along the z axis 
the expressions 

4,2 - ( o T ) ~ ~  - [ Q ~ 2 + ( M T ~ H ) Z l " * I M T ~ H I ,  (23) 
(oT) (24) 

In a weak magnetic field, i.e., for M, vH(n,, the toroidal- 
oscillation frequency shift turns out to be linear in the field 
H, and, moreover, the dengeneracy of the clockwise- and 
counterclockwise-polarized oscillations in the (x, y) plane is 
lifted. 

The dynamical permittivity tensor is calculated in 
much the same way as in $2. After tedius computations we 
arrive at the following result: 

In the static limit w + 0 there remain nonzero corrections 
only for the following components: 

A E ~ % ( O )  =Acyy ( 0 )  = ~ ~ M T ~ ' H ~ / Q T ~ .  P9) 

Thus, in an external magnetic field H the components E, (0) 
and E,, (0) of the static permittivity tensor diverge in the vi- 
cinity of the toroidal transition point (i.e., as a, + O), but 
the component E,(O) does not exhibit any anomalies. The 
dynamical permittivity is characterized by the fact that the 
E, (w), cYY (a),  and E , ~  (w) bands are split, and also by the fact 
that the dependence &,(a) is linear in the region of small 
w<R,. Let us emphasize that only the totality of all the 
indicated anomalies connected with the presence of the in- 
variants (20) and (21) could unambiguously indicate the de- 
tection of toroidal oscillations in optical experiments. 

54. SlNGULARlTlES OF THE SPATIAL DISPERSION OF 
TOROlDAL OSCILLATIONS IN NONCENTROSYMMETRIC 
CRYSTALS 

As has already been noted in the Introduction, inhomo- 
geneous (incommensurate) toroidal structures are interest- 
ing first and foremost because of the occurrence of a macro- 
scopic spontaneous current j acurl  curl T in them. The 
possibility in principle of realizing such an incommensurate 
structure as a result of the variation of the sign of the second- 
order gradient term in the functional (2) is considered in Ref. 
1 in the model proposed there. Here we shall analyze another 
possibility connected with a specific contribution to the 

functional (2) in noncentrosymmetric systems. Let the crys- 
tal symmetry of the normal phase admit of the existence of a 
pseudoscalar 7 (e.g., in the T, class). Then to the functional 
(2) must be added the term 

AU;" = q T  rot T. (30) 

A similar situation obtains in magnetic  material^,^ and the 
analysis of the contribution (30) is entirely similar to the 
analysis performed by Dzyalo~hinskiY'~ for the helical mag- 
netic structure. In systems with an invariant of the type (20) 
the eigenfrequencies of the transverse toroidal oscillations 
have the form 

The minimum toroidal-oscillation frequency is attained for 
the lower branch (0,')- at q, = 7/2y: 

In the case when the expression (32) vanishes, the transverse 
structure of the toroidal moment is helicoidal in the region 
below the transition point: 

T p T o  cos qOz,  T p T ,  sin q o z ,  (33) 

where To is the amplitude of the toroidal moment; corre- 
spondingly, the spontaneous current j(r) also has a helicoidal 
character. 

Somewhat more complicated is the case of systems that 
admit the existence of a polar vector u, (these may, in parti- 
cular, be crystals of the pyroelectric classes, or crystals locat- 
ed in an external homogeneous electric field E). Let us add to 
the expression (2) the invariant 

( 2 )  
A U ,  =huo [ T  X rot TI , (34) 

and let us, for simplicity, neglect the terms of the type 
il '(u,T)~, assuming thatil '<A 2/y, where y is the coefficient of 
the gradient term in (2). 

Let us consider the eigenfrequencies of the toroidal os- 
cillations under the assumption that 4n-AE2/~'(1, under 
which condition a strong stiffening of the longitudinal 
modes does not occur (see $2) and Mil  zM,. It is easy to 
show that the dispersion law for w,(q) contains three 
branches: 

where the z axis is oriented along u,. The minimum of the 
frequency (w,), is attained on the (q,, q,) line in the (x, y) 
plane at 

It is given by the expression 

The toroidal moment has a mixed longitudinal-transverse 
structure in the region below the phase transition point. In 
the simplest variant, for which q, = q, = 0 and q, #O, we 
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have 

TxmTo cos qlox ,  T,mTo sin q l o x ,  T,=O. (38) 

In another variant, for which q, = q,, = q : / a  and q, = 0, 
we have 

T , = T p T O  cos [q10 ( x + y ) / Y ~ ] ,  Tl-TO ( s f  y ) / Y q .  

(39) 
The choice of a particular structure in the region below 

the transition point should be made with allowance for the 
higher-order terms in the functional (2), and the correspond- 
ing analysis is not carried out in the present paper. The spon- 
taneous current j in the case of the configurations (38) and 
(39) flows along the polar axis u,, but in more complicated 
configurations it may turn out to be nonzero in the trans- 
verse plane as well. 

It should be especially noted that the coefficients 17 and 
il do not contain insignificant relativistic contributions, 
since the toroidal moments in crystals (i.e., the toroidal mo- 
ments under investigation here) are due to the orbital motion 
of the electrons. Therefore, the considered mechanisms of 
the formation of the nonhomogeneous structures can be 
quite effective (thus, in the microscopic two-band model the 
quantities 7 and il are connected with the electron-phonon 
interaction). Naturally, the analysis carried out above is val- 
id only when the toroidal inhomogeneities have macroscopic 
dimensions (qo<a-', where a is the lattice constant). 

55. TOROIDAL POLARITONS 

In the nonrelativisitic approximation the transverse to- 
roidal oscillations do not interact with the electromagnetic 
field. Allowance for the retardation leads to the mixing up of 
the transverse toroidal and electromagnetic oscillations. To 
find the eigenfrequencies of the mixed toroidal-photon 
modes, let us write down the Lagrangian of the "field + me- 
dium" system in the lowest approximation in the vector po- 
tential A(r, t ) and the toroidal-moment density T(r,t ): 

L=LT+La+LAf. (40) 

where L, is given by the formula (3), 
1 .. 1 

La=-LET - A+hBT -rot rot A, 
C c (41) 

E'  . (rot A ) 2  1 .  
LA' = --y (A) '- ---------- , E=- -A, B=rot A, (42) 

837 c 8n c 

and A(r, t ) is the vector potential, given in the transverse 
gauge div A = 0, of the electromagnetic field. 

Varying the Lagrangian (40) with respect to T and A, we 
obtain the system of equations 

6 L -- 1 .. 1 
hE - A+hB - rot rot A=O, 

6T c c 
E '  .. 1 -- I . .  I 

A - -rot rot A - h ~  - T+AB - rot rot T=O. (44) 4nc2 4n  c c 

We can, under the assumption that Mil > 0  and 
I9 = 1 - MT/MII 4 1, discard the term with p., in the kinetic 
energy (1). For the eigenfrequencies of the transverse toroi- 
dal-photon oscillations we find from (43) and (44) the equa- 

tion 

whence we find in the lowest approximation in the param- 
eter I9 that 

In the region of strongest intermixing of the toroidal 
and electromagnetic oscillations (i.e., for q,2- w;, &'/c2) the 
second term in the square brackets under the radical sign is 
small compared to the first. We find from dimensional con- 
siderations that A,/& - v2, where v is the characteristic ve- 
locity in the electron subsystem (for the two-band model of 
semiconductors v = (2~ , /m*) ' /~ ,  where m* is the effective 
mass). Since v(c, we find that the second term is comparable 
to the first in the region of momenta 

In the momentum region q -9, we can, with a high degree of 
accuracy, neglect the gradient terms in (3) and assume that 
w,, =:a,. 

The asymptotic expressions for the transverse-oscilla- 
tion frequencies (46) in the case when c2q2>~'R$ have the 
form 

For q --+ 0 we obtain 

The plot of the function wk (q) is qualitatively shown3' in Fig. 
2. 

Thus, the combined transverse toroidal-photon oscilla- 
tions can be described in terms of distinctive polaritons with 
the dispersion law wi(q). This indicates the possibility of 
observing toroidal oscillations in Raman light scattering ex- 
periments, as well as in reflection or absorption experiments. 
But actually the toroidal mode can be confused with the 

0 

FIG. 2 
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phonon modes in the infrared frequency region, and it is 
necessary to construct a theory that takes account of this 
interrelationship. The simplest variant of such a theory is 
considered in the following section. 

56. TOROIDAL-PHONON OSCILLATIONS IN POLAR 
CRYSTALS 

Let us consider the situation in which the transverse 
toroidal mode of the electronic oscillations falls within the 
region of optical phonon frequencies of a polar crystal. 
Within the framework of the Lagrangian formalism, we 
must write down the following expression for the effective 
Lagrangian of the system: 

where L, is given by the expression (3), while 

1 
2 2 L - -[ ( u )  2-Qph u ] 

P h  - 2~ (50) 

is the usual phonon Lagrangian, M is the mass of the optical 
phonon, a,, is the frequency of this phonon (with allowance 
for the renormalization resulting from the interaction with 
the electron-polarization density oscillations, which we as- 
sume to have sufficiently high frequencies), and u(r, t ) is the 
optical displacement of the sublattices in the polar crystal. 
The third term in (49) has the form 

The term (5 1) has its origin in the interaction between 
the toroidal moment T and the displacement current j a u 
produced as a result of the polar vibrations of the lattice (the 
second term has been added in order to give (5 1) a symmetric 
form, and reduces, up to a total time derivative, to the first 
term). 

Let us consider the transverse toroidal-phonon vibra- 
tions without allowance for the spatial dispersion. After 
varying the Lagrangian (49) with respect to T and u, we ar- 
rive at the following equation for the determination of the 
eigenfrequencies: 

Let us note that, for crystals that undergo second-order 
structural (ferroelectric) phase transitions, the condition 
w, = 0 for the vanishing of the soft mode coincides with the 
condition a,, = 0, i.e., does not depend on the coupling 
between the toroidal and phonon modes. This is natural, 
since the toroidal and phonon modes do not intermix in the 
static limit. But the rate of softening of the initial stable 
mode w, changes, and from (53) we find that for S1,, -+ 0, 

Figure 3 shows a plot of the function @(aph) describing the 
solution (53). The toroidal and phonon modes get uncoupled 
in the frequency region where a;, %A MM,: 

u ~ ~ - ~ Q T ~ )  o ~ ~ ~ Q ~ ~ ~ .  (55) 

FIG. 3. 

Thus, there occurs in the slope dw,/da,, of the function 
w(flph) for the low-frequency branch of the toroidal-phonon 
excitation a characteristic change that can be detected by the 
methods of IR spectroscopy or in Raman light scattering 
experiments. Of special interest is the a,, -a, case, in 
which strong intermixing of the two types of vibration oc- 
curs, and a gap exists in the frequency spectrum (Fig. 3). If, 
for example, a,, varies with temperature according to the 
law a,, a I T - Tc 1, then a splitting of the "soft" mode will 
occur in the spectral characteristic at certain temperatures 
T * > Tc where a,, --a,; one of the branches will continue 
to soften right down to the transition point ( T  = T,), though 
with a different slope, but the frequency of the other branch 
will remain finite, and will attain the value 
w, = (a: + A  ~MM,)"~ at T-+ T,. 

Within the framework of the toroidal-oscillational con- 
cept, it is possible" to explain the unusual temperature de- 
pendences of the spectral characteristics in the TlGaSe, 
compound. l2  

Another important effect connected with the intermix- 
ing of the toroidal and phonon modes manifests itself upon 
the application of an external magnetic field H. As noted in 
Ref. 4, the toroidal ordering in crystals should be accompa- 
nied by the occurrence of the magnetoelectic effect. In our 
case the application of a magnetic field H leads, in the ap- 
proximation linear in H, to the appearance in the system's 
Lagrangian of the mixed term 

ALu, H = E  [TX H ]  U, (56) 

which is similar in structure to the "magnetoelectric" term 
in Ref. 4. 

Taking (56) into account, we obtain for the eigenfre- 
quencies of the toroidal-phonon vibrations in the plane, 
(x, y), perpendicular to the direction of the vector H, which is 
assumed to be oriented along the z axis, the relation 

[a' '-Qph" [a1 '-QT'] = (hUOL*gH) 'MMT; (57) 

the relation (52) remains valid for the vibrations along the z 
axis. In the region above the transition point we obtain for 
the transverse (with respect to the z axis) low-frequency 
mode in the case when A, w1 (6H the expression 

i.e., a structural transition with the displacement vector ly- 
ing in the (x, y) plane occurs provided 

Q p h 2 = ~ 2 H 2 M i W T / Q T Z .  (59) 
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Thus, an anisotropy of the "easy plane" type arises in 
the system, and the transition with the displacement vector 
in the ( x ,  y) plane occurs at a higher temperature T, (H) (i.e., 
R;, - T - T: ,  where Ty is the transition temperature in the 
absence of a magnetic field), which can be determined from 
(59). Let us note that a rise in Tc (H) has been observedI3 in 
some narrow-band ferroelectric semiconductors, although 
we do not as yet have sufficient reasons to relate this fact only 
to the influence of the toroidal oscillations. 

The transition temperature shift predicted by the 
expression (59) can be appreciable even in relatively weak 
fields, since the expression for the coefficient < does not con- 
tain the small relativistic factor characteristic of the mag- 
non-phonon coupling. 

We must specially discuss magnetoferroelectrics, in 
which the rise in the strucutral transition temperature can be 
many times greater (in place of H we should substitute 
B)H). It is clear that in this case the ferroelectric transition 
temperature Tc should be lower than the Curie temperature 
Tc.  It would have been quite interesting to investigate of the 
long-range magnetic order on the ferroelectric transition 
temperature shift in magnetoferroelectrics with Tc > T, . 

57. THE MAGNETIC SUSCEPTIBILITY IN 
NONCENTROSYMMETRIC CRYSTALS 

Let us consider the contribution of the toroidal oscilla- 
tions to the dynamical magnetic susceptibility ~ ( o )  of non- 
centrosymmetric crystals without allowance for the spatial 
dispersion. For definiteness, let the crystal belong to one of 
the pyroelectric classes, and let u, be a vector in the direction 
of the polar axis. Because of the presence of the invariant 

where H is the magnetic field intensity, there arise additional 
contributions to the components xXx , x,, , and X, , of the 
susceptibility tensor (the z axis is oriented along u,). The 
corresponding unwieldy expressions are similar to the ex- 
pressions derived in $3, and we do not give them here. In the 
static limit (w-+O), we have 

The components xXx (0) and xYy (0) diverge at the toroi- 
dal transition point (i.e., as fiT +0), and a ferromagnetic or- 
der with the easy plane type of anisotropy arises below the 
transition point together with the toroidal order. It is clear 
that the results will remain valid in the case of centrosymme- 
tric crystals located in an external electric field E. 

Thus, in pyroelectric crystals, the toroidal phase transi- 
tion should be accompanied by ferromagnetic ordering. 
And, conversely, ferromagnetic ordering in pyroelectric (in 
particular, ferroelectric) crystals should induce toroidal or- 
dering. l4 

If the absence of a center of inversion is not due to the 
appearance of a polar aixs, but the symmetry admits of the 
existence of a pseudoscalar 7, then the magnetic susceptibil- 
i t y ~  will also diverge at the toroidal transition point because 
of the presence of the invariant 

In the static limit 

Thus, the softening of the toroidal mode of the vibrations can 
be the cause of the appearance of the ferromagnetic order in 
noncentrosymmetric crystals. It is possible that the ferro- 
magnetism observed in the GaMo,S, crystalI5 with the im- 
perfect spinel structure is precisely of the nature (for greater 
detail, see the discussion in Ref. 14). 

The singularities of the toroidal-oscillation dispersion 
law (see $4) may give rise to a helicoidal, and not a ferromag- 
netic, structure in noncentrosymmetric crystals. In this con- 
nection, an interesting potential object for investigation 
could be the itinerant-electron ferromagnet MnSi, although 
there are for the present not enough experimental data to 
confirm the toroidal nature of the helicoidalI6 magnetic 
structure in this compound. 

58. CONCLUSION 

In the present paper we have predicted a number of 
toroidal-oscillation-related effects that can be detected in 
optical experiments. 

1. An unusual frequency dependence of the dynamical 
permittivity &(a), that can be determined from reflection or 
absorption spectra. 

2. The divergence of the static permittivity at the toroi- 
dal transition point and, as a result, the ferroelectric order- 
ing in crystals located in an external magnetic field, or pos- 
sessing a ferromagnetic order. 

3. The existence in the infrared and Raman-scattering 
spectra of additional peaks due to the presence of the soft 
toroidal modes. First order frequencies should appear in the 
Raman scattering spectrum at the toroidal phase transition 
(just as happens at the instability threshold of a Raman ac- 
tive phonon mode), but a structural transition does not occur 
then, i.e., no additional reflections occur in the x-ray spectra. 

4. The "splitting" of the soft phonon mode and a change 
in the temperature dependence of the mode as the structural 
transition point is approached in crystals with intermixed 
toroidal and lattice vibrations. 

5. A rise in the structural transition temperature in a 
magnetic field. This effect can be estimated within the 
framework of the two-band semiconductor model. The ef- 
fective field He, in which the critical width of the forbidden 
band of the semiconductor undergoes a relative change 
AE, /E ,* - lo-' is of the order of 100 kOe (E,* - E,, , where 
Eex is the exciton binding energy). Similar fields are required 
for comparable transition temperature shifts. 

6. The narrowing of the transmission band woT (w(w4) 
in the spectrum of the toroidal polaritons as we approach the 
toroidal transition temperature T, . Notice that wil zconst in 
the case of structural and ferroelectric transitions, and the 
gap in the polariton spectrum widens as wl-+O. In our case 
(when M ,, > 0), 0 4 - 4  as wOT-+O, i.e., the gap in the polari- 
ton spectrum decreases. 

7. The divergence of the static magnetic susceptibility 
and the appearance of magnetic ordering upon the occur- 
rence of a toroidal transition in a noncentrosymmetric crys- 
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tal, or in a crystal located in an external electric field. 
Naturally, the indicated effects do not exhaust the 

wealth of phenomena connected with toroidal oscillations. 
In particular, the toroidal-magnon oscillations, which can 
occur in, for example, ferromagnets in the case when 
T, < Tc,  deserve to be specially investigated. 

Suitable materials for the detection of toroidal oscilla- 
tions may turn out to be substances in which the electric and 
magnetic properties are strongly interrelated (magnetoelec- 
tricl' and magnetoferr~electric'~ materials) and, possibly, 
certain narrow-band semiconductors: ferroelectrics. 

Thus authors express their gratitude to N. E..Aleksee- 

viski?, A. S. Borovik-Romanov, B. A. Volkov, and V. L. 
Ginzburg for a discussion of the results and valuable com- 
ments. 

APPENDIX 

As an illustration of the general relations obtained in 
$52-5, let us compute the parameters of the toroidal oscilla- 
tions M, , A,, A,, o,, and h)  in the microscopic two-band 
kP model a superconductor with a forbidden-band with E, 
RE,, , where E,, is the exciton binding energy (the analysis 
is being performed for zero temperature). We choose the 
model Hamiltonian in the form 

where m, and m, are the effective electron masses in the 
bands 1 and 2, P,, is the interband matrix element of the 
momentum, m is the free electron mass, A and @ are the 
vector and scalar potentials of the electromagnetic field, and 
A,, is the order parameter,14 which we assume below to be 
purely imaginary (A,, = A:, = iA,, ). 

Let us write the self-consistency equation for the quan- 
tity A,, (r,t  ) in the approximation linear in A,, and P,, and 
in the lowest approximations in A and @, replacing, for sim- 
plicity, the interelectron interaction potential by an effective 
constant g,, . This yields 

where = M3I2E y/27?, W is the cutoff energy, which is 
of the order of the forbidden-band width, S = m, - m,, 
M = (m, + m2)/2, and it is assumed that S<M; n is the unit 
vector in the direction of PI,. The toroidal moment for the 
uniaxial system (A. 1) is introduced in the following manner: 

T=nAI,, (A.7) 

after which we obtain for the component T, (the z axis is 
oriented along P,,) a dynamical equation (similar to (A.2)) 
for which the Lagrangian (3) can be recovered. 

I 
pict the dependence ~ ( o )  with and without allowance for the second term 
in the kinetic energy (1). 

"The results obtained in $3 can be generalized for a ferromagnet with 
T,  T , ,  where T,  is the Curie temperature and T, is the toroidal transi- 
tion temperature, by making the substitution H--tH + 4 r M  (M is the 
magnetic moment of the crystal). 

3'~llowance for the higher time derivatives in (1) leads in the high-frequen- 
cy region to the correct asymptotic form ( W ~ ) , ~ - + C ~ ~ ~ / E '  (the continuous 
curve). 
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