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The excitation and propagation of nonequilibrium phonons during interband optical absorption 
in a semiconductor are analyzed. The energy and length of the pump pulse at which a Planck 
distribution is established, and at which the deviation of the phonons from equilibrium can be 
described in terms of a nonequilibrium phonon temperature, are determined. The dynamic equa- 
tions of this temperature are found in the regime of a nonlocal thermal conductivity; these are the 
laws which describe the time evolution of the characteristic temperature and the depth of the 
heating. When this depth becomes comparable to the size of the light spot on the surface of the 
crystal, the Planck distribution is disrupted in an explosive manner, and the nonlocal thermal 
conductivity converts into a quasidiffusion. 

INTRODUCTION 

The concept of a hot spot, introduced by Hensel and 
Dynes,' is now used widely2" to refer to that situation in the 
region in which the phonon subsystem is being excited in 
which the excitation is strong, and the nonequilibrium phon- 
ons propagate in a nonballistic manner through the crystal. 
Although it is clear that the phonons in a hot spot have a 
relatively high frequency, so that scattering (by static defects 
and each other) are important for them, we do not have a 
clear picture of the state of the phonon system in the excita- 
tion region. It is this state which determines which propaga- 
tion regime prevails instead of the ballistic regime. The point 
is that under strong excitation, in contrast to weak excita- 
tion, the propagation regime is determined not only by the 
relative sizes of the various phonon ranges and the propaga- 
tion length but also by the excitation conditions: the size of 
the excitation region, the duration of the excitation, and the 
energy deposited. By "weak" excitation we mean that non- 
equilibrium phonons are generated with frequencies w* on 
the order of thermal-phonon frequencies, w ,B, and the ener- 
gy density (E*) of the nonequilibrium phonons is small in 
comparison with that of the thermal phonons, E,,. If at least 
one of these conditions is violated, i.e., if either o*)wTB or 
E* ZE,~,  the excitation is "strong." 

In the case of weak excitation, the occupation numbers 
of the nonequilibrium phonons, n*(w), are small in compari- 
son with the equilibrium values, nTB(w); i.e., there is almost 
no deformation of the equilibrium Planck distribution. In 
the case of strong excitation, there is a pronounced distor- 
tion of the equilibrium distribution, whether because of the 
appearance of a large number of nonequilibrium phonons in 
the oTB region or because of the appearance of a comparati- 
vely small number of nonequilibrium phonons in the region 
w*)wTB, where there are exponentially few equilibrium 
phonons. 

The hot spot is ordinarily understood as a heated region 
of the crystal, where the nonequilibrium phonons can be de- 
scribed by a phonon temperature T >  T B .  We wish to em- 

phasize in this connection that the temperature T can be 
established only as a result of phonon-phonon collisions; the 
scale time for the attainment of the temperature Tis T,-the 
scale time of the anharmonic processes at w = w .. Over this 
time, the phonons with w, are displaced a distance I, in 
space (in a diffusive or ballistic manner). Accordingly, we 
clearly can speak in terms of a temperature T only when the 
minimum dimension of the heated region satisfies L)I,. As 
we will see below, at liquid-helium temperatures TB is by no 
means always satisfied, so that the excitation of phonons will 
not always be equivalent to a heating. We will use the term 
"hot spot" only for the case in which a phonon temperature 
T is in fact established. 

Our purpose in the present paper is to describe the state 
of the phonon system and its dynamics in the case of optical 
excitation, in which phonons are produced during the ther- 
malization of hot electrons which are scattered high into the 
band (see Refs. 2, 5, 7, and 8, for example). A circumstance 
specific to this type of excitation is that the phonons which 
are produced are always high-frequency phonons: Their fre- 
quencies w* are on the order of the Debye frequency o, . At 
liquid-helium temperatures TB , the excitation is always 
strong, since even at the weakest pumps used the occupation 
numbers of the nonequilibrium phonons are much higher 
than the equilibrium numbers at these frequencies. 

1. STATEMENT OF THE PROBLEM AND BASIC 
ASSUMPTIONS 

We assume that phonons with frequencies w*)wTB are 
produced uniformly in a surface layer of depth d in a crystal 
of area A; the phonons have occupation numbers n*(l and 
are distributed over the interval Aw* -w*. 

The energy E which is deposited in the phonon system is 
deposited at a constant rate over the time 0. The area A is 
actually determined by the focusing of the light beam; the 
thickness d is the optical absorption depth plus the depth to 
which carriers diffuse as they cool, emitting optical or inter- 
valley phonons The pump duration 0 is the length of the light 
pulse plus the carrier cooling time. It is sometimes conven- 
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ient to replace the energy E by P = E /A or W = P/B = E / 
AB, which are respectively the energy and power per 1 cm2 of 
surface area. Some typical values are A = (30 pm)2 to (1 
mm)2, d = 1 to lOpm, B = 10 ps to loons, and E < 10pJ. We 
ignore the phonons of the thermal background; i.e., we set 
T, = 0. 

The scattering of the phonons is determined by the scale 
time for elastic scattering by defects, rl(w), and the lifetime 
with respect to spontaneous decay, r(w). The crystal is as- 
sumed to be "defective"; i.e., it is assumed that for all perti- 
nent frequencies the conditions r(w))rf(w) and srl(w)(L 
hold, where s is the average sound velocity, and L is the 
minimum dimension of the region occupied by nonequilibri- 
um phonons. The first of these conditions means that a 
phonon is scattered elastically many times over its lifetime, 
and the second means that the motion of the phonon is a 
diffusive motion, with a diffusion coefficient D (o) = srl(w)/ 
3. The diffusion length over the lifetime is 
I (w) = [D (w)r(w)] 'I2. 

The time r, and the length 1, mentioned in the Intro- 
duction are defined by r, = ~ ( w , ) ,  I, = l (w,), where 
fro, = aT, and the numerical factor a relates the tempera- 
ture to the characteristic energy of a thermal phonon. If we 
identify the latter energy with the position of the maximum 
of the spectral energy density, we would have a z 2.82 (even 
for order-of-magnitude estimates it is important to take the 
factor a into account because of the strong dependence of r 
and r' on a). 

At o(wD the scattering times are power-law functions 
of o and can be written conveniently as 

where the parameter 7 describes the defectiveness of the 
crystal, while the parameter y describes the rate of anhar- 
monic processes. The diffusion length is 

where is the volume per atom; the numerical coefficient 
is equal to 0.15. 

We also introduce the energy density of the phonons 
which have occupation numbers n - 1, which have an aver- 
age frequency w, and which are distributed over the frequen- 
cy interval Ao -a:  

where&) is the state density, and the numerical factor b is 
chosen to satisfy the following condition at wT (0, : 

Here .eT is the energy density of the (three-mode) Planck 
distribution and TD = hD is the Debye temperature. 

We assume that the duration and size of the excitation 
region are "macroscopic" with respect to the phonons which 
are initially excited: 

Since the size of the light spot, A 'I2, is usually greater 
than the thickness of the excitation layer, d, which is in turn 
greater than the initial diffusion length 1 (w*), the propaga- 
tion of the phonons in a plane geometry. Later, when the 
depth (L ) to which the phonons penetrate into the crystal 
becomes comparable to A 'I2, there is a transition to propaga- 
tion in a spherical geometry. 

2. FORMATION OF A HOT SPOT 

In this section we determine the particular pump pa- 
rameters for which a nonequilibrium phonon temperature 
(i.e., a Planck phonon distribution) is established. We will 
use the picture of phonon  generation^.^^'^ 

As long as the occupation numbers are small, the evolu- 
tion of the phonon distribution function can be described by 
the equation 

[alat-D ( o )  V2] n ( o ,  r, t )  = - n ( o ,  r, t ) / ~  ( o ) + ~ n ( o ,  r, t ) ,  
m (7) 

B n ( o ) =  rn l d o ' p ( o ' ) n ( o ' ) ~ ( o ' - w ) .  

h 

The integral term Bn describes the appearance of phonons o 
during the decay of phonons of higher frequencies.'' If, dur- 
ing the solution of Eq. (7), it turns out that the characteristic 
occupation numbers n increase over time and reach values 
n- 1, the meaning is that a phonon temperature is estab- 
lished. lo  

We define the characteristic frequencies wd and w, by 
the conditions 

It follows from (6) that a d ,  a, gw*. We also introduce 
8, = r(od ), the characteristic pulse length. Let us examine 
the meaning of these quantities. The frequency w, delimits 
the generations with w w d ,  which do not escape from layer 
d,  and the generations with wgw, , which do. Phonons begin 
to escape from layer d at times t-8,. The frequency w, de- 
limits generations with w)w,, which live during the pump- 
ing conditions, from generations with w(w,, which live 
after the pumping has ended. Here wd/w, = (B/B,)'15. If 
Bge,, the pumping is brief; i.e., it ends before the phonons 
begin to escape from the excitation layer. If B)B,, the pump- 
ing is instead prolonged; i.e., the phonons begin to escape 
from the layer before the pumping ends. 

We first consider the case of prolonged pumping (B,B,). 
At times tgB,, at which mostly phonons with w)w, exist, it 
can be assumed that there are no phonons outside layer d, 
while inside this layer the distribution of n does not depend 
on the coordinates. Equation (7) is then satisfied by the self- 
similar solution 

with any a. The function f, satisfies the equation 

where 
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The energy density of the phonons described by distri- 
bution (9) at the time t is 

m 

E ( t )  = J dwp  ( w )  hwn ( w ,  t )  ~ t - ( ' + " " .  (10) 
0 

Since the total energy of the phonons increases in proportion 
to t at these times t < 8, we should choose a = - 9. It is 
convenient to normalize the function f, by the condition - 

Distribution (9) can then be written in the form 

The function f, contains no large or small parameters, so 
that characteristic values are q -  1, and at such values of q 
we have f, - 1. The time dependence of the average frequen- 
cy is then determined by the condition 7- 1, i.e., 

z ( o )  -t, (12) 

and the occupation numbers for the average frequencies are 

n-  W t  ( w )  Id& ( a ) .  (13) 

If we express w in terms oft on the basis of (12) and substitute 
the result into (13), we find the time dependence of the char- 
acteristic occupation numbers to be 

n- ( WIIYU)  j, (14) 

where 

l.I/'o=PO/80, P0=d& ( w d ) .  

If W) W,, the decay will come to a halt at some critical gen- 
eration at the time t48,, at which the occupation numbers 
reach values n - 1, and a temperatureTcorresponding to the 
frequency of the critical generation, w ~ ,  will be established 
in the layer d. This frequency is determined from (13) by 
setting n = 1; this procedure gives us an equation for T: 

d& ( ~ 7 )  = T T 7 t  ( m i ) .  (16) 

It can be seen from (12), (13), and (16) that the temperature is 
established over a time 7-~(w-,). 

If W4 W,, the occupation numbers are small up to 
t- 8,, and the decay continued even after the phonons have 
escaped from layer d. At times t 2 8, we must take a diffusion 
term into account in (7). As long as the depth to which the 
phonons penetrate into the crystal remains smaller than 
A ' I 2 ,  the propagation geometry is a plane geometry, and (7) is 
satisfied by the selfsimilar solution 

where the function f, satisfies the equation 

which contains no large or small parameters. 
The energy of the phonons per 1 cm2 of surface for dis- 

tribution (17) is 

At times t < 8 this energy increases in proportion tot, so that 
we need to choose a = - 9/2. ~ o r m a l i z i n ~  the function f, 
by the condition 

we can write distribution (17) as 

n ( w ,  2 ,  ~ ) = [ W T ( ~ ) / ~ ( O ) E ( O ) ]  bf -Q, , (E,  q).  (21) 

Proceeding as in (14), we find the characteristic occupation 
numbers 

At W g  W,, the occupation numbers increase even after the 
phonons have escaped from layer d, as long as the pump 
lasts, although this increase is slower than before the phon- 
ons escape from layer d. 

It can be seen from (22) that if 

then the temperature T determined by the equation 

will be established even before the end of the pumping. This 
temperature is established by the time 7-r(w-,) in a layer of 
thickness f - l (w-,). 

When the inequality opposite (23) holds, the decay con- 
tinues even after the pump pulse. At t > 8, the energy in (19) 
must be constant, so that we have a = 1/2. Using normaliza- 
tion (20), we find the distribution 

which is established at t)8. We now have 

n- (PIP,)  ( t i @ 0 )  -'I1o, (26) 

so that the occupation numbers decrease. In other words, if 
the pumping is prolonged (8)8,), the temperature can be 
established only before the end of the pumping. 

The analysis of brief pumping (848,) is analogous. At 
t < 8, expression (1 1) holds, but (14) is conveniently rewritten 
as 

We thus see that if 

P / P o B  (0100) -4'j 

the temperature determined by Eq. (16) will be established in 
layer d. If, instead, the opposite inequality holds, the decay 
will continue even after the pulse. 

At t > 8, the energy in (10) remains constant, so that we 
must choose a = - 4 in solution (9). This value gives us the 
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from this layer. We thus have 

T=T, (WI W,) 'I*, aT,=Aod. (31) 

FIG. 1. Conditions for the formation of a hot spot. Heavy solid lines- 
Boundaries between regions described by (30); heavy dashed lines- P /  
Po = (d / A  112)(8/Bo);unhatchedregion-the temperaturereachesasteady 
state. 

distribution found in Ref. 11: 

which is established at t>8. For this distribution we have 

n- (PIP,) (tl8,) "'. (28) 

As before the end of the pumping, the occupation numbers 
increase, but more slowly. We see from (28) that under the 
condition P)P, the temperature determined by the equa- 
tion 

is established in layer d. If the condition P4P, holds instead, 
the decay will continue even after escape from the layer, 
when the distribution takes the form in (25). The occupation 
numbers now decrease, according to (26), and the tempera- 
ture does not reach a steady state. 

Although the analysis above is slightly tedious in terms 
of the abundance of different cases, it is extremely instruc- 
tive, since it shows how different the situations in the excita- 
tion region can be, depending on the parameters of the 
pump. This analysis provides an exhaustive answer to the 
question of which pump parameters lead to the formation of 
a hot spot, and it tells us the thickness and temperature of the 
spot. To put the answer to these questions in their most gra- 
phic form, we specify the pump to be a point in the (P, 8 ) 
plane. We partition this plane as shown in Fig. 1. The equa- 
tions of the boundaries between the different regions are 

In region 1 (weak pumping) a hot spot does not form. In 
region 3 (high P ) the temperature T determined by Eq. (1 6) is 
established in layer d even before the end of the pump pulse 
and before a significant number of phonons has escaped 

The time required for the attainment of this temperature is 

T=0, (bY/ W,) -'In. (32) 

In region 4 (intermediate values of P; prolonged pump- 
ing) the temperature reaches its steady-state value before the 
end of the pump pulse, but after phonons have escaped from 
layer d. The initial temperature is found from (24): 

The temperature relaxation time is 

t=r (or) =OO(IYIIY,)-'"*; 

the thickness of the layer occupied by the phonons by the 
time at which the temperature reaches its steady-state value 
is 

In region 2 (intermediate values of P; brief pumping), 
the temperature reaches its steady-state value after the pump 
pulse but before the phonons have escaped from layer d. The 
initial temperature is found from (29) to be 

T=T, (PIP,) "; (35) 

the temperature relaxation time is 

We assumed above that the hot spot forms in a plane 
geometry. This is clearly a valid assumption in regions 2 and 
3, where the spot is formed inside layer d. Only for regions 1 
and 4 need we consider the transition to a spherical geome- 
try. 

In the case of a spherical geometry the propagation of 
Eq. (7) also satisfies a self-similar solution of the form in (17), 
but now we have6 = r / l  (w), and f, satisfies Eq. (18) in which 
the two-dimensional Laplacian is replaced by a spherical La- 
placian. In a spherical geometry the total energy of the phon- 
ons of self-similar distribution (17) is 

4n dir2e (r ,  t )  ylt-(a-t'12)15. 

0 

We choose the normalization 

for the spherical geometry. Before the end of the pump pulse 
we have, choosing a = 9/2, 

n (o, r ,  t) = [ PVAr (o)113 (o) e (o) ] (b/4n) fo,, (& T). (38) 

After the pump pulse, at t>8, the solution found in Ref. 11, 
with the constant energy (37), i.e., with a = 19/2, is estab- 
lished: 
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Using(12), wefindn cc t -91'0andn a t  -'91'0for(38)and(39), 
respectively; i.e., for propagation in spherical geometry the 
occupation numbers always decrease. This result means that 
if a hot spot does not manage to form in region 1 in the plane 
geometry it will never form. 

We should thus examine the transition to spherical ge- 
ometry only in region 4, where the temperature reaches a 
steady state at the depth in (34). The temperature does in fact 
reach a steady state if t d  'I2, i.e., if 

W /  T.Yo >d/A'!'. (40) 
This condition is usually satisfied in region 4. If it is not, 
however (as it may not be if the pump pulse is a long, sharply 
focused pulse), then the occupation numbers will still be 
small by the time of the transition to the spherical geometry, 
and subsequently they can only decrease. Accordingly, a hot 
spot does not form if condition (40) is violated. 

3. DYNAMICS OF A NONEQUlLlBRlUM TEMPERATURE IN 
PLANE GEOMETRY 

Before the phonon temperature reaches a steady state, 
the dynamics of the deviation of the phonons from equilibri- 
um is described by one of the self-similar solutions (1 l), (21), 
(25), (27) in plane geometry or (38) and (39) in spherical geom- 
etry. If the excitation parameters are such that a nonequilib- 
rium temperature is established at sometime 7 in the layer 
t ,  the subsequent development of the deviation of the phon- 
ons from equilibrium will be described by a heat-conduction 
equation. This equation is nonlinear by virtue of the relation - 
T ST,. Furthermore, as was shown in Ref. 12, the thermal 
conductivity is a nonlocal property in the case of Rayleigh 
scattering of phonons. 

There are several regimes of a nonlocal thermal conduc- 
tivity in which energy is transported by phonons of various 
frequencies and polarizations. l 3  We will restrict the present 
discussion to the simplest regime, corresponding to the most 
defective crystals, in which energy is transported by subther- 
ma1 TA phonons. This regime prevails in the region 

Here T is a characteristic temperature. L is the minimum 
size of the heated region, and ST = T,/T,'. 

The state of the hot spot can be described in a semiquan- 
titative way by a point in the (T, L ) plane (Fig. 2), and its 
dynamics can be described by motion along trajectories 
which begin at the point (T, 2) at the time? The line L = A 'I2 

in this plane separates regions in which the hot spot expands 
in plane geometry (L = z@ 'I2) and in spherical geometry 
(L = r)A 'I2). 

We begin by finding the trajectories of the system in the 
casez)d, in which a hot spot has been "torn away" from the 
excitation region. For this purpose we use the self-similar 
solutions of the nonlinear equations for a nonlocal thermal 
conductivity 14: 

a ~ / a t ' + d i ~ w = o ,  w=J d o p ( o ) R o [ - D ( o )  V n ] .  
0 

FIG. 2. Dynamics of a hot spot in Ge. Region (41) lies between the lines 
with slopes of - 9/2 and - 16/3; a temperature does not exist to the left 
of this region. Line with slope of + 3- W-trajectory (53); lines with slopes 
of - 4 and - 413-P-trajectories (52) and (63); horizontal region 
between points 0 and I-trajectory (56). 

Here n(w, r, t ) is the distribution function of the low-frequen- 
cy phonons which are carrying the heat flux w(r, t ), and .i is 
the scale time for absorption of a low-frequency phonon w by 
a Planck distribution with a temperature T. According to 
Ref. 12, the flux w is established rapidly in comparison with 
the duration of the overall process, so that we can discard the 
time derivative d /dt from the left side of the first of Eqs. (42). 

To construct self-similar solutions of system (42) in 
plane geometry, we choose some temperature T +, which we 
leave arbitrary for the moment, and we determine the dimen- 
sionless variables 

We seek self-similar solutions in the form 

with the self-similar variables 

q=w' ( t ' )  ", g=zl ( t ' )  -O. (44) 

A solution in the form in (43) "passes through" Eqs. (42) if 

For the functions f and g in this case we find a system of 
equations which can be written as follows for plane geome- 
try: 

System (46) is invariant under a scale transformation of the 
functions and the variables, 

g-tCfg, f+Cff7 % - f C 6 % r  q+cqq, 

If the scaling factors satisfy the three relations 

C,IC,2=C,5C,4C,=C;Cf5, C,4=c,lC,2. 
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The first two of these relations follow from (46a), and the 
third from (46b). The one scaling factor which remains free 
can be determined by the normalization condition 

m 

J dl;f4(l;)=1. (47) 
0 

The energy of the phonons per 1 cm2 of surface area at the 
time t is therefore 

rn 

J ~ z E ~ = c ~ + z ~ +  (tiTT+) o-''. (48) 
0 

If we are interested in the solution before the end of the pump 
pulse, at t < 8, the integral in (48) must be equal to Wt. This 
result means that we must assume @ - 4,u = 1 and deter- 
mine the temperature T t  from the condition 
E = +  IT+ = WrT+ . In this case we find the following results 
for the exponents, using (45) 

a='l,, P=3/,, h=--3/,, p=-'I 7. 

Since we are interested in the solution after the end of the 
pump pulse, which is established at tb8, we should set the 
integral in (48) equal to P. Doing so, we find@ - 4,u = 0. We 
then find the exponents14 

a='/Z,, p=20/2,, h=i/21r p='/~,,  
and the condition for determining T + is 

E~+Z,+=P. 
In both cases, the functions f and g satisfy system of 

equations (46) and normalization condition (47), which con- 
tains no physical parameters (large or small). The character- 
istic values of the arguments are therefore <- 1 and 7 - 1, 
and for such arguments we have g - 1 and f - 1. It is thus 
clear that the motion of the heating front is described by the 
law 

and the characteristic temperature behind the front is 

The last two expressions describe the motion of the image 
point in the (T, L ) plane along the trajectory 

Before the end of the pump pulse, at t < 8, the system 
moves along a trajectory on which the energy flux ( W) across 
1 cm2 of the surface of the crystal is constant (this is a " W- 
trajectory"). At the end of the pump pulse, at t = 8, the sys- 
tem goes onto a trajectory on which the energy (P ) per 1 cm2 
of surface area of the crystal is constant (a "P-trajectory"). 
The system moves along this trajectory at t > 8. 

For a W-trajectory we have - P/,u = 3 > 0, SO that the 
temperature increases over time with increasing z, and the 
image point moves upward and to the right along a trajec- 
tory z a T 3 .  For a P-trajectory we have - @ /,u = - 4 < 0, so 
that the temperature decreases, and the point moves along 
the trajectory z cc T -4 upward and to the left. It is thus clear 
that the temperature reaches its maximum by the end of the 
pump pulse. 

It is convenient to rewrite the equation of the trajectory 

in such a manner that it does not contain T +. For a P-trajec- 
tory we then find 

and for a W-trajectory we find 

where w,, is the heat flux which arises12,15 because of VTin 
a spot with temperature Tand sizez. In terms of dimension- 
less quantities, Eq. (52) is 

PIP,= (zld) (TITo)+, (54) 

and Eq. (53) is 

Let us examine the trajectory of the image point under 
conditions such that the hot spot still coincides with the exci- 
tation region, i.e., under conditions such that the heat flux 
w,, due to VTis small in comparison with the pumping W. 
The image point obviously moves along the trajectory 

on which the temperature increases in accordance with 

The final point of trajectory (56) is determined by the condi- 
tion 

if this point is reached before the end of the pump pulse; 
alternatively, it is determined by the condition 

which follows from (57), if the pumping ends earlier. 
We see from (49) and (50) that the rate at which the 

system moves along the trajectory decreases as time elapses. 
Consequently, the time required to reach a given point on the 
trajectory is determined by the last part of the trajectory-in 
order of magnitude, simply by the final point. This time can 
be stimated from the continuity equation for energy in sys- 
tem (42): 

t-z (ETIwT, z ) .  (60) 

Substituting in w , ,  from (53), we find 

The same result can be found by eliminating T' from (49) 
and (50). In the plane-geometry region the time required to 
reach a given point in the (T, L ) plane is thus independent of 
the trajectory. This time, (61), is, according to Ref. 12, the 
"thickness-doubling time" for a heated layer of thickness z 
and temperature T. 

4. SPHERICAL GEOMETRY. DESTRUCTION OF THE HOT 
SPOT 

Sooner or later, the trajectories traced out in the plane 
geometry and studied in Section 3 come to either a boundary 
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ofthe region in which the hot spot exists, L = I,, or a bound- 
ary of the transition to the spherical geometry, L = A ' I 2 .  In 
the first case, the hot spot is destroyed, and the subsequent 
propagation of the phonons occurs in a quasidiffusion re- 
gime. In the second case the hot spot survives but expands in 
spherical geometry along a W-trajectory, 

or along a P-trajectory, 

We wish to find self-similar solutions corresponding to 
these trajectories. An attempt to find them in the form in 
(43), with the variables (44), in spherical geometry leads to 
P < 0; this result corresponds to a decrease in the radius of 
the hot spot with increasing time, which is physically mean- 
ingless. We must accordingly choose the self-similar varia- 
bles in the form 

Here to is a parameter which is undetermined at the moment, 
and r' = r/l,+ . We seek a solution in the form 

n (0 ,  r ,  t )  = ( tof- t ' )  -'g(b, q )  , T ( r ,  t )  =T+ ( to f - t ' )  -&f ( E )  . 
(65) 

Substituting this solution into Eq. (42), we find the same con- 
ditions--conditions (45)-on the exponents as for the plane 
geometry. We define the normalization of the functions f by 
the condition 

cc 

The total energy of the phonons at time t is then 

Restricting the discussion to the case t > 8, we should 
choose 3P - 4p = 0; doing so, we find 

and we can find T + from the condition 

The characteristic radii and temperatures of the spot 
corresponding to solution (65) are, in terms of dimensional 
quantities, 

In the limit t -+ to the spot radius goes to infinity (r -+ w ), 
while its temperature vanishes ( T  -+ 0). This result means 
that in spherical geometry the expansion of the spot is "ex- 
plosive": The energy "goes off to infinity" in a finite time to. 

Although the transition from plane geometry to spheri- 
cal geometry actually occurs gradually, we will assume for 
simplicity that this transition occurs abruptly, i.e., that at 
the time of the transition the hot spot already %as a spherical 
shape with a radius ;-A ' I 2  and a temperature T, determined 

from the condition 

We place the time of the transition at t = 0 in (65). It is ob- 
vious that solution (65) cannot exactly satisfy arbitrary ini- 
tial conditions, but there is the possibility that we might be 
able to satisfy these conditions, at least in order of magnk 
tude, by requiring that we find values on the order of i and T 
from (67) at t = 0. This procedure yields 

~,,-TT+ (P/T+)''15. 

Using (66) and (68), we easily find 

Since the initial conditions lie in the region in which a hot 
spot exists, i.e., since ?$I-,, it follows from (69) that we have 
a T  + and tO$rT+ . Using (69), we can rewrite to as 

According to (61), to is on the order of magnitude of the time 
at which the system arrives at the point of the transition to 
the spherical geometry, and it is simultaneously the time 
required for a doubling of the initial radius of the hot spot, i.. 
Since the initial conditions can be satisfied only in order of 
magnitude, solution (65) has an exact meaning only at r$i, at 
which a spot "is torn away" from the initial conditions. It is 
easy to verify that we would then have to - t(to. The explo- 
sive self-similar solution thus has an exact meaning only in a 
small time interval near to, and a non-self-similar state occu- 
pies nearly the entire interval of the time t .  The time of the 
explosion, to, is determined by the initial conditions; this 
result is an important distinction between the spherical ge- 
ometry and the plane geometry. In the plane geometry the 
initial dimensions of the spot "are forgotten," and the dura- 
tion of the process is determined by its final stage. In the 
spherical geometry, in contrast, the duration of the process 
is determined specifically by the initial dimensions. 

Furthermore, it should be kept in mind that the equa- 
tions for nonlocal thermal conductivity, (42), are meaningful 
only ifthe phonons which carry the heat flux are subthermal: 
fiwg T. Since a > 0, we have w -+ w as t + to. Solution (65) 
therefore loses its meaning near to. According to this solu- 
tion, we sould have fiw - T at (to - t ) - T, + . Accordingly, 
solution (65) finally has an exact meaning at 

At the time t = to - r T + ,  at which the self-similar solution 
becomes meaningless, the spot temperature is on the order of 
T +, and its radius is on the order of IT+ ; i.e., the system is at 
the boundary of the region in which a hot spot exists. This is 
an exceedingly important circumstance: It shows that ordi- 
nary nonlinear local thermal conductivity does not occur in 
the case of Rayleigh scattering in a crystal with a sufficient 
defect density. 

Because of the large exponents in (67), region (71) is 
exceedingly narrow, and solution (65) has no practical im- 
portance. However, a study of this solution allows us to jus- 
tify the following important conclusion: After the thickness 
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TABLE I 

Ce 
CaAs 7.2 0,46 4,5 

of the hot spot has become equal to its radius, over a time on that the shape of the signal is independent of the energy de- 
the order of that in (70), the spot will be destroyed over an- position E. According to the experiments of Refs. 7 and 17, 
other time interval of the same order of magnitude. this is indeed the situation1' in GaAs with W = 0.02-2 W/ 

mm2 and 6 = 50 ns, corresponding to P = 0.001-0.1 pJ/ 

5. DISCUSSION OF RESULTS 

Near all the experiments of this type have been carried 
out in Ge, Si, and GaAs. Table I lists the properties of these 
materials. The property 7 refers to isotopic scattering; y is 
found from the scale time for the decay of an LA phonon 
calculated in Ref. 16 by taking an average over branches: 
y = yLA(l + 2fl-3)-1, wherep =s,/s,. 

The most legitimate choice of initial phonons would be 
phonons found after the first decay of optical or intervalley 
phonons. We assume that their frequency is w* = w, /2. For 
such phonons in Ge we have r(w*) = 20 ns and I (a*) = 3pm, 
so that conditions (6) ond and 6 hold, although not very well. 
Let us estimate the initial occupation numbers n*. Condition 
(6) on 6 means that the phonons w* are produced during 
steady-state pumping, so that their number per 1 cm3 is 
Wr(w*)/dfiw*. To find n*, we need to divide this number by 
the phase volume occupied by the phonons, bp(w*)w*, so 
that we find n* - Wr(w*)/d&(o*). Taking d = 5 pm, we then 
find n* - 10- ' even for a very high pump level, W = lo6 W/ 
cm2. Nevertheless, at the lowest pump level, W = 1 W/cm2, 
we have n* - lo-'; at T, = 4 K, the equilibrium values are 
nTB(w*) - lop2' and thus much smaller than n*. 

Choosing d = 5 pm, we find the characteristic param- 
eter values listed in Table 11. These values determine the 
formation of the propagation regime. It can be seen from (8) 
and (3) that we have wd cc d -'I9, and from (15) and (5) we find 
Po or d 'I9; i.e., this power depends very weakly on d. On the 
other hand, the boundary between regions 1 and 4 in Fig. 1 is 
essentially horizontal, so that the condition for the establish- 
ment of a nonequilibrium temperature is P k 100 pJ/mm2, 
regardless of the pump duration, in pure semiconductors. 
With 6 = 100 ns, this value would correspond to Wk 1 kW/ 
mm2. These are quite high pump levels, which have by no 
means been attained in all experiments. 

At lower pump levels, at which the excitation param- 
eters fall in region 1 in Fig. 1, the phonons propagate by a 
quasidiffusion. As can be seen from (21), (25), (38), and (39), 
the most characteristic feature of this propagation regime is 

mm2. The shape of the signal begins to depend on E a t  P- 1 
pJ/mm2. This value is two orders of magnitude lower than 
the estimates of Po, but how strong the dependence was at 
this value of P was not stated in Refs. 7 and 17. It must also 
be kept in mind that our estimate of Po may prove to be 
extremely crude, since all of the equations contain unknown 
numerical factors. An independence of the rate of arrival of 
the phonon signal in GaAs has also been observed in a study 
of phonons from a Joule-heated he te ros t ruc t~re .~~  

As an example we consider the formation and dynamics 
of a hot spot in Ge pumped with E = 1 pJ, 6 = 75 ns, 
A = (0.1 mm)2, and d = 5 pm. The experiments of Ref. 5 on 
Ge used approximately this pumping. Since P = 150 pJ/ 
mm2 and W = 2 kW/mm2, the pump parameters fall in re- 
gion 3 in Fig. 1. It follows from (31) and (32) that a tempera- 
ture T = 62 K is established in? = 25 ns in layer d. The hot 
spot then moves along trajectory (56) (Fig. 2). Condition (58) 
yields a temperature T, = 73 K, which is reached at the time 
t ,  = 46 ns, according to (57). Condition (59) gives us T ;  
= 8 1 K, so that this point is not reached. At point 1 the spot 

moves to a W-trajectory (53), along which it moves until the 
end of the pumping at point 2; by the time t2 = 6 = 75 ns it 
reaches a temperature T2 = 103 K and a depthz, = 14 pm. 
At point 2 the spot moves to a P-trajectory (52), along which 
it moves to point 3, which is reached, according to (61), at the 
time r, = 1. 4 ps. Here T, = 38 K. At point 3 the spot be- 
comes spherical and then moves along P-trajectory (63) to 
point 4, where it is destroyed according to (66) at a tempera- 
ture T4 = T + = 38 K, having a radius r, = IT+ = 140 pm. 
The time of the motion between points 3 and 4 is on the order 
oft,. 

These numbers should not be taken too literally, for 
several reasons. First, all the equations which we have used 
are estimates containing unknown numerical factors. Sec- 
ond, power laws (I), (2), and ( 5 ) ,  on which these equations are 
based, may have to be abandoned. Finally, scattering pro- 
cesses other than scattering by isotopes may become impor- 
tant, as they do in Ge at T k  70 K, as can be seen by compar- 
ing the thermal conduct ivi t ie~~~ of natural-abundance and 

TABLE 11. 
, I 

Si 6.7 115 130 10 13 
1,4 

"e GaAs 1 1 1 1 4: 1 :: 1 6,4 
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isotopically enriched Ge. 
After the destruction of the hot spot, the propagation 

occurs in a quasidiffusion regime. Accordingly, if the dis- 
tance between the pumping region and the detector, R, is 
much larger than the radius (IT+ ) of the hot spot at the time 
of its destruction, the shape of the signal should be indepen- 
dent of the pump energy E. Typical values of R are from 1 
mm to 1 cm. The largest values of IT+ are reached at the 
highest values of E, as can be seen from (66), (3), and (5); 
taking E = 10 pJ, we find lT+ = 0.6 mm. The condition 
R$lT+ will thus usually hold; experimentally, however, one 
can observe2a strong E dependence of the signal shape. 

To resolve this discrepancy we should recall that the 
quasidiffusion propagation sets in only after several decays 
of the "initial" phonons w* (Ref. 11). During the destruction 
ofa hot spot, the initial phonons have a frequency w,+ , while 
the phonons reaching the detector have a frequency w, , de- 
termined from the condition I (a, ) = R (Refs. 9 and 10). Us- 
ing(3), we findo, /wT+ = (R /lT+ )-2'9, from which wethen 
find wR/wT+ -0.5 at R = 1 cm and IT+ = 0.6 mm. This 
result means that only a single decay occurs during the prop- 
agation time. The quasidiffusion regime actually does not 
form; this conclusion explains the observed E dependence of 
the signal shape. 

If a hot spot does not form at all, the "initial" phonons 
are acoustic phonons with w*=wD/2, which arise in the 
decay of optical phonons.' We now find wR/w*~0.13 ,  
which corresponds to the three decays. In this situation 
there is naturally the hope that a quasidiffusion regime will 
set in and that the shape of the signal will not depend on E. 

We note in conclusion that some of the results derived 
here apply more generally than to the situation discussed 
above. For example, the method used to determine which 
propagation regime sets in (and, in particular, to determine 
whether a hot spot forms) can be used in cases more general 
than those in which phonons are produced during the ther- 
malization of electron-hole pairs. An example is the produc- 
tion of phonons with w -aD in the radiationless relaxation 
of excited Eu centers in CaF, (Ref. 25) or in the many-photon 
absorption of the IR beam from a C02 laser.26 Furthermore, 
the arguments regarding the trajectory of the hot spot after it 
is torn away from the pumping region can also be applied to 
other phonon excitation methods (the methods using a film 
injector, for example) if there is a solid basis for expecting the 
formation of a hot spot. 

"Ulbrich et a1.7.17 offered a completely different interpretation: They sug- 
gest that the signal results from short-wave phonons in ballistic propaga- 
tion (and they cite the experiments of Ref. 18 as support for their sugges- 
tion). However, estimates and numerical calculations s h o ~ ' ~ . ~ '  that a 

ballistic propagation of such phonons would be impossible because of 
scattering by isotopes. This conclusion is also supported by experimental 
results which show that there is no phonon focusing.*' See the discussion 
in Ref. 22 in this regard. 
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