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The tunnel-current amplitude, the range of angles of incidence, and the yield of tunneling elec- 
trons are related theoretically to the interface roughness in a metal-insulator-metal system. The 
connection between these quantities and the main parameters of the roughnesses is determined. 
The most probable surface fluctuation distortions that carry the bulk of the current are found. 

1. INTRODUCTION 

Tunneling experiments provide a method for studying 
the band structure of semicondutors. The conductor-insula- 
tor interface is usually assumed to be mirror-smooth, so that 
the tangential component of the electron momentum is con- 
served during tunneling. In this cases, only electrons nearly 
normally incident on the interface can tunnel through a low- 
transparency barrier.' The amplitude of the tunnel current 
should thus reflect to some degree the structure of the con- 
ductor Fermi surface in the direction normal to the inter- 
face. 

In practice, however, interfaces are never perfectly 
smooth, so that the tangential momentum component is not 
conserved and electrons incident at large oblique angles can 
also tunnel. The tunnel current will thus depend not on the 
structure of the electron spectrum at the Fermi surface nor- 
mal to the interface, but on the characteristics of this struc- 
ture integrated over a certain range of angles. In this paper 
we will investigate how interface roughness alters the tunnel 
current. 

along the impurities and electron scattering by phonons and 
other defects in the The insulator will thus be 
taken to be homogeneous. Moreover, we will simplify the 
calculations by assuming that the potential energy of the 
electrons in the insulator is constant, and that the effective 
electron mass is isotropic. At the end of this paper we will 
discuss what happens when an electric field is applied to the 
insulator. 

We will derive an expression for the dimension of the 
regions between which effective tunneling takes place; in 
some cases, these dimensions may be large compared to 
atomic. We will therefore consider the equations for the en- 
velopes rather than for the Bloch functions themselves. This 
is legitimate, because local wave-function changes at the in- 
terface, which can be due either to loss of lattice periodicity 
or to local surface defects, alter in fact only the coefficient 
multiplying the exponential in the expression for the tunnel 
current. The main results in this paper will thus be valid up 
to the choice of the pre-exponential factors. 

Let an electron wave 

$l=exp{ik,,r+ikl,z) 
2. CALCULATION OF THE TUNNEL CURRENT 

Figure 1 shows a model of the tunnel junction (I, I11 are 
the metal layers, I1 is the insulator). We write E,, and E,, for 
the Fermi energy of the electrons in layers I and 111, respec- 
tively, and U for the height of the potential barrier in the 
insulator. The interfaces 1-11 and 11-111 are assumed to be 
rough (we will call them the first and second boundaries, 
respectively). The positions of the boundaries are described 
by the random functions (,(r,) and (,(r2), respectively, with 
expectation values (6,) = ((,) = 0 and variances (g ) 
= a:, ({ ) = a: ; 6, and 6, are the characteristic lengths of 

the surface irregularities (parallel to the interface). 
We assume that the surface roughnesses are large-scale, 

i.e., a,, b, )x-' (i = 1,2), where m, is the electron mass and 
% - I ,  [2m2(U - E,,)]-"~ is the decay length of the wave 
function in the insulator"; we also assume that the barrier is 
not too transparent. The latter condition will be satisfied if 
the interfaces are flat and xd) 1. Clearly, this condition will 
be modified somewhat if the boundaries are rough and most 
of the current passes through the thinnest regions of the in- 
sulator. Indeed, we will show below that the appropriate 
condition in this case is tt [d  - 2tt(a: + a: ) 1% 1. Moreover, 
since we are interested in how the roughness affects the tun- 
nel current, we will neglect resonant electron tunneling 

be incident on the first boundary from metal I. Green's 
theorem 

then determines the wave function at a point r, on the 
boundary 11-111; here $1-2(r1,(1) = Y1(kl , r l )  exp(ikl, 
r + ik ,,(,) is the wave function at the first boundary, and 

.Fl(k,,r,) and Y2(k,,r2) are the transmission coefficients for 
the first and second interface, respectively; G, is given by 

FIG. 1. 

1303 Sov. Phys. JETP 61 (6), June 1985 0038-5646/85/061303-05$04.00 @ 1985 American Institute of Physics 1303 



Gz= (exp ( - x R z )  ) lRz ,  R z  

Since we are interested only in the exponential behavior, we 
will not discuss the form of the coefficients 7, and 7,. 
However, we will show that most of the tunneling occurs 
from surface depressions, where the local inclination angle 
of the surface is small. We will therefore take 7 , , Y 2  to be 
given by the corresponding expessions for tunneling through 
mirror-smooth interfaces. 

The wave function in region I11 is given by 

which is of the same for as (1); here G3 = (expi,k . R)/R3 and 
R3 = [(z - (2)2 - (r - r2)2]1/2. If we substitute (1) into (2), 
expand R2 and R, [assuming xd and k3Ro) 1, respectively], 
and write R, = [(z - d )2 + we get 

14. ( k , ,  k 3 )  = 9 - ( k , ,  k 3 )  J exp{-xd+ ( ik , ,+x)  E l -  ( i k3 ,+x)  E z  
- (r l -r , )  z/2p02+ik1rrl+ik2rrZ+ik3RO) d  ( r , ,  r z )  , (3) 

where 
i xk ,  d  

9- (k i ,  I4 = - . 9-19-~,  poz = - . 
( 2 n )  dRo x  

In the analysis of the expressions for the tunnel-current den- 
sity through the junction we consider for definiteness the 
case k, T(eV((U, - ~ ~ ~ ) / x d ,  where V is the voltage ap- 
plied to the junction. In this case, only electrons whose ener- 
gy lies in a layer eVnear the Fermi surface will contribute to 
the tunnel c ~ r r e n t . ~  The partial density of the tunnel current 
ofelectrons that enter and leave the barrier with momenta k, 
and k, can be expressed by using (3): 

Here S is the area of the junction, E~ and E~ are the electron 
energies in regions I and 111. The total current density is 
obviously 

We must know the mean value of the squared modulus of the 
wave function in (3) to evaluate the partial current (4). If we 
assume that the roughness distributions of the different sur- 
faces are Gaussian and statistically independent, we have 

< e x p { ( x + i k t , ) E l  ( r l )  - ( x + i k 3 , ) E 2 ( r Z ) +  ( x - i k l z )  

where (. . . ) denotes averaging over a surface, and the 
roughness correlation function K (r) vanishes outside a re- 
gion on the order of b. (Examples in which similar mean 
values are calculated can be found, e.g., in Refs. 5.) If 

b l 2  
exp ( x 2 + k 1 , 2 ) a i 2 ~ p O 2  

2  (xZ+kl ,2 )  a12 
together with the analogous condition on the second bound- 

ary (which can be easily satisfied to the extent that 
(x2 + k :,)a: ) 1, (x2 + k :,)a: > 1 and mean that the elec- 
trons can tunnel to any point on a surface from a deposition 
in another), we can expand the functions Ki(ri - r,!) as pow- 
ers of (ri - rJ2/2b f and keep only the first term; the result is 

where 2 112 
P I  = [b:/(z2 + k?,)al]  and 

p2 = [b :/(x2 + k :,)a: ] 'I2 are the dimensions of the char- 
acteristic depressions in the first and second surfaces, re- 
spectively. Evaluating (7), we find that 

Ifthe depressions are very gently sloping, namely, i.e., if 
P: ,p i  %pi, 0' b2/a2>xd (x2 + k f )/x2) 1 for each boundary, 
the factor 

in (8) yields 6(k,, - k,,), meaning that the tunneling pre- 
serves the tangential component of the momentum. We thus 
get the result 

( 1$3  ( k , ,  k3) 1 2 ) ~ G  (k , , -k3, )  exp ( -2% ( d - x  (a lZ+a2Z)  ) 

-krZp02/4).  (9) 
In this case the tunneling across a rough interface can be 
treated as tunneling between different planar surface regions 
(the so-called mosaic model of the j~nc t ion)~;  the only effect 
of the roughness on the tunnel current is to produce an extra 
factor exp[2x2(a: + a:)] which reflects the fact that tunnel- 
ing occurs where the barrier is thinnest. 

For most tunnel junctions, however, xd) 1 and the ine- 
quality b 2/a24xd /(x2 + k f)/x2 is more likely to hold on 
each boundary, i.e.,p: ,p: 4 p i .  Expression (8) then becomes 

( I$s (k i ,k3 )  1 z ) = ( 2 ~ ) 3 S 1 F ( 2  pt2pz2p02 
1 

X exp{ -2% ( d - x  (a,'+azz) ) -l lzkl. 'plz - - k3.'p: } (10) 2 
and the partial current (4) is 

j ~ , , k ~  = -- 
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We thus see that the tangential electron momenta in the ini- 
tial and final states are completely unrelated because of the 
scattering. Substitution of the expressions for 7, and Y2 
restores the symmetry jklSk3 = j k3,k 

To analyze expression (1 1) we obtain next the form of 
the most probable surface depressions from which tunneling 
can occur, and analyze the distinguishing features of the tun- 
neling from the fluctuations. 

3. OPTIMUM SURFACE FLUCTUATIONS FOR TUNNELING 

Since (1 1) shows that the roughnesses of the two inter- 
faces enter symmetrically and independently, we can sim- 
plify things somewhat by assuming that only the 1-11 inter- 
face is rough. To this end, we assume that k, (x. The tunnel 
current across a surface fluctuation 6 (r) is given by 

Ik=a 1 5 exp(xE ( r )  +ik,r}dzr I ' ,  (12) 

where the factor a is independent of r. The distribution func- 
tion of the current is expressed in terms of a functional of the 
distribution of the fluctuations, which we assume is Gaus- 
sian. 

Here 

(EK-'E) = ( r )  K-I (r-rr)  k ( r f )  dr drr, 

where the operator K is the inverse of K. The functional 
integral can be evaluated by the method of steepest descenL2 
The integrand has a maximum when 

E ( I )  =2xaB { 5 exp[xl (r ' )  -ik.r']drf 1 K(r-r") 

X exp [ x g  (r") +ik.r"] drf'+c.c. }. (14) 
K (r-r") =a2 exp(r-r") '126'. 

Here 0 is a Lagrange multiplier and K (r - r") is the 
roughness correlation function. Direct substitution shows 
that the function 

satisfies (14) for the case xA, ) 1 of interest here (A, is the 
amplitude of the surface fluctuation). Indeed, if we substi- 
tute (15) into (14) and expand 6 (r) in the argument of the 
exponentialin of3b -2  (1 - l/xA, ),which is legiti- 
mate to the extent that xA, ) 1, we find that (14) is satisfied if 

Ak=2 (2n)zpxa2b4 exp (2xA,-k2bz),  (16) 

which thus determines the optimum fluctuation amplitude. 
We then find from (12), (13), (1 5), and (16) that 

The average current from state k  is equal to 

1, = .I g ( Z h )  I A  dzk. 

The integrand has a maximum at ln(I,)/ab 4 ~ 4 x 2 a 2 ,  from 
which we find that the average current is 

(which of course agrees with (1 1) under the above assump- 
tions). This current is due primarily to fluctuations of the 
form 

In order to obtain the mean current (19), the junction 
area over which the averaging is performed must be suffi- 
ciently large. Indeed, although the current density for tun- 
neling through fluctuations of the form (20) is approximately 
exp(4x2a2) times greater than for tunneling through a flat 
section of the surface, the probability such a fluctuation is 
exponentially small: 

The mean current is thus proportional to exp(2x2a2); when it 
is averaged, however, the area S of the junction must satisfy 
the condition 

S>> b2 exp 2x2aZ (22) 

since the dimension of the fluctuations in the tangential di- 
rection is - b. Condition (22) severely restricts the properties 
of the fluctuations and must be satisfied if (19) is averaged. 
Failure to average can lead to exponential fluctuations in the 
tunnel current amplitudes from one measurement to another 
for an ensemble of junctions of equal area. 

4. TUNNELING FROM OPTIMUM SURFACE FLUCTUATIONS 

We have seen that surface fluctuations of the form 
lop, (r) = xa2exp( - 3/2b 2, account for most of the tunnel 
current. To identify the features of tunneling from rough 
surface, its depressions deserve therefore special study (Fig. 
2). To understand the meaning of the results of Sec. 3 we 
return to Eq. (1) for the wave function. We will assume as in 
the previous section that r2(r2) = 0. We then have the explic- 
it expression 

for the wave function on the second boundary, assuming a 
wave incident on the depression in question from the metal 
layer I. Here we takepi = (d - xa2)/x, i.e., we lift the con- 
straint xa2(d. Ifpi (b 2/x2a2 and b 2/k ,,xu2, we can neglect 
the first term in the exponential inside the integral for the 
region r, < b /xu. In this case we obtain the wave function 
corresponding to tunneling from a flat section of surface of 
diameter b /xu. 

In the opposite limitp; )b 2/(x2 + k :=)a2= p:, evalua- 
tion of the integral in (23) leads to 

I$z -~  ( k l ,  r2)  I z =  IF1 1 2 1 F 2 1 Z p l ' p U - 4  esp {-2x (d -xu2)}  

X exp 1 - (rz-kl,p12k,,lx) 2/poZ-kl,Zp,2}. 
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FIG. 2. 

Equation (24) shows that electrons with k,, 
5 (x2 + k :z)112a/b participate in the tunneling, i.e., when 

p ,  g po tunneling can occur for incidence angles much larger 
than for a flat surface. The explanation is made apparent by 
examining Eq. (23). Indeed, the integrand in (23) is effective- 
ly nonzero only in a finite region AS of the boundary I-II 
which depends on the decay of the tunneling exponential and 
the choice of the point r2 on the second boundary. Since 
tunneling does not change the phase of the wave function, 
the tunneling electrons reaching r2 have the same phase as 
initially (on the first interface). Thus the wave functions in- 
terface destructively if the phase changes rapidly within the 
surface AS. Therefore, only the electrons incident that can 
tunnel are those so that the phase of the wave function 
changes by less than 2a. If the interface I-II is planar, the 
size of AS is comparable top, and electron tunneling occurs 
for incidence angles such that k,, 5p; '. If the interface is 
rough, the region AS for which the tunneling exponential is 
effectively nonzero will be smaller, so that tunneling can oc- 
cur over a wider range of angles. If x ~ k  ,, , this range coin- 
cides with the diffraction angle for waves incident normally 
on an aperture of the corresponding diameter ( p -b /%a, so 
that k ,, 5 xa/b ). Ifx(k ,, , a depression of height 1/2x will 
contain many wavelengths; in this case, electrons incident 
normal to AS at a distance of 1/2x from the bottom of the 
depression will tunnel when k ,, 5 kza/b. In general, both 
types of tunneling occur if k ,, 5 (x2 + k :,)112a/b = p; '; 
this condition leads to the constraint 

on the angle of incidence 8 and determines the range of an- 
gles in Eqs. (lo), (1 1). 

Ifxa/k ,,b> 1 holds in (25) then electrons tunnel at arbi- 
trary angles of incidence on the interface. However, these 
angles may be limited by shadow effects which we have ig- 
nored. Conditions for the shadow effects to be negligible can 
be derived easily from the explicit form of the optimum fluc- 
tuations. Since the latter are -xu2 deep and -b wide, shad- 
owing can limit the partial tunnel current only for electrons 
with 8 >  tan- '(6 /xu2). Shadowing clearly will not limit the 
current if tan(8,,,) < b /xu2, which is equivalent to a2/ 
b 5 k,,/xa(x2 + k :F)112<1 if k ,,a) 1 and to a2/ 
b 5 k iF/x2g 1 if k 1 (recall that we are interested in the 
case when xu, 1). The latter inequalities can hold only if a/ 
bx l ,  i.e., for shallow surface irregularities. If none of the 
above conditions is satisfied, then shadowing effects must be 

considered. However, if the electron mean free path I is 
< xu2 (which is very probable, since xu) 1), the above in- 
equalities can be satisfied more easily and shadowing does 
not limit the tunneling angles even for fairly large ratios a/b. 
In this case, an electron incident at a depression may be scat- 
tered and tunnel at a large angle 8, thus contributing to the 
corresponding partial current. 

We note that an increase in the angular range of tunnel- 
ing does not in general imply an increase in the tunnel cur- 
rent amplitude, as is easily seen by substituting the wave 
function (24) into (4), assuming an isotropic Fermi surface, 
and evaluating the integral (5). This is because there is a pro- 
portional decrease in the current density from each partial 
component, as may be understood by comparing the mecha- 
nism of electron tunneling across a small surface element 
AS-p: with the transmission of an electron wave through 
an aperture of the same diameter. In the latter case, the cur- 
rent is independent of the aperture dimensionp, (we are as- 
suming that k,, p , ) l ) .  If we then use (1) to calculate the 
electron wave function at a distanced from the aperture, we 
find that the pre-exponential factor has the same form as in 
(23). However, the diffraction angle is equal to p,-A2d / 
p ,  -pi/p,. We have already seen that the diameter of the 
corresponding region during tunneling is equal to p,. The 
amplitudes of the partial tunnel currents thus decrease be- 
cause the region in which the tunneling exponential is effec- 
tively nonzero shrinks by a factor pJpl B 1. 

5. DISCUSSION 

Not surprisingly, the features of electron tunneling 
from optimum surface fluctuations also persist in Eq. (1 1) for 
the partial currents. The roughness of the interface affects 
both the current amplitude and the range of incident angles 
A0 contributing to the current. The increase in the current 
by the factor exp[2x2(a: + a:)] reflects the fact that even 
though the tunneling area AS is smaller for rough surfaces, 
the surface depressions are deeper. We have shown that the 
range A8 is limited by the size of the region AS of effective 
tunneling, and k,, 5p; ' , k,, Sp, '. That is, the optimum 
fluctuations determine AS. The roughness distributions of 
the two boundaries are also independent, because the expo- 
nential function plays the same role in selecting AS on each 
interface (recall that the roughness functions f ,,<, for the 
two interfaces are assumed to be statistically independent). 

In order to calculate the total tunnel current amplitude, 
we must evaluate the integral (5) with jk,,k3 given by (1 1). 
Although the explicit form of the partial current depends on 
the transmission coefficients Y , ( k , )  and Y2(k3), they will 
always be greater at normal incidence than for oblique inci- 
dent angles. Examination of (5) with (1 1) then shows that if 
the Fermi surface of the metal layers are isotropic, increas- 
ing A0 will not increase the amplitude of the total current, 
just as we showed previously for the current due to optimum 
fluctuations. However, the tunnel current could increase if 
the Fermi surfaces of the electrons in the metals are not iso- 
tropic. For instance, suppose that the effective electron mass 
in one of the metals is greater parallel to the interface than 
normal to it; electron tunneling at oblique angles may then 
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increase the current considerably. A similar increase could 
occur if the minimum of the conduction band of one of the 
metals does not lie at the center of the Brillouin zone. 

Finally, we note that similar results can be derived with- 
out assuming that the potential barrier in the insulator is of 
constant height; we need only assume that U is nearly con- 
stant over the depth of an optimum fluctuation. It is then 
clear that the parameters characterizing the two interfaces 
will contain the characteristic decay lengths x; ', x; ', 
whose "average" determines the diameter p, of the Fresnel 
zone. For instance, if the electric field at the barrier is con- 
stant then pi  =: 2d /(%, + %,). 

We thank V. L. Lutskii for some stimulating conversa- 
tions. 
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