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The quantum corrections to the thermoelectric coefficient of a semiconductor are investigated. 
The case is considered of sufficiently high temperatures and relatively low densities of electrons 
subject to Boltzmann statistics. The electron scattering by acoustic phonons is quasielastic in this 
situation and quantum interference can result from such scattering alone in the absence of struc- 
tural disorder. The dependence of the quantum corrections on the magnetic field is investigated 
for the following cases: (1) the interference is caused by quasielastic scattering of the electrons by 
acoustic phonons, and is disrupted by the low inelasticity of the scattering; (2) the interference is 
due to the relatively frequent collisions between the electrons and the lattice defects, and is 
disrupted only by collisions with phonons. 

We investigate here the quantum corrections (i.e., the 
corrections for diagrams of the fan type) to the thermoelec- 
tric coefficient of a semiconductor. We consider the case of 
sufficiently high temperatures and relatively low electron 
densities, when the electrons obey Boltzmann statistics. (The 
case of Fermi statistics was considered by us earlier. 

We regard an investigation of the role of quantum cor- 
rections in this situation as particularly interesting since it is 
possible to manage in experiment the electron density so that 
the electron-electron interaction plays no role. As shown by 
Al'tshuler and A r ~ n o v , ~  single-particle interference correc- 
tions and corrections for electron-electron interaction coex- 
ist in the case of a degenerate electron gas, and the two types 
of corrections must be separated in experiment. For Boltz- 
mann statistics, however, conditions can be created such 
that the interference effects are obtained in "pure" form. 

Another circumstance whose importance comes into 
play precisely in the case of relatively high temperatures is 
that the semiconductor need not necessarily have structural 
disorder to require quantum corrections. Collisions between 
electrons and acoustic phonons are known to be quasielastic, 
whereby the electron momentum is changed by each colli- 
sion by a value of the order of the momentum itself, while the 
energy changes by only a small fraction of the initial value. 
The lifetime of the electronic state relative to the phase relax- 
ation is therefore large enough and interference is possible. If 
the semiconductor is pure enough, this interference-forma- 
tion mechanism should predominate at relatively high tem- 
peratures. In the opposite case, the impurity mechanism is in 
operation. 

Further, with increasing temperature, the relative role 
of the contribution made to the thermoelectric coefficient 7 
by the electron drag by the phonons is decreased. This is 
important from the viewpoint of the possibilities of compar- 
ing our theory with experimental data, since the relative val- 
ue of the "diffusion" part of the thermopower, the correction 
to which is the one calculated here, is also increased. 

Finally, the relative value of this correction turns out to 
be much larger for nondegenerate electrons than for degen- 
erate ones. The correction is therefore easier to observe in 

the former case. 
The thermoelectric coefficient 77 is defined with the aid 

of the following relation for the current density j: 

(E is the electric field and T is the temperature in energy 
units.) In the lowest nonvanishing approximation in the pa- 
rameter WET (E is the electron energy and T is its lifetime in 
the state with the specified momentum), which we assume to 
be small, we haveIp2 

co 

Here A, r ]  is the interference correction to the coefficient 7, e 
is the electron charge, no is the electron equilibrium distribu- 
tion  function,^ is the chemical potential, D (E) is the diffusion 
coefficient of electrons having an energy E, and E(E) is the 
sum of the fan diagrams (see the papers by Gor'kov, Larkin 
and Khmel'nitskii4 as well as by Abrahams and Ramakrish- 
nan5). This sum is usually represented in the form 

e ( e )  = j (aq) [D ( E )  q 2 + i ~ ~ ; l - 1 .  (3)  

Here r, is the characteristic time of destruction of the single- 
particle interference or, in other words, the time of phase 
relaxation of the single-particle wave function that describes 
the state of an electron in a field of randomly arranged im- 
purities; (dq) = d" q / (2~)" ,  where u = 2 or 3. 

Two situations are usually investigated in experiment. 
In the first, the sample is a plate or a film with thickness d 
much larger than the electron de Broglie wavelength W p .  
The electrons are characterized then by a three-dimensional 
momentum p and a three-dimensional density of the elec- 
tronic state ~ Y ( E )  (Y denotes everywhere the single-particle 
density of states without allowance for the spin dyad). At the 
same time, the relation between d and the length 
LC = ( D T ~ ) " ~  can be arbitrary. At d%L, the integration 
with respect to q is three-dimensional (u = 3); if, however, 
dxLc ,  the integration with respect to q is effectively two- 
dimensional (u = 2). 
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In the second experimental situation one studies the 
carriers of an inversion or of an enriched surface layer of 
thickness d ~ f / p .  In this case the carriers can be regarded as 
two-dimensional; they are characterized by a two-dimen- 
sional density of states 2v, and u = 2. We shall refer to the 
first and second situation as cases I and 11, respectively. 

We have previously2 derived Eq. (3) with allowance for 
its dependence on E. We considered in that reference a de- 
generate electron gas and it sufficed to investigate the a(&) 
dependence near the Fermi level. Here we must know the E- 

dependence in an entire interval, of order T, of the values of 
E; this dependence is obtained in the same manner as in Ref. 
2. We reckon the energy E here from the lower edge of the 
allowed band. Accordingly, the lower limit in (2) is E = 0. 
Expression (2) can be regarded') as a quantum correction to 
the Cuttler-Mott formula6 for the coefficient 7, a formula 
valid for elastic scattering of the electrons, viz., 

Accordingly, expression (2) for A, 7 can be written as 

.- 

where the quantum increment to the classical diffusion coef- 
ficient is 

The expression for the quantum correction to the con- 
ductivity, calculated by the Matsubara technique (cf. Ref. 4), 
can be represented in the same form 

Thus, in the lowest approximation in the parameter T /  
1p ( ( 1 we obtain the relation 

A similar relation connects also the classical quantities 7 and 
0. 

The possible ensuing deduction is quite remarkable. 
The calculations yield a strongly differing behavior of A, a 
and A, 7 in the case of degenerate and nondegenerate elec- 
trons. In the former case A, a/u exceeds A, 7/77. In the latter 
case these quantities are equal, so that their contributions to 
the differential thermopower a = 7/u cancel each other. 
Even in the next approximation in the parameter T/lpl, 
however, the corresponding contribution to a turns out to 
differ from zero and can be observed in experiment, say by 
investigating the dependence of a on the magnetic field H in 
weak fields (see below). From our viewpoint it would be of 
interest to measure directly the thermoelectric current to 
verify relation (8). 

The time 7, in (3) can be governed by various mecha- 
nisms. 

The first is scattering by magnetic impurities, combined . -. 

with spin-orbit scattering. This mechanism was studied for 
out problem by Hakami, Larkin, and Nagaoka7 and by Lee.8 
It can play the principal role in sufficiently "dirty" semicon- 
ductors. In pure semiconductors, transitions with spin flip 
can occur even in quasielastic scattering by acoustic phonon, 
owing to the spin-orbit interaction. 

At relatively high temperatures the value of &(E) is ap- 
parently determined mainly by another mechanism-inelastic 
scattering electrons by phonons. In this case the cooperon is 
likewise usually represented in the form (3), and the phase 
relaxation time is T ~ .  One must bear in mind here a situation 
wherein two scattering mechanisms "act" simultaneously. 
The perdominant one is pure elastic, and the other, inelastic, 
is relatively weak against the background of the first. If the 
second mechanism is substantially inelastic, the time r, co- 
incides with the departure time Ti, with respect to inelastic 
processes. 

If, however, the second mechanism is quasielastic then, 
as shown in Ref. 9, the explicit form of the cooperon a(&) 
depends substantially on the ratio of the transferred energy 
6 3  to the departure time T,, relative to inelastic processes. If 
the relation 

is satisfied, the cooperon can be represented in the form (3), 
as first indicated in Ref. 10, and rp = rin . If the inequality (9) 
is reversed, however, we have 

This order-of-magnitude estimate was obtained in Ref. 11. 
In our earlier paper9 we analyzed in detail the case when 

there is only one quasi-elastic scattering mechanism, in oth- 
er words, when the energy transfer is much lower than the 
electron energy. In the case of scattering by acoustic phon- 
ons, such a situation is realized at2) 

Here m is the electron effective mass (the electron spectrum 
is assumed for simplicity to be isotropic and quadratic) and w 
is the speed of sound. The characteristic energy transfer 65 
is in this situation of the order of 

For one quasielastic scattering mechanism the result also 
depends substantially on the ratio of Z to Ti,. = T. If the 
inequality (9) is reversed, each scattering act causes a small 
change of the phase of the electron wave function, so that the 
loss of phasememory is the result ofmany such acts. In place 
of (3), the correct expression for the cooperon is then 

where T, is determined by the estimate (10). 
The condition that must be satisfied for quantum inter- 

ference to be possible is 
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Combination of this inequality with (10) leads to the 
condition Zr( 1. So that in the case of one quasielastic relax- 
ation mechanism the correct expression for &(&) in all cases 
of interest is (13). We note that their difference notwith- 
standing, Eqs. (3) and (1 3) yield practically the same result in 
the absence of a magnetic field: at u = 2 we have & c: ln(r,/ 
7). In the presence of a magnetic field, as we shall show, the 
expressions that follow for 4 from (3) and (13) differ more 
significantly. 

We present now the result for the thermoelectric coeffi- 
cient 7 in the absence of a magnetic field. The result is sim- 
plest when the cooperon is given by Eq. (3). We then obtain at 
d 4 ,  

This expression can be rewritten in terms of the electron 
density n in the form 

where 

V = ~ - ' T " ~ v ( T )  in case I and V = v = m/2&i2 in case 11. 
This result remains in force when the cooperon is given 

by (13). The fact that the ratio r/r, depends according to 
(10) on the energy E is not reflected in the result obtained in 
the principal approximation in the parameter ln(r, /r)) 1. 

It is useful to compare (1 5) with the value of A, o calcu- 
lated by the Matsubara technique and given at the accuracy 
assumed by 

ez t ( T )  
A.CJ=- - ln [ f ] euT. 

2n28 
Hence, since exp( ,u/T)( 1, 

We examine now the change of the expression for the 
thermopower in a magnetic field. The cooperon takes the 
simplest form if expressed in the form (3) at H = 0. In this 
case, as shown by Al'tshuler et a1.,12 allowance for a weak 
magnetic field (which does not bend the trajectory signifi- 
cantly over distances on the order of the mean free path) 
leads in the two-dimensional case to replacement of (3) by 

where m is a large integer of the order of cW2 le 1 H12. It is 
convenient to represent (19) in integral form 

m 

where azzl(m + 1 -aaH2/4Dr), and y =  4DrlelH/fzc. 
Equation (20) is sensible in fields such that y(1. In principal 
order in the parameter ln(r, /r) we can therefore replace the 
lower limit of the integral in (20) by a-' and put exp( - ax/ 
2)sinh(ax/2)~$. We then arrive at 

(HIH, )  e-"" 

H ) =  J 2 sh (Hi iZH. )  
d x ,  H ,  ( 8 )  =kc14 I e I D ( 8 )  T,. 

Z / G %  

At H(H, the function @, (E,H ) goes over into ln(r, /r), and 
at H)H, we have @, cr ln(H, rc /Hr). At H S H,, -&I/ 
2 1 e 11 the value of @, becomes of the same order as the unac- 
counted-for diagrams. We note that the contribution of the 
latter in the entire magnetic-field region HNH,, can be ex- 
cluded by investigating the difference @, (E,H ) - Q k  (GO). 

We use the same method of taking the magnetic field 
into account also if the cooperon is defined by (13). This can 
be justified by using the quasiclassical asymptotic of the 
Green's functions in a magnetic field, followed by a calcula- 
tion similar to that in Ref. 9. It is shown in the Appendix that 
the result differs from (22) in that k = 1 is replaced by k = 3 
and in that r, -+ 7,. This difference leads to a different de- 
pendence on the magnetic field. In particular, the coefficient 
of (H /Hc )2 in the expansion of @, in powers ofH /Hc is equal 
to - 1/24 if H /Hc is small; the corresponding coefficient in 
the expansion of the function @, is - r(2/3)/72, i.e., 
smaller by a factor 2.2. 

The quantum corrections to the thermopower and to 
the conductivity are determined by substituting the expres- 
sions for 4(&,H) in (2) and (7). It must be recognized here that 
Hc depends, generally speaking, on the electron energy E .  

Accordingly, 
m 

The temperature dependences of these corrections are deter- 
mined by the actual mechanisms of the elastic and inelastic 
scattering. 

For sufficiently thick samples (d)Lc), the expression 
for A, 7 cannot be represented in a form as simple as (16). 
The point is that the integral with respect to q is determined 
in this case by the upper limit. For the difference 
q(H ) - 7(0), however, an equation such as (24) is valid, with 
@, (E,H ) replaced by the function 

M 

3 " 1  HIH,  
lyh('")=(G) md 2 [ . 2  r h ( H x i 2 H c f  s 

x exp [ -xA l  , (25) 

where 1 (E) is the mean free path of an electron of energy E. 

We estimate now those temperature and material-pa- 
rameter regions in which the phenomena discussed can be 
observed. We begin with the case when there is one quasi- 
elastic scattering mechanism, namely interaction with 
acoustic phonons. The energies significant in a nondegener- 
ate electron gas are EZT, SO that the perturbation-theory 
parameter for the interaction with phonons is fi/Tr, this is 
the quantity that must be small. On the other hand, as al- 

1297 Sov. Phys. JETP 61 (6), June 1985 Afonin eta/. 1297 



ready noted, the electronic-states interference due to inter- 
action with phonons is significant only at w?< 1. In the up- 
shot, the limits of applicability of the theory at 
dbfi(2rnT)-'I2 are determined by the chain of inequalities 

where the characteristic temperature Tc satisfies the condi- 
tion Tc r(T, ) = fi. Here (Tc r n ~ ~ ) ' / ~ z ( ~ ,  where E, is 
the atom energy, A the deformation potential, and O the 
Debye temperature. We note that the first inequality of (26) 
is much more stringent than the quasielasticity condition 
(11). 

We write down also a condition that allows us to con- 
fine ourselves to one "fan" diagram. It is equivalent to the 
requirement that the ratio of the quantum correction to the 
classical value of the kinetic coefficient be small, and takes 
the form 

It is therefore obvious that the quantum correction increases 
with temperature. 

It must be borne in mind, however, that as the tempera- 
ture is raised a larger role is assumed by scattering from 
optical phonons, and this scattering must also be taken into 
account. At sufficiently low temperatures (optical-phonon 
frequency liw4 2 T )  this scattering is inelastic and leads only 
to phase relaxation. At higher temperatures the scattering 
becomes quasielastic. In this case the results are similar to 
those given above: the condition (26) is satisfied automatical- 
ly, since Trap, cc T"'. In the case when the interference is 
due to one scattering mechanism (e.g., as is frequently in 
experiment, scattering by impurities), and the phase relaxa- 
tion is due to another (say, scattering by phonons), the condi- 
tion Zrph ) 1 is not necessary. As noted above, at ZrPh > 1 the 
time rq, is of the order of rph and all that is required is that 
rPh be much larger than the resultant departure time T. 

We discuss now the possibility of observing quantum 
effects in a magnetic field. The point is that the quantum 
corrections can compete with the classical corrections be- 
cause the electron trajectories are bent in a magnetic field. In 
weak fields the classical effects are of the order of (H /H,u)', 
where H, = c/p,p = eD /Tis the electron mobility. For the 
quantum corrections, which are of the order of fi/pl com- 
pared with the known classical kinetic coefficients, to be dis- 
cernible against the background of this relation, it is neces- 
sary to satisfy the condition 

dt' 
F ( t )  =eos (wrr t )  + ( 1 - 8 )  J - e - ( t - t ' ) / r s  ( 1 ' )  v ( 2 1 - t f ) ,  

-m 
T 

(A.2) 

where 

A=Dq2.r-iRt, Y ( t )  =(cos (a,- , , t)  ) 

(the angle brackets denote averaging over all the directions 
of the directions of the vector p'). 

In the spatially inhomogeneous case the equation that 
determines the sum of the fan diagrams and shown in the 
figure can be written in the form 

= Z ( p )  S ( R - R , )  6 (p-p,)  --g' Js (dp.1 (dR.1 

APPENDIX 

We have calculated in Ref. 9 a sum of the "fan" dia- 
grams (Fig. l )  in quasielastic scattering of electrons by phon- 
ons, without allowance for the magnetic field. In this case 
expression (13) could be represented in the form 

~ ( 6 )  =7 J ( d g ) F ( t = O ,  q, E ) ,  

and F ( t  ) was defined as 
FIG. 1. 

where 

and the Wigner coordinates are defined as follows: 

p=r,-rz, p1=r3-rl, pf=ri'-1''; 

The sum of the fan diagrams can then be written in analogy 
with (A. 1) 

G ( E )  =.r 1 ( d p )  (dp , )  ( d R ) F ( t = O .  R p .  Rp, ,  E ) .  (A.4) 

The Fourier component of the function F ( t  ) is defined using 
the relation F (w) = iC (w)/wg2. G (9) in Eqs. (A.3) and (A.4) 
denotes the electron (phonon) Green's functions, and g is the 
electron-phonon interaction constant. Assuming the mag- 
netic field to be weak enough, we have 

1 

ie 
G ( r ,  r , )  =G (r-r,)  eap {_  J *dl 1 - G (r-r,)  e"rJl'. 

r 

Taking the Fourier transform with respect to the variablesp: 

G (pR, piR1) = 3 ( d p )  (dp , )  G ( p R ,  p l R 1 )  e-iPP-'P1pg, 

we obtain from (A.3) 

1298 Sov. Phys. JETP 61 (6), June 1985 Afonin et al. 1298 



do' 
=I1 (a .  p-p i )  8 (R-Ri) -Tg2 1 ( d p r )  ( d q )  (dR') Z j  

x ~ ~ ( , + n + a - o ~ ,  p~ +K) 2 

x exp[2icp (R,  R') +iq (R-R') ] I ,  (a'-o, p'-r) . ( -4 .5)  

Here I, = iI /mg2. It is convenient next to integrate with re- 
spect to d ~ ~ ,  and introduce 

exp [iq (R-R') +2iq (R,  R') ] 
3 

Just as in the case of elastic impurities,12 the function (P ) 
can be represented in the form 

where $, (R ) is the solution of the Schrodinger equation for a 
particle with mass 207  and energy En = 1 + if27 -A, in a 
constant magnetic field. Transformations similar to those 

used in the problem without the magnetic field verify that 
the coefficient functions C,( t )  satisfy Eq. (A.2) with 
A -+ A, = (n + 4)y - if2r. As shown earlier,9 its solution is 

m 

This leads to Eq. (22) with k = 3 

"This assertion is due to A. G. Aronov. 
''The inequalities (1 1) and (12) pertain to case I. In case I1 the quasielasti- 

city condition (1 1) takes the form 7bfiw/d, and fiij=fiw/d(T. 
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