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A general theory is developed for homogeneously broadened zero-phonon lines (ZPL) in the 
impurity spectra of disordered systems investigated by high-resolution selective spectroscopy. 
The homogeneous broadening of zero-phonon lines by the interaction between light-absorbing 
impurity centers and localized low-frequency modes is discussed. The resulting ZPL spectral 
distribution, averaged over the mode positions as well as characteristics, is found. The theory is 
applied to crystals in which impurity spectra are modulated by randomly distributed quasilocal 
vibrations (QV) and to amorphous media in which there are always quasilocal vibrations and low- 
frequency two-level modes (TLM). It is shown that, in glasses, the ZPL broadening R is usually 
due to dynamic electron-level shifts in fluctuational transitions between TLM and quasilocal 
vibrations during the lifetime of the excited electron state or during the existence of a hole in the 
spectrum in the hole-burning method. The temperature dependence of 0 is due to the reduction in 
the density of excited modes and an increase in their separation from the impurity centers as the 
temperature is reduced. The temperature dependence of R found in this paper can be used to 
explain experimental ZPL data for glasses. 

1. INTRODUCTION 

The interaction between electrons in impurity centers 
and atomic vibrations in a solid has a considerable effect on 
extrinsic absorption and emission spectra, and gives rise to 
complex electronic vibrational spectra whose widths are of- 
ten greater than the spectral line widths in gases by several 
orders of magnitude. However, it has been shown1 that, even 
for strong electron-phonon interactions, these spectra 
should contain exceedingly narrow zero-phonon lines (ZPL) 
that are much narrower than the spectral lines of gases. They 
are the analogs of Mossbauer lines. 

In a harmonic crystal, an interaction linear in the 
phonon operators produces no ZPL broadening in the ab- 
sence of nonradiative transitions. It simply reduces the in- 
tensity of these lines by a factor that is analogous to the 
Debye-Waller factor but is determined by the electron- 
phonon interaction.' The quadratic interaction and also an- 
harmonism modulate the electron transition frequency and 
lead to the ZPL broadening 0 (Refs. 2-8). In the case of 
interaction with vibrations in the continuous spectrum 
(phonons), the broadening is proportional to T at high tem- 
peratures and decreases rapidly like T 7  as T-+O. 

An important and occasionally dominant contribution 
to the modulation broadening of zero-phonon lines can be 
provided by the interaction between electrons and local or 
resonance quasilocal vibrations near an impurity  enter.^'^ It 
is described by the formula 

wherefi= 1,k, = 1,n, =[exp(pw)- l]- ' ,B= l/T,V,is 
the coefficient in front of a: a, in the difference between the 

final and initial state Hamiltonians of the electron states, and 
a:, a, are the creation and annihilation operators for the 
QV quanta x of frequency w, and damping T, . Since r, is 
usually small (T, (w,), the contribution of the quasilocal 
vibrations (or other localized modes) to fl can be very large 
(especially in the case of low-frequency modes w,), much 
greater than the contribution due to the interaction with 
phonons. 

In addition to this type of homogeneous broadening of 
zero-phonon lines due to the dynamic modulation of the 
transition frequencies, and also nonradiative transitions, 
there is considerable inhomogeneous broadening in solids 
due to the statistical spread of the transition frequencies in a 
real inhomogeneously distorted specimen. This spread is 
quite considerable, so that it is difficult to produce an anom- 
alously narrow zero-phonon line and to investigate the ho- 
mogeneous width. However, special methods for selective 
laser excitation of fluorescence in a chosen group of impurity 
centers with an almost constant transition f r e q u e n ~ y , ~ ~ ' ~  and 
hole-burning in the absorption spectrum,11q12 can now be 
used to isolate zero-phonon lines with only homogeneous 
broadening R, and to investigate this broadening. The mag- 
nitude and the temperature dependence of R are in agree- 
ment with the theory for impurity centers in crystals. 

Considerable attention has been devoted in recent years 
to the homogeneous broadening of impurity ZPL in amor- 
phous bodies. At high temperatures, it is qualitatively the 
same as in crystals but, at low temperatures R exceeds by 
several orders of magnitude the corresponding values for 
crystals, and decreases much more slowly. For Eu3+ doped 
silicate glasses, it is found13 that R-  T'.S*0.2 for 7 
K < T <  80 K, whereas, for Pr3+ in amorphous BeF, and 
GeO,, it is found14 that R - *0.2 in the wide tempera- 
ture range between 8 and 300 K. In some organic glasses, 0 
is a linear function of the temperature15 or proportional16 to 

or tends to a finite limit17 as T-0. 
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To explain these results, it has been ~ u g ~ e s t e d ' ~ " ~ - ~ '  
that the interaction between impurity centers and the two- 
level modes (TLM) introduced to explain the thermal prop- 
erties of g l a ~ s e s ~ ~ ~ ~ ~  plays an important role in the homogen- 
eous broadening of impurity ZPL. However, no account was 
taken in Refs. 19-21 of the normally dominant mechanism 
of modulation broadening, which is due to the shift of the 
electron levels of impurity centers in fluctuational TLM 
transitions during the lifetime of the excited state in selective 
fluorescence, or during the period between hole burning and 
its examination. Moreover, ZPL broadening was defined in 
these papers as the average fi of widths taken for different 
values of the parameters of the nearest TLM. On the other 
hand, a rigorous calculation must involve averaging not of 
the widths but of the spectral distributions of different impu- 
rity centers with different neighboring TLM, and only then 
can Q be taken as the width of the resulting distribution. In 
our case of a large spread in the widths, the broadening Q 
may be very different from fi and may have a different tem- 
perature dependence. In view of this, we shall calculate the 
broadening due to the interaction between impurity centers 
and the TLM, using a more rigorous averaging for the differ- 
ent broadening mechanisms, including the above dominant 
mechanism. 

In addition to the TLM contribution, the ZPL broaden- 
ing may also contain an important contribution due to the 
interaction between impurity centers and quasilocal vibra- 
tions with sufficiently small w, and r, -w4 [see Eq. (I)]. 
Such vibrations may arise, in particular, in regions of a glass 
in which the interatomic separation r0 is appreciably in- 
creased and the force constants substantially reduced. For 
example, in a chain of atoms coupled by the Lennard-Jones 
forces, the force constants are found to vanish when r0 is 
increased by 10%. In simple models, for example, in the case 
of the closely-packed incompressible spheres, or atoms 
bound by Lennard-Jones forces, an increase in r0 by ) 10% is 
observed for about atoms.24 The statistical distribu- 
tions of force constants used for the simulation of two-well 
potentials25 in glasses have also been found to lead to an 
appreciable density of quasilocal vibrations with low 0,. In 
contrast to the TLM, where two closely spaced levels are 
separated by a large gap from higher-lying levels, centers 
with quasilocal vibrations can have a set of almost equidis- 
tant levels. They have no effect on the linear term in the heat 
capacity, but may lead to a considerable increase in the coef- 
ficient of T 3  (see Section 5). 

In Section 2 below, we obtain general expressions for 
the ZPL spectra of individual impurity centers in media con- 
taining localized modes (TLM or QV), and in Section 3 we 
find the resulting spectral distributions of homogeneously- 
broadened ZPL investigated by selective spectroscopy and 
average over the configurations of a disordered medium. In 
Section 4 we consider the simple example of ZPL broadening 
in crystals, due to the quasilocal vibrations of randomly dis- 
tributed "extraneous" impurity centers which perturb the 
light-absorbing impurity centers. In Sections 5 and 6, we 
discuss ZPL broadening in glasses, due to the QV and TLM 
and, in Section 7, we compare the results with experimental- 
ly determined functions Q(T).  

2. ZERO-PHONON LINE OF A SINGLE IMPURITY CENTER IN A 
MEDIUM WITH LOCALIZED MODES 

The Hamiltonian of an impurity center interacting with 
the host medium has the form 

rx 

where He ,  Ho, and Hi are the Hamiltonians for the electrons 
in the impurity center, the host medium, and the interaction 
between them. The term Hip, describes the interaction with 
phonons and H,, the interaction with the TLM or QV local- 
ized at r and characterized by internal parameters x, which 
include, for example, the QV frequency w, or TLM energy 
E =w, . It is convenient to divide the system into small por- 
tions of volume v0 (of the order of the atomic volume) and 
divide the continuous parameters in x (such as w, ) into small 
intervals, so that the localized modes can be characterized by 
the values of r and x corresponding to these volume and 
parameter intervals (x may contain discrete parameters such 
as, for example, the type of the mode). The component Hi 
should contain the sum over only those intervals of r on 
which the TLM and QV are centered. It is more convenient, 
however, to sum over all r and x by introducing, as in (2), the 
random quantities c,,, which assume the values 1 or 0, de- 
pending on whether the r-th volume element contains a 
mode with parameters falling into the particular interval of 
x .  

To investigate the ZPL, let us begin by considering the 
light absorption cross section 0 of an impurity center for 
fixed positions of the TLM or QV. Averaging over the posi- 
tions and characteristics of the latter will be carried out later. 
For simplicity, we shall confine our presentation to the case 
of phototransitions between singlet electron levels of the im- 
purity center, s and s', for which we can use the adiabatic 
approximation. We shall assume that the interaction Hi is 
small. Actually, our results will be valid for the more general 
case of systems with nondegenerate levels and small Hi if we 
neglect the contribution of nonradiative transitions between 
multiplet levels to the broadening of the ZPL. In the adiaba- 
tic approximation, the cross section a is given by26 

#I 

exp [ -go ( t )  ]=(exp(iH,t)exp [ - i ( H , f  AH)  t ] ) ,  

H,=H,+-Hi" AH=Ht8'-Hi8, (3) 

where w is the frequency of light, w,, = w ,  - ws.ws 
= (sl He 1s) is the energy of the s-th electron levels of the im- 

purity center, C is practically independent of o within the 
ZPL, yo is the natural width, H f = (sl J,  Is), and angle brack- 
ets represent averaging, with weight exp( -PHs), over the 
initial states of the medium for fixed TLM or QV positions. 

When the density of perturbing centers is low enough, 
we can neglect their interaction and their influence on phon- 
ons. In that case, the expression for exp[ - go(t )] in (3) splits 
into the product of independent factors corresponding to the 
individual terms in the sum for Hi in (2) and, since c,, = 1,0, 
we have 
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go (t) =gph(t) + crxgn(t), 
1% 

(4) 

whereg,, (t  ) andg, (t  ) are obtained from formula for go(t ) in 
(2) by replacing H f with Hi, = (slHiph 1s) or H :, 
= (slHrx 1s). 

The spectrum of a narrow zero-phonon line is deter- 
mined by the shap of the functiongo(t ) for large values oft, of 
the order of the reciprocal linewidth 0-'. The explicit ex- 
pressions for g,, ( t  ) and g, (t  ) in the region t - 0-' are very 
different, depending on the ratio of 0- ' and the characteris- 
tic relaxation time t O of the excited medium. For phonons, 
we always have t O-w, '(0-' (w, is the characteristic 
phonon frequency), whereas, for TLM and QV, t O -  r; ', 
where I?, is the damping of these modes and t O can be either 
greater or smaller than 0- ' . 

Let us begin with the case r, (0. The TLM or QV 
cannot then change their states corresponding to the Hamil- 
tonian Ho + H f during the characteristic time t - 0-'. 
They can be characterized by quantum numbers n,, = 0,l 
for the TLM and n,, = 0,1,2, ... for the QV. For a weak in- 
teraction H,, , the change in the energy of these states during 
the s+s' transition can be calculated in first-order perturba- 
tion theory (n,, remains unaltered during transitions corre- 
sponding to the ZPL): 

(s'n,, I H,,I s'n,,) - ( s ~ ,  I Hrx I sn,,) 

= (nrx(AHrKIn,,) =Vr,(nr,+const), 1 VrxI <ax, T .  (5) 

Calculating g,, (t ) from (3) (with H f replaced with H ;, ) 
by summing over n,, , we obtain 

gm(t)=-lnh,,(t), 

where n=n,, = 0,l for the TLM and n = 0,1,2 ... for the 
QV . 

In the opposite limiting case of large r, ~ 0 ,  the impor- 
tant contributions in the interval (3) are those due to long 
times It I )t O- r; '. In this region, the functions g,, (t ) and 
g,,(t ) are given by the following simple asymptotic expres- 
sions (see, for example, Ref. 5), in which we have neglected 
small (for small Hi ) constant terms: 

where 

A (t) = exp (iH,t) A exp (-iH,t), (8) 

Analogous formulas with H,, replaced with Hip, are valid 
for y' and 7'. Since w, ) a ,  the phonon contributiong,, (t ) to 
go(t ) is always given by (7), even when (6)  is valid for g,,(t ). 
The damping y' is analyzed in detail in Refs. 2-8. 

In the same way, we can show that the ZPL for thesl%s 
transition in the emission spectrum of a single impurity cen- 
ter is also described to within a constant factor by the inte- 
gral (3) with the same function go(t ), i.e., its intensity is pro- 
portional to u(w - w,, ). 

3. RESULTANT SPECTRAL DISTRIBUTION OF A 
HOMOGENEOUSLY BROADENED ZERO-PHONON LINE IN A 
DISORDERED SYSTEM 

To determine the resultant spectrum produced by all 
the impurity centers in glass or disordered crystal, we can 
replace summation over the impurity centers by taking the 
average (...), of their spectra over the configurations of the 
atoms in the medium, including averaging over the TLM or 
QV positions. The spread 6w,., of the frequencies w,., of elec- 
tron transitions in different impurity centers, i.e., the inho- 
mogeneous broadening of the ZPL, is usually greater by 
some order of magnitude than the homogeneous broadening 
0 determined by selective excitation of fluorescence by a 
laser of constant frequency wo or by the hole-burning meth- 
od. To find the ZPL spectral distribution I (w - wo,oo) in the 
resulting fluorescence spectrum, we recall that the absorp- 
tion of monochromatic radiation of frequency w, for 
6w,., %0 leads to the excitation of impurity centers, whose 
frequencies w,., =w0 have a distribution function propor- 
tional to a(wo - o,, ). Each of these atoms contributes dur- 
ing the emission of light to the ZPL in the fluorescence spec- 
trum, the contribution being proportional to u(w - w,., ), so 
that the resultant distribution I (w - wo,wo) after averaging 
over the configurations is given by the following formula 
when (3) is taken into account: 

where Aw = w - wo and Ii is the integrated ZPL intensity. 
The function g(t ) depends on wo as a parameter since the V,, 
differ somewhat for groups of impurity centers with differ- 
ent w,., ~ w , .  

An analogous discussion will show that (9) will also de- 
scribe the ZPL in the spectrum obtained by the hole-burning 
method. It was assumed in the derivation of (9) that the life- 
time to of the excited electron states', or the time of existence 
of the hole, was much longer than the relaxation time T; ' of 
the ZPL-broadening modes x ,  so that the thermal mode dis- 
tributions in the absorption and emission of light were un- 
correlated, and the corresponding averages (. . .) of each fac- 
tor of a in (9) could be performed independently. Only these 
modes must be taken into account ing(t ). On the other hand, 
modes with longer relaxation times T; '%to contribute to the 
inhomogeneous broadening and should not be taken into ac- 
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count in g(t ) and I. The case where r; '-to for a particular 
group of modes is described by a more complicated formula 
that includes the four-time correlator, and will not be exam- 
ined here. 

When g(t ) is calculated from (9) and (4), the average 
(...), must be evaluated over the TLM and QV positions, 
i.e., over c,, . Let us confine our attention to the case where 
we can neglect correlations of the TLM and QV with the 
impurity centers and with one another, and assume that they 
are randomly distributed in the medium. The c,, are then 
statistically independent variables assuming the values c,, 
= 1 with probability cp, and c,, = 0 with probability 
1 - cp, , where c = v d o (  1 is the TLM or QV density (No is 
their number per unit volume) andp, is the probability that 
their parameters will fall into the interval of x .  Averaging 
exp[ - g(t )] in (9) over the c,, , and taking into account (4) in 
the case of small c g  1, we obtain 

Here, it is assumed that we can neglect the dependence of the 
damping y' due to phonons in expression (7) for g,, (t ) on the 
configurations of the medium, and that the natural width yo 
is included in y' (the term y' 1 t / will be usually unimportant in 
the ensuing discussion). 

For long relaxation times of localized modes, t O- T; ' 
$4-' (but togto), it follows from (10) and (6) that 

It is clear from (9) and (1 1) that, in this case, the modula- 
tion broadening of the zero-phonon line by localized modes 
is due to the fluctuational spread produced by them in the 
transition frequency shifts during the time to, and is unrelat- 
ed to mode damping. 

Usually, AH,, , V,, , and y,, depend on the separation r 
between the impurity centers and the TLM or QV as follows: 

1 rok roZk 
AH, - 

9 '  
V,= V, - , " ~ = y . t k ,  ro=vo'll. (12) 

The sums over r and n, n' in (1 1) can then be evaluated, and a 
simple expression can be obtained for g(t ): 

Q" =,, 
2n2+a~  z pxVxaW,(T, a ) ,  3 r (a )  ra (I+a-') sin (na/2) 

where 

For the QV and TLM, we have, respectively, 

Formulas (9) and (13) define the distribution I (Aw, 0,). 

When ay 'gR,  this has the form 

OD 

Itxz 
f (r ,  a)  =r-i(l+a-i) Ices r(l+a-l) exp (-za) dz ( 15) 

0 

and the integrated width R. When V,, - r -3 ,  we have a = 1 
and the distribution (15) has the Lorentz shape. For ay '  5 R, 
its width is ay '  + R (for ay '  k R, the same values must be 
substituted in place of R in the above criteria). If, on the 
other hand, k > 3, the distribution (15) differs from the Lor- 
entz distribution: it is narrower in the central region and falls 
off more slowly in the wings (as / R / -'' + "' ). 

In the case of short relaxation times T; ' g R -  '(to, we 
see from (7) that g, (t ) + g,, ( - t ) = y, It I in (10). 

Summing in (10) for the power-law dependence of y,, 
on r (12), we find that in this case g(t ) is given by (1 3) with a 
replaced with a/2, whilst I (Aw, w,) and its integrated width 
R (for R)yl) are given by 

4. QUASILOCAL VIBRATIONS IN CRYSTALS 

Consider, to begin with, the simple example of the 
broadening of impurity ZPL in crystals by QV modes in ran- 
domly distributed defects (impurity atoms) of another type 
(the role of the QV in optical impurity centers was investigat- 
ed in Refs. 4 and 5). We shall confine our attention to defects 
of low symmetry, without a center of inversion, with nonde- 
generate QV frequencies w, (a,, and low densities 
C(C, - (w, (aD is the Debye frequency), for which the 
interaction between the QV can be neglected. 

To be specific, we shall consider the quasilocal vibra- 
tions of impurity atoms (or their groups) p, weakly coupled 
to the host atoms m (the results will also be qualitatively 
valid in the case of mass defects). The displacements u, will 
be assumed to be much greater than urn. This means that, in 
the QV Hamiltonian H,, of a given defect, we can isolate the 
leading term H O, taken for urn = 0, and the term H ' which is 
linear in urn and describes the interaction of the QV x with 
phonons k: 
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where 

in which M, is the mass of the atomp, le; 1 - 1, and summa- 
tion over repeated indices, p ,  x ,  ... i, j,l = x, y, z is implied. 

In this example, when we consider the interaction H,, 
between a QV at r and the impurity-center electrons at r = 0, 
we shall, to be specific, take into account only the elastic 
interaction. It depends linearly on the tensor ui j  of the strain 
produced by the QV. For large r, we can express this tensor 
with the aid of the Green function Gij (t  ) (Ref. 27, Section 8) 
in terms of the resultant force F and the dipdle moment ten- 
sorp,, of the forces d H  '/durn exerted by the QV on the crys- 
tal atoms m. It can be shown that the strains produced by the 
force F do not affect V,, or the limit as w-0 of the correlator 
in the expression for y,, in (8) (although the contribution of F 
is important for w #O). We shall therefore take into account 
only the strains connected withp,,. We then have 

d ~ s l ~  Xi j  AHrX=(~'IHr,I's')-(s(~,,~~)= -uivjj=- 

d ~ ~ r j '  r3 Pij, 

do,,, d2Giir (-r) (19) 
x i j = -  - 

d ~ i , ~ .  d ~ ~ d ~ ~ r  13, 

where xi, depend on the direction but not on the length of 
the vector r. Formulas (1 7) and (1 8) enable us to expressp,, in 
terms of the QV operators: 

where the radius vector Rrn is measured from the center of 
the defect at r. 

The ZPL width can be expressed in terms of V,, and 
y,, . When we calculate V,, from ( 5 ) ,  (19), and (20), we must 
consider the QV states with allowance for the anharmonic 
term in the Hamiltonian H0 (17). The spectral representa- 
tions of the correlators in formula (8) for y, are also due to 
the anharmonism. They can be expressed in terms of the 
limiting values of (b, ,b,),, (b f, - (b 2, ), b,, ),,(b 2, 
- (b f, ),b f,, ), as w-0, found in Ref. 28. The final result is 

This estimate for the QV damping r, was obtainedz8 in the 
harmonic approximation, which is valid at T S o ,  for a 
weakly bound impurity atom of mass Mo in a monatomic 

crystal with atoms of mass M. The above estimate for V, 
includes the fact that G, , (r) - (4?rGor)-' in this example, 
where Go is the shear modulus. 

Defects with QV's are found in crystals under identical 
conditions and, if c is interpreted as the concentration of 
defects with v -  1 QV modes, we must putp, = 1 in formu- 
las (13) and (16) for the ZPL width R. For the QV with fre- 
quencies w, that are not very low, we have rapid modula- 
tion, and the ZPL is described by (16) in which, according to 
(21), k =  3,a = 1, and 

The function f (Aw/R, 1/2), which describes in this case 
the ZPL shape, is much narrower in the central part than the 
Lorentzian curve of the same total width R [the width of 
f (Aw/R, 1/2) at half height is 0.285 R instead of 0.636 R for 
the Lorentzian curve], whereas in the wings it falls as R-3'2. 
According to (22), R a T 2  for 2T)  w,,,, and 
R a exp( - flu, ,, ) for 2T(w, ,, . The broadening due to 
phonons is ?ry' a T 7  for 2T(uD. Hence, for low tempera- 
tures, the main effect is the broadening R(22) due to the QV 
(especially for small w, ) even when the densities are c(co. 

In the case of slow modulation, T, (R (low QV fre- 
quencies and relatively broad ZPL), it follows from (15) and 
(21) that the ZPL is a Lorentzian (a = 1). Its width is 
R + ?ryl where, according to (13), (14), and (21), 

2n3 
Q = - c E ~ x ( s h ~ o r ) - ' ,  Q>rx. 

3 x=i 

(23) 

It is clear from this formula that, for slow QV relaxation, 
R-  Tin the region T >  w, and R -cV, , i.e., the ZPL width 
is much greater than in the case of fast relaxation for which 
n-c2v; /r , .  

5. QUASILOCAL VIBRATIONS IN AMORPHOUS MATERIALS 

As already noted in the Introduction, glasses are found 
to contain not only impurity but also intrinsic QV's in re- 
gions with increased interatomic separation r0 and substan- 
tially reduced force constants. Their frequencies and other 
characteristics are distributed in accordance with some 
probability lawp, , and the corresponding averages must be 
taken in (13) and (16). The distributionp, can be related to 
the distributions of the force constants Vz, V3 in the simple 
modelz5 of a nonlinear oscillator, used to describe the TLM. 
The most probable is an increase in r0 and a softening of 
modes in only one direction. This gives rise to the one-di- 
mensional QV described by the effective Hamiltonian 
Ho, =H (x): 
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where M is the effective reduced mass and the expansion in 
powers of x is performed at the minimum point if the curve 
V(x) has one minimum or at a maximum point if V(x) has 
three extrema. 

The potential energy V(x) has one minimum for 
4 V, V4 < V: . Vibrations near this minimum are almost har- 
monic QV's with frequency o, = ( ~ , / ~ ) ' / ~ 4 w ,  if the V, 
are small in comparison with the mean force constants 
-Ma; but large enough to ensure that w, > w, [see (25)] 
and that anharmonic corrections to QV energy can be ne- 
glected. The probability density of the random quantities V,, 
V3 for small / V, I, I V3 I tends to a nonzero limit. Hence, the 
densityp(w, ) of the frequencies of the above QV's is propor- 
tional to the integral over dV,d V2/dw,, evaluated over V3 
from zero to ( 4 ~ ,  v,)"~, i.e. ( 4 ~ ~ ~ ~ ) " ~ d  v,/dw, - wZ, : 

Here D = 3wi3  if the QV frequencies lie in the interval 
w < w, . Since, in regions with small V,, V3, the quantities V, 
are also smaller by an order of magnitude than their mean 
values, it can be shown that w, -0. lw, for M of the order of 
the atomic mass. 

When 4V2V4 < V $, the V (x) curve has two minima. 
When the difference between their depths is such that 
-0.1 V:/V: ST, a , ,  we can neglect the fact that the poten- 
tial has two wells and consider a QV with frequency 
w, - V3(M~4)-"2&oD in the deeper minimum. The fre- 
quency density of such QV's is - 1 V, Id V3/dw - V: and 
-a;, i.e, when the frequencies are taken into account, this 
affects only the value of the constant D in (25). Two-level 
modes appear in two-well potentials with similar depths. 
The total QV density may exceed the TLM density. 

The QV mode with frequency density a w; should lead 
to an additional contribution to the specific heat: 

thus increasing the coefficient of T in comparison with the 
value in CD - T3, calculated from the velocity of sound. 
There should also be an increase in the coefficient ofw2 in the 
effective density of the vibrations, determined from inelastic 
neutron scattering. This increase has been seen experimen- 
tally. 

To determine the effect of QV's on the ZPL width f l  in 
glasses, we must average over x in (13) or (16) with the QV 
frequency distribution (25). Let us first consider the elastic 
interaction between an impurity center and a QV when 
k = 3, a = 1, and V,, y, are given by (21). QV's with low 
frequencies w, 5 2T, for which damping is small in accor- 
dance with the estimate given by (21), are excited at low tem- 
peratures (but 2T> a,). Hence, at least in the region 2T < w: 
(and w, <a:), where r, (0:) = 0 ,  we have ClBr,, and this 
condition is satisfied for a sufficiently broad ZPL for all QV's 
and w: = w,. The ZPL is then described by (13)-(15) with 
a = 1 and has the Lorentz shape. According to (13), (2 I), and 
(25), its broadening due to the QVis proportional to T and c: 

Let us now substitute the fdllowing values in (27):Sc = C, 
(i.e., Dc = 90-3, where k ,  0 = 0 = a,), Zi2(0Mri)-' 
= Idw,.,/duii I = lo3 cm-', I V,, I = Go, T =  0.10. 

We then find that a- 1 cm-'. 
QV's with w, > w:, for which < r, , are also excited 

for sufficiently narrow ZPL and 2T> w:. The contribution 
of this QV group to ZPL broadening must be calculated from 
(16), (21), and (25). However, even when 2T> w:, the main 
contribution to is due to the QV group with w, < w:. It is 
given by (13) and is proportional to T: 

On the other hand, the QV's with w, provide a contri- 
bution to f l  which is much smaller than f12/r(w:) = a ,  and 
can be neglected. When r, (n,w:)w, T >  w,, the contribu- 
tion - ~ODLCM~:(T/V,)'/~ to S1 due to the -Dcv& 'w: 
nonharmonic QV modes with w, -a, is also small in com- 
parison with (27) and (28). It manifests itself only for T5 o4 
[for T404, the quantity M (T/v,)'/' is replaced in the above 
estimate with 0, 'exp( -flu,) 1. It is important to note that 
the phonon contribution to becomes important for tem- 
peratures 2T> w: (or 2T> w, for broad ZPL), for which the 
dependence S1- T is replaced with a- T, or - T for 
2T> 0 (but with a different coefficient). 

Similarly, we can consider ZPL broadening due to the 
electric dipole-quadrupole or quadrupole-quadrupole inter- 
action between an impurity center and a QV. In these cases, 
we have, respectively, k = 4 (a - 3/4) and k = 5 (a = 0.6),$ 
in (20) is the dipole or quadrupole moment operator of the 
QV [as before, -(A, )'-w-', as in V,  1, and the coefficient 
x i j  in (19) (with r-3 replaced with r - ) determines the field 
shift of the transition frequency w,,,. In accordance with 
(13)-(15), (25), the ZPL shape is then described by the non- 
Lorentzian curves f (Aw/n, 3/4) or f (Aw/Sl, 3/5), and 
DcT2 in the width (27) must be replaced with ( D c ) ~ ' ~  T - 

(with the numerical factor modified somewhat), whereas in 
(28) we must replace DCT o: with (DCT )k'3 - . The 
comparison with the width (27) is valid only if the electric 
interaction is very strong and exceeds the elastic interaction 
at r-r, by the factor (w, / T C " ~ ) ~ -  3 .  

6. TWO-LEVEL MODES 

Low-frequency two-level modes are formed in glasses if 
the difference A between the unperturbed energies in the two 
neighboring potential wells and the matrix element 4 W for 
tunneling through the potential barrier are sufficiently 
sma11.22v23 When tunneling is taken into account, the result- 
ing mixed states differ in energy by the amount 
E = (A2 + w2)l t2 .  Transforming to the creation and anni- 
hilation operators for the mixed states a:, a, (g = 0, 1 for 
the lower and upper levels, respectively) and the correspond- 
ing phonon operators a;, ak  (in the Debye approximation), 
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we find that the Hamiltonian Ho + H,, for the TLM rx in- 
teracting with phonons, and the difference AHr, between 
the Hamiltonians for the interaction of the impurity center 
in states s' and s with this mode can be written in the form 
(see, for example, Ref. 2 1) 

where 

In these expressions, Eo = 0, E l  = E, w is the velocity of 
sound, M is the mass of the body, Vr,k/rk is the difference 
between the frequency shifts of the transition w,., for unper- 
turbed TLM states in the two potential wells, and U is the 
difference between the deformation potentials for these 
states (for brevity, the subscript x on A, E, U, V, a,, a: 
characterizing the TLM is not indicated explicitly). In the 
case of the elastic interaction, k = 3, V = xi Spij r; 3, where 
xi, is given by (19) and 6pij is the difference between the 
dipole moments of forces for the TLM states in the two wells. 

There is a considerable spread in the random quantities 
A and W = woexp( - A ) for different TLM [exp( - A ) char- 
acterizes the overlap of the wave functions in the two wells 
and 0,-w, is the zero-point oscillation energy22]. The im- 
portant region is Wmax > W >  Wmin or Amin <A <Amax, 
where Wmax = wo exp( - Amin ) - A (E falls rapidly for 
smaller A ), and Amax is determined by the requirement that 
the TLM relaxation time r = r- '-exp(Umax) [cf. (33)] is 
much less than the characteristic time of observations-in 
this case - to]. Analysis of experimental data leads to 
Amax - 10-20, SA =Amax - Amin -5-10 (Refs. 22,29). In the 
adopted TLM model, for g l a ~ s e s , ~ ~ ~ ~ ~  the probability 
p, =p(A,A) of the parameters has the constant value 
(A, SA )-I  for 0 < A < A, 2 w, and Amin <A <Amax, and is 
zero outside these intervals of A, A. 

As in the case of the QV, the effect of the TLM on the 
ZPL width is very dependent on the ratios of the parameters 
a ,  r ,  and t; '. Usually, r < lo's-' for T- 1 K, i.e., f l ) r  
even for small a-0.01 cm-'. Moreover, the condition 
t,)r-' may also be satisfied (since, otherwise, the TLM 
would not contribute to the homogeneous broadening ex- 
ceeding the natural width). Hence the main interest lies in 
the case a ) r ) t  ; ', when, for weak coupling ( a (T ) ,  the 
ZPL is described by (9) and (13)-(15). According to (12) and 
(13), we have V, = VA/E in (13). Integrating with respect to 
A, A with the weightp, =p(A,A ) in the above intervals of A 
and A, and using the function (14a) for W, (T,a) (in which 
w, = E ), we find that the ZPL has the shape of the curve 

f (Aw/n, a) (15), and its integrated width is 

3n 2n2 k / 3  

6 = -  k r ( k / 3 )  [ 3 r ( 3 / k )  sin (3n/2k)  ] , T>QBrBt0-' 

For the elastic or electric dipole interaction, k = 3, 
a = 1, the ZPL has the Lorentz shape and S1- cTby analogy 
with Ref. 18. For example, when Sp-riGo, c/A, - lop2  
eV-', T- 1 K, and Idw,., /duii 1 - (lo3-lo4) cm- ', formula 
(3 1) shows that S1 -0.001-0.0001 cm-I. For the dipole-qua- 
drupole or quadrupole-quadrupole interactions, k = 4 
(a = 3/4) or k = 5 (a = 3 4 ,  the curve f (Ao/S1, a) (15) 
differs from the Lorentzian [narrower in the central region, 
and falls in the wings as ( A W ) - " ~  or (Aw)-8/5], and S1 
a ( C T ) ~ ~ ~  or S1 cc ( c T ) ~ / ~ .  When p(A,A ) is not constant, but 
increases slowly with A, for example, like A'' with p small, 
the exponent (1 +p)k /3  in the power-law expression for 
n ( T )  is found to be somewhat greater. 

We note that, for the case we are considering, for which - V ( r d  T ) ~  )r (7 is the mean separation between the TLM 
with E- T) ,  the authors of Ref. 20 obtained a result that is 
essentially different from (31). This difference is due to the 
fact that they did not take into account electron level shifts 
during the change in the TLM states, which provide the 
main contribution to S1 for t; '(r (this contribution is 
much greater than r). 

For sufficiently narrow ZPL, the condition S1(r is sat- 
isfied for the TLM group with very large r. Their contribu- 
tion tog(t ) is determined by (lo), (7), and (8), and is expressed 
in terms of the spectral representations of the AHr, correla- 
tors, i.e., h ', h " for w-0. 

The latter can be found by the Green-function method 
(cf. the Appendices in Refs. 5 and 28) and by taking (8), (12), 
(29), and (30) into account: 

where 

ZPL broadening due to the contribution of y; was ex- 
amined in detail in Refs. 19 and 21. The expression obtained 
there for y; is the same as that given by (32) [the expression 
for y; in (32) is also in agreement with Ref. 21, where it was 
obtained by a different method]. The ZPL width obtained in 
these papers was calculated simply as the average of y;. 
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Averaging with the weight p(AJ ) between the above limits 
with W,,, -A gavelg R - T (a fixed value independent of A 
was adopted for W,,, in Ref. 21; accordingly, it was found 
that R a T) .  However, it is better to average not the ZPL 
width of the individual impurity centers but the spectral dis- 
tributions and then determine, as in Section 3 above, the 
width of the resulting curve. If y:' were to provide the main 
contribution to broadening, formulas (16) and (32) would 
yield R - T(' + a)/a after averaging with the weight p(AJ ) 
and W,,, a A (i.e., the result would be a T 3  for k = 3 in- 
stead of R a T 2  as in Ref. 19). 

However, it is actually found that y; ) y," for this group 
of modes with 7'pI')R. The main contribution to the sum of 
thep(A,A )y:"l2 in (16), i.e., to thefunctiong(t )(lo),  is provided 
by the region of minimum possible W=Wmin or 
r?rmin = r( Wmin ). If the condition r ) R  were to be satis- 
fied for all the TLM, formulas (16), (32), and (33) would lead 
to R' - (cT/A, SR. )2/a VZ/rmin . However, even for small R, 
there is also usually a TLM group with T(R, and it is this 
group that provides the main contribution (3 1) to the ZPL 
width [all that is required is to interpret c in (3 1) as the den- 
sity of TLM's with R)X')t, '). The quantity rmin for the 
group of modes with r > R is defined by rmin -R, and this 
TLM group leads to only a small correction to the ZPL 
width, SR - R(R'/f2)a/2 -R/SR.. Like a ,  it increases with 
increasing T, although yl, decreases at the same time. 

7. DISCUSSION OF RESULTS 

It follows from the above results that the homogeneous 
broadening R of impurity ZPL in disordered media at low 
temperatures, as studied by selective spectroscopy, is usually 
largely determined by dynamic frequency shifts of electronic 
transitions in fluctuations of occupation numbers of local- 
ized low-frequency modes during the time to, and is not due 
to mode damping. In glasses, is given by (27), (28), and (3 1). 
The decrease of R with decreasing temperature is then due to 
the reduction in the density of excited TLM's and QV's in 
glass, and to the increase in their mean distance from the 
impurity center. The temperature dependence of R may be 
largely due to modes and interactions of a particular type, or 
the resultant effect of different modes and interactions. In 
the latter case, the result R - Tv  is simply an approximation 
to a more complicated dependence. 

The function Rv with v = 1.85 + 0.2, observed14 in 
amorphous BeF, (O = 380 K) and GeO, (0 = 308 K)  at tem- 
peratures in the range 8 K < T <  300 K, and the analogous 
result with v = 1.8 f. 0.2, obtained for silicate glasses13 and 
close to R - T 2, may be due to the elastic interaction between 
impurity centers and quasilocal vibrations. Strictly speak- 
ing, this dependence (27) is valid at "intermediate" tempera- 
tures, defined by COO, >2T>w,-0.10. However, this law 
may extend to very much lower temperatures (i.e., down to 
T-0.020) if there is a slowly decreasing additional contri- 
bution to R, for example, the TLM contribution (3 1) (cf. Ref. 
30). For T >  0/4, the interaction with phonons provides an 

important contribution ( -  T 2  for T >  0/2), so that the law 
R- Tv  with v ~ 2  extends to high temperatures as well. 

Another possible explanation of the results R-Tv 
with v3i 1.8 can be based on the inclusion of the quadrupole- 
quadrupole interaction between the impurity center and the 
TLM. According to (3 I), we then have v = 5/3 down to the 
very lowest temperatures. If the principal effect is the dipole- 
quadrupole interaction with the TLM, we should have16 Tv  
with v = 4/3 and, in the case of elastic or dipole interaction, 
R-  T, which has been observedI5 in organic glasses. The 
ZPL width may tend to a nonzero limit17 for T-0 if the 
levels s', s belong to multiplets and radiationless transitions 
to lower levels are possible. 
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