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A dilute solution of two types of homopolymer chains in the presence of attraction between 
monomers of different types is considered. It is shown that, for a diblockcopolymer molecule 
formed by two long chains of different species, the globular state arises in the presence of an 
arbitrarily weak attraction between monomers of different species, irrespective of the strength of 
the repulsion between identical monomers. The resulting globule may be surrounded by a coil 
phase envelope. The density and composition of the globule are found. The equation of state of a 
dilute two-component solution of long chains are found with the aid of phase transition theory 
methods. Such a solution stratifies, the denser phase (condensate) being a semidilute solution. The 
compositions and densities of the two phases are found. It is shown that a long chain of one species 
in a dilute solution of chains of the other species forms a globule. 

INTRODUCTION In $2 we consider a two-component solution of the 

Two-component polymers constitute the simplest case 
of multicomponent systems that allows us to study the char- 
acteristic properties of these systems. This is extremely im- 
portant, since the majority of natural and practically impor- 
tant polymer systems are mixtures or solutions of different 
polymers. And if for concentrated multicomponent systems 
there exists fairly well developed methods of investigation 
and fairly extensive literature (see, for example, Ref. I), the 
investigation of dilute and semidilute multicomponent solu- 
tions is essentially only beginning. In Refs. 2 and 3 the be- 
havior of the individual molecules is investigated, and in 
Refs. 4 and 5 the occurrence of flutuation-induced first-or- 
der phase transitions in two-component solutions is demon- 
strated. 

In the present paper we consider the following system: 
long poly-A and poly-B chains, the solvent being, for each 
species taken separately, the good polymer. We shall limit 
ourselves to the low-concentration region, where the deci- 
sive role is played by fluctuations and the correlation length 
is large. The computation of the characteristics of such a 
system reduces to the problem, well known in the theory of 
phase transitions, of a system with two order parameters, of 
which at least one undergoes strong  fluctuation^.^ It is well 
known that such a system undergoes fluctuation-induced 
first-order phase transitions-effects which are absent in the 
mean-field theories. The specific computations in the pres- 
ent paper are carried out on the basis of this analogy with the 
aid of the methods of field theory, but the physical meaning 
of the results obtained can be elucidated with the aid of sim- 
ple arguments. 

For the two-component system in question we obtain 
the following results. In $ 1 we show that, in the presence of 
an arbitrarily weak attraction between the monomers A and 
B, a sufficiently long molecule of the diblockcopolymer 
A,B, will form a globule with a coil-phase "trimming." 
The density and composition of the globule nucleus depends 
weakly on N/M, if N and Mare sufficiently large. 

polymers A, and B,. It is shown that arbitrarily weak at- 
traction between the monomers A and B (even in the pres- 
ence of strong repulsion between identical monomers) leads 
to the appearance of a region of phase stratification on the 
phase diagram of the solution. The lighter phase is a dilute 
solution occurring far from the stratification critical point, 
while the denser phase (which we call the condensate, since it 
should separate out as a precipitate) is a semidilute solution 
whose composition depends weakly on the composition of 
the entire system. It is also shown that in this case a suffi- 
ciently long BM molecule in a dilute A, solution should form 
a globule. The "coil-+globule" transition is a sharp first or- 
der transition. When the concentration of the solution is in- 
creased, the inverse transition "globule+coil," which is also 
of first order, occurs. If the number of B, molecules in the 
solution is small, then their transition into the globular state 
will not lead to precipitation, but will give rise to turbidity of 
the solution. When the density of the globules in the solution 
increases, their attraction will lead to the formation of a con- 
densate. 

The main idea of the computations is as follows. As is 
the case for any solution of low concentration, the system 
under investigation is entirely determined by the second vir- 
ial coefficients BAA, B,, , and B, for the A-A, A-B, and B- 
B interactions, as renormalized by the interaction with the 
solvent and the nearest-according to the quasimonomer 
concept7-neighbors along the chain. We must compute for 
the case in which BAA, B,, > 0 and B,, < 0 the free energy 
F ( p ,  ,p,) of a unit volume of a solution of infinitely long 
poly-A and poly-B chains with prescribed mean densities p, 
andp,, as measured from the free energy of the coil state of 
these same chains. It is precisely this quantity that enters 
into the equations of the globule theory developed by I. M. 
Lifshitz (see Ref. 8 for a review), and determines the state of 
the macromolecule A,B,, as well as the interaction between 
sufficiently long A, and B, molecules. In the Flory theory 
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The correlation between the density fluctuations leads to a 
situation in which we actually have in the case when BAB = 0 
the estimate 

If we treat the attraction between the monomers A andB as a 
weak perturbation that does not distort the system," then 

It can be seen from this that, at sufficiently low p, and p, 
values, the energy F( p, p,) < 0, and the pressure vanishes. 
Furthermore, the p, -p, correlations lead to the result that 
in fact F ( p A  9,) is smaller than the above-presented esti- 
mate. This is a manifestation of a general rule, according to 
which the true free energy is always smaller than the value 
computed on the basis of the Flory theory. From this it fol- 
lows that all the effects described above-the globulization 
of the molecule ANBM, the stratification of the semi-dilute 
solution as a result of the negativeness of the pressure at very 
low values ofp, andp,, etc.-will occur under conditions of 
arbitrarily small BAB < 0. 

The reason why a weak attraction between the mon- 
omers A and B has such a strong effect on the behavior of the 

F ( p, ,p,) computation in terms of the original A and B mon- 
omers, then we are faced with the necessity of the considera- 
tion of the long-range correlations. In the low-density case of 
interest to us R, is large, and the correlation effects make, as 
has already been indicated, the dominant contribution. 
Therefore, we shall go over to new monomers consisting of 
SS, (R ) A monomers in the case of the poly-A chains and 
&(R ) B monomers in the case of the poly-B chains, and 
having geometrical dimensions equal to3) R: 

where I, and I, are the persistent poly-A and poly-B chain 
lengths. If we choose R = R,, then we find that the condition 
of applicability of the mean-field theory is fulfilled: the cor- 
relation length is of the order of the monomer size. There- 
fore, we could have written the virial expansion for 
F(p,,p,) in terms of the densities r], and r ] ,  of the new 
monomers: 

Since the density dependence of R, is known: 

entire system is that the nature of the interaction between to obtain the final expression for F ( p ,  g,), we need only 
attractive polymer chains is entirely different from that of 

determine the virial coefficients for the new monomers. Such 
the interaction between repulsive ones. As two repulsive 

calculations are carried out in Ref. 4, and we briefly report 
chains, e.g., A and B, approach each other, the interacting here the main conclusions and results. 
monomers tend to separate, and, in so doing, push apart The system under investigation can be compared to a 
their nearest neighbors along the chain, thereby inhibiting two-field model with the Hamiltonian 
their interaction. This leads to the well-known screening of 
the interaction: the mean interaction energy of such chains 
remains constant as their length is increasedS9 If, on the oth- 
er hand, the chains attract each other, then the interacting 
monomers approach each other and draw their neighbors 
along the chain together, thereby intensifying their interac- 
tion. As a result, instead of screening, there occurs intensifi- 
cation of the interaction: the energy of long attractive chains 
is greater (in absolute value) than the estimate given by the 
Flory theory, and tends to - cc as the length of the chains 
increases. 

81. CONFORMATION OF A LONG DIBLOCKPOLYMER IN A 
SOLUTION 

Let us consider an isolated long (N and M are large) 
ANBM molecule in the B,, < 0 case of interest to us. We shall 
consider the quantity pi = B :,/(BAA BBB) to be small: we 
can investigate the phase-state diagram in this case. The 
state of such a model is entirely determineds by the free- 
energy density F (p ,  ,p,) introduced above.'' We shall give 
here a simplified estimate for it; a more exact calculation is 
presented in the Appendix. 

Let in the solution of infinitely long chains that is being 
considered by us the mean distance between the linkages (or, 
which is the same in the present case, the correlation length) 
be equal to R,. This scale can, in principle, have different 
values for the poly-A and poly-B chains, but, as will be 
shown below, this does not occur. If we carry out the 

and p,, and p,, are n-component fields, with n-0. The 
dimensionality of the space is equal to d. Let us, for simpli- 
city, set the temperature T equal to unity; then the model 
free energy (1.1) is the thermodynamic potential 

Q (pa, pa) =F(PA, PB) -PAK'A-PBPB 

of the above-described solution of infinitely long chains (we 
have dropped the volume factor, which is insignificant here). 
In this expression 

The second virial coefficients B 2, (R ), B 2, (R ), and B zB(R ) 
for the interaction between the new monomers can be ex- 
pressed in terms of r , , (R  ), T,,(R ), and r,,(R ), the sums of 
the irreducible four-point diagrams of the model (1.1), in 
which the external momenta are of the order of 1/R: 
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BAAR (R) -8rii (R) R4, BBBR (R) -8bz (R) R4, 

BABR (R) -8r12 (R) R4. 
(1.3) 

The vertex functions T,(R ) are computed in Ref. 6 in the 
first approximation in E = 4 - d:  

R" 
f (El =I (32giiE+1) (32g~d+l)  I"', E = ( - - I )  (4n2e)-i, 

a" 

here a is the (atomic) dimension of the A or B monomer. It 
can be seen from (1.3) and (1.4) that B :,(R ) has a pole at a 
finite value ofR. The solution (1.4) is not valid in the vicinity 
of the pole, but the stability condition for the homogeneous 
state, (B $, (R ))*< B (R )B iB (R ), is violated in the region 
of applicability of (1.4). 

The higher virial coefficients are proportional to the 
sixth- and higher-order vertex functions, and therefore tend 
rapidly to zero with increasing R. This result is exact.'' 

Our subsequent field-theoretic calculations are also 
carried out in the first E approximation (see the Appendix), 
but in a number of cases the sought dependence can be deter- 
mined with the use of the usual scaling arguments. In these 
cases we shall immediately substitute the critical exponents 
for three-dimensional space. But if we cannot do this, then 
we shall retain the symbol E in such relations, and only in the 
final answer should we set E = 1. 

For simplicity, we shall set the atomic dimension a 
equal to unity. The virial expansion then has the form 

As is well known,g at large R values B (R )/R d+A, where 
the constant A depends only on the dimensionality of the 
space, and we can assume that 

BAAR (R,) =BBBR (R,) =BR (R,) -ARCd. 

The preceding formula can in this case be rewritten in the 
form 

F (pa, PB) =BR (Rr) [ (qa-11~) ~ Y T ~ A ~ B I  7 

=BABR (R,) IBR (Rc) +I.  
From this it can be seen that, firstly, the formation of a glo- 
bule is thermodynamically advantageous when y < 0 and, 
secondly, the composition of the globule is quite strictly 
fixed by the first term in (1.5). The composition of the globule 
turns out to be precisely such that one and the same R, value 
is obtained for both the A and B monomers. 

But the situation of the formula (1.3) into (1.5) yields a 
totally incorrect value for the coefficient of ~ ~ 7 , .  A more 
exact calculation carried out in the Appendix in the first 
(E = 4 - d )- approximation yields the following expressions 
for the thermodynamic functions: 

Here x is a dimensionless parameter that can be determined 
implicitly in terms of R, and assumes values ranging from 
4(~/8)"~  to + cc for - m <y <yo. All the correlators with 
scale smaller than R, do not differ from the corresponding 
correlators for a coil. 

Now we can determine in the volume approximation all 
the characteristics of the globule formed by the diblockpo- 
lymer ANBM. The globule density is determined by the con- 
dition for F (  p, ,p,) to possess a minimum upon the fulfill- 
ment of certain conditions imposed on p, and p,. Here we 
can have different cases determined by the relation between 
Nand M. If the entire molecule can be packed into a globule 
nucleus in which 7, = q,, then its density is given by the 
condition P = 0. Such a situation arises when the following 
relation is satisfied: 

To determine the density with sufficient accuracy, the condi- 
tionx = 1 can be replaced by the condition y = 0. We obtain 

From this we obtain the values ofp, and p, in the globule: 

Let us now consider the case when MSN, and the mole- 
cule forms a globule with a coil-phase envelope consisting of 
B monomers. In this case the chemical potential of the B 
monomers should be continuous at the boundary of the glo- 
bule nucleus,' i.e., in the language of the two-field model 

With the aid of the formulas (A.4)-(A.6) we obtain 

F (p,) =- (64nZ)-1R,-d(l+ x - ~ - - E / ~ x - ~ E / ~ x ~ ) .  
(1.10) 

The density of the globule nucleus is given by the condition 
for a minimum of the free energy per monomer, F (  p, )/p, , a 
condition which reduce at large R, to the condition 

The formulas (1.6)-(1.9) solve the problem of the den- 
sity and composition of the globule nucleus. The density of 
the nucleus at lowp, value depends on the composition of the 
molecule according to (1.11) (not a very marked depen- 
dence), and the composition of the nucleus also changes in- 
significantly-by an amount of the order of ~ / 2 .  

As a phase, the coil envelope can exist only in the case 
when the relation (1.10) for 7, and 7, is fulfilled in the nu- 
cleus. This means that an envelope forms around a large 
globule if M / N  is greater than the value given by (1.7) by a 
factor of (1 + ~ / 2 ) .  Naturally, in three-dimensional space 
the expansion in powers of E has meaning only when it is 
regarded as an estimate for the universal coefficients, which 
do not depend on the details of the interaction between the 
monomers. 

The line separating the regions of coil and globular 
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states of the ANB, molecule is given by the equation 

In terms of the "new" monomers the globule nucleus is 
a concentrated solution, since the volume per (new) mon- 
omer is of the order of the intrinsic monomer volume R 2 .  
Therefore, the virial expansion gave an incorrect answer. 
The new monomers are actually the blobs introduced by de 
Gennes." The possibiity of the formation of globules from 
blobs is pointed out in Ref. 4. 

The role of the 6' point-the "coil-globule" transition 
point for an infinitely long molecule-is played by the tem- 
perature a which B,, = 0. The coil-globule transition with 
respect to the parameter B,, is, according to I. M. Lifshitz's 
classifi~ation,~ a smooth second-order transition, but, in 
contrast to the cases investigated earlier, the coil is not Gaus- 
sian at the t9 point: its size is determined by the scaling laws. 

52. A TWO-COMPONENT POLYMER SOLUTION 

Let us consider a dilute solution of macromolecules AN 
and B, in a low-molecular solvent. We impose on the virial 
coefficients the same conditions as in 5 1: 

BAA>O, BBB>O, BABCO, 

po2=BAB2/BAABB,< 1, 

For the free energy per unit volume of such a solution we can 
write the virial expansion in the following form 

Here B, ,, B,,, and B,, are respectively the second virial coef- 
ficient for the AN-AN B,-B,, and AN-B, interaction, 
whilep; andpg are respectively the density values at which 
the coils in the single-component solutions of the AN and B, 
molecules begin to touch each other: 

The virial coefficients for large Nand M have the formg 

where A- 1 depends only on the dimensionality d of the 
space. We use the approximate value given by the Flory the- 
ory for the critical exponents. 

The quantity B,, can be estimated as follows. So long as 
the dimension R of the molecules does not exceed R from 
(1.8), we can use the formulas (1.3) after setting 
B,, = B $(R ). In this case B :, < B,,B,,, and the homogen- 
eous solution is stable. Furthermore, for the homogeneous 
state to be stable, it is sufficient that the dimension of the 
molecules of only one species be not greater than R,. 

Let us now consider two molecule A, and B, with di- 
mensions R, and RB such that RA ,RB > R,. Let us divide 
theA, and B, chains into N / N A  (R,) and M/&(R,) sec- 
tions each of which has a dimension of the order of R,. Using 
(1.3) and (A.9), we easily find that the second virial coeffi- 
cient for the interaction between these sections is of the order 

of - R 5/u, where a- 10, is a large dimensionless param- 
eter. Then, applying the Flory approximation to such effec- 
tive monomers, i.e., regarding the AN chains as one floating 
in a cloud of M/M,(R,) effective monomers of the B, 
chain, we obtain the following estimate for B,,: 

where R, is given by the formula (1.8). 
The solution will stratify if the equations 

FA (PA', PBI)  =PA   PA^, pm), 

FB (PA,, PBI) =PB (PA21 PBZ) , Pe3) 
P ( P A I ~  PBI) =P(PAz, P B ~ )  

possess a solution in the case whenp, , #pA2 andp, , #p,,. 
It follows from (2.1)-(2.3) that the two phases cannot be di- 
lute solutions at the same time. Therefore, let us consider the 
case in which a condensate, i.e., a phase in which the correla- 
tion length is determined not by the length, but by the den- 
sity, of the molecule entering into it, separates out in the 
solution. To compute the chemical potential of the mon- 
omers in the condensate, we must use the formulas from the 
Appendix. The equations (2.3) will in this case assume the 
form 

N-' 1n(pA,/pA4) f 2B1zp~llMN 

Here, as in $1, g = p/N(R, ) .  For rough estimates, we can 
neglect the quantity x - 1, and consider the condensate den- 
sity to be a constant given by the equations (1.9). The conden- 
sate is a two-component semi-dilute polymer solution. Its 
composition is given by the first two equations from the sys- 
tem (2.4). 

The equations (2.4), can, because of their complexity in 
the general case, be investigated only numerically. The com- 
pletely symmetric case M = N, p, = p, =p ,  
BAA = B, = B, I, = I ,  = I can be investigated analytically. 
Figure 1 shows the phase-state diagram in the N-p plane for 
this case. The quantities B, BAB, and 1 are assumed to be 
fixed. The lower boundary of the region of two-phase states 
in the case when N)N(R, )  is given by the equation 

A' (R,) N-' In (plp*) =- (8%) -', (2.5) 

and the upper bound in the condensate density, which we 
assume to be a constant, at least in the case when N>N(R,) .  
The critical point is given by the conditions 

NIJT(R,) -0, ~ - p *  (N) =N-'/S(BP) 4 5 .  

Generally speaking, the equation (2.4) are inapplicable in the 
vicinity of the critical point for the stratification of the solu- 
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I X  - 11 -E, and therefore correctly determine only that part 
of the transition line where 

FIG. 1 .  Phase diagram of a two-component solution in the ( N , p )  plane in 
the symmetric case. The hatched region corresponds to the two-phase 
states; there exists a critical point K. 

tion, since there occur here density fluctuations with scales 
much greater than R, . In this case the density and the quan- 
tity R, cannot be regarded as constants. The vicinity of the 
critical point requires special investigation, possibility, in 
the second E approximation. Here the less dense phase can 
no longer be considered to be a dilute solution. 

Figure 2 shows the phase-state diagram in the IB,, 1-p 
plane (also for the symmetric case). The quantities 
BAA = BBB and N are fixed. The critical point and the boun- 
daries of the two-phase region are given by the same equa- 
tions as in the preceding case. 

The M)N,p, /N)p, /M case is, from the experimental 
standpoint, the most interesting case. In this region, we must 
distinguish between two experimentally observable effects: 
the coil-globule transition that occurs in each long molecule 
and the precipitation of a condensate. The formation of a 
globule corresponds to the appearance of a solution for the 
system of equations obtained from (2.3) when the second 
equation is replaced by the equation 

FB ( P A , ,  p ~ z )  = 2 B i z p a i l M N ,  

which expreses the equality of the free energy per monomer 
in the globular state to the corresponding quantity in the coil 
state. From this we obtain, after taking account of the condi- 
tionp, 4 p,* for the solution to be dilute, as well as the fact 
that a) 1, the equations 

Equations (2.6) and (2.7) give in a parametric form the line 
p, = pA (N ) of first-order coil-globule phase transitions. But 
these equations were derived under the assumption that 

FIG. 2. Same as in Fig. 1,  but in the ( p, IB,, 1 )  plane. 

( f l A  ( R c )  I N )  915G0-1. (2.7) 

A special investigation is necessary for the computation of 
the critical degree of polymerization of the solution. In parti- 
cular, we must extend the calculations carried out in the 
Appendix to the case y - 1. 

We can determine in exactly the same way the condi- 
tions for the existence of a globule in the semidilute solution, 
which is specified by a single parameter: the density. To do 
this, we need only set in Eqs. (2.6)-(2.8) 

The inverse globule-coil transition also occurs, when 
p, is increased, as a sharp first-order phase transition. 

In all the preceding calculations we considered the glo- 
bule and condensed-phase densities to be constants over the 
entire volume. In actual fact there is always a transition layer 
whose thickness in the region far from the critical point (see 
Figs. 1-3) is of the order of R,. The free-energy density de- 
creases continuously in the layer from its value in the less 
dense phase to its value in the denser phase. Hence we can 
estimate the globule-surface tension energy B per BM mole- 
cule: 

The equations (2.4) do not allow us to consider the precipita- 
tion of the globules, since they were derived under the as- 
sumption that the molecules outside the condensate are in 
the coil state. Therefore, we shall use another criterion: pre- 
cipitation will occur if the surface-tension energy of a glo- 
bule is equal to the entropy change that occurs when one 
molecule goes over from the precipitate into the solution. 
The condition for precipitation to occur has, in the usual 
units, the form 2 - In( pB */pB ). The solution temperature 
enters into this condition only through BAA, B,, BAB, and 
1 1 , 2 .  

In all the preceding calculations we assumed the con- 
densate density to be a constant. This approximation is legi- 
timate, since the density entered into the equations mainly 
through the parameter x ,  which is a slowly varying function 

FIG. 3. Phase diagram in the ( N ,  p, ) plane of a long poly-B chain in a 
solution ofA, molecules. The region I corresponds to the coil states; the 
region 11, to the globular states. The curve separating them is a line of first- 
order phase transitions. The asymptotic forms of the branches of this line 
for large N have the form. 

JV'A(R,)N-' ln ( P A / ~ A ' )  = - ( l + e / 4 )  /4x,  

p,=const - (fl~(R,))-'ls(B~~l,2)-~'~ . 
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of the density. In almost all the cases the range of variation of 
x was of the order of E .  The condensate density, however, 
should vary quite strongly; in particular, it should depend 
markedly on the composition of the condensate. This depen- 
dence turns out to be quite universal. In the first place, it is 
clear that, with the exception of the just considered problem 
of the formation of globules in the solution, in all the situa- 
tions considered above the condensate density will be maxi- 
mal at qA = q, (in the condensate). The condensate density 
will decrease as the composition deviates from this relation. 
Let us denote the condensate density for q, = q, by p,,,; 
then 

Since r(R,)( 1,p possesses a fairly sharp peak. This predic- 
tion can be experimentally verified. 

CONCLUSION 

The results of the investigation pertain only to solutions 
of low concentration in the vicinity of the 0 point of the 
interaction between monomers of different species, where 
BAB is small. We did not also consider the vicinity of the 
critical point for the stratification of the semidilute two- 
component solution, since it is necessary here to take ac- 
count of the blob-density fluctuations. This can be done by 
adding a magnetic field to the Hamiltonian (1.1) and using 
the second E approximation. 

Polymer complexes-the condensates produced in two- 
component polymer solutions-are a common practical re- 
alization of the objects described in the present paper. The 
available experimental data pertain largely to concentrated 
complexes, to which the results obtained above are not appli- 
cable. But the qualitative relationships remain valid: the de- 
gree of polymerization has a fairly large value that bounds 
from below the region of existence of a complex. It is also 
observed that the density of the complex depends quite criti- 
cally on the composition. We must, however, make an im- 
portant stipulation. A considerable amount of the experi- 
mental data pertains to polyelectrolytic complexes, which 
are formed as a result of the Coulomb interaction of the mon- 
omers in a solution of a strong electrolyte. If the concentra- 
tion of the salt (electrolyte) is low, and the Debye length is 
much greater than the persistent length, then for the descrip- 
tion of the interaction between the monomers we must use 
not the virial coefficients, but the Debye-Hiickel theory. In 
this case the results obtained are not even qualitatively valid. 
But if the salt concentration is so high that its variation in the 
vicinity of a charged monomer is much smaller than the 
mean concentration value, then we can use the virial coeffi- 
cients, and for such complexes the results obtained in the 
present paper are valid. 

The best experimental verification of the results could 
be provided by experiments on complexes formed by the hy- 
drogen bond, or by dipole or the van der Waals forces. We 
can vary the virial coefficients in such systems by regulating 
the salt or acid concentration. 

I take the opportunity to express my profound gratitude 
to V. V. Shilov, who acquainted me with the experimental 

data, and to S. P. Obukhov, I. Ya. Erukhimovich, and A. Yu. 
Grosberg for numerous useful discussions. 

APPENDIX 

Here we describe the calculation of the free energy 
F ( p, , p, ) by the methods of field theory. It is well known6 
that there occurs in the model with the Hamiltonian (1.1) in 
the case when g12 < 0 a first-order phase transition into the 
state with 7, #O, q, #O. Let us find the thermodynamic 
potential f l (q  ) of the model in such a state. We shall use the 
well-known methods of computing the equation of state in 
the vicinity of a second-order phase transition point,12*13 
which are also expounded in Ref. 10. 

The dominant contribution to f l ( q  ) is made by ring skel- 
eton diagrams (see Fig. 4). A line in the diagrams corre- 
sponds to a field-field correlation function in the absence of a 
condensate, which function has, for small wave vectors k, 
the form 

Gz ( k )  =(vza ( k )  cpZa ( - k )  )=[ xz-'+ (1zR)'k2 IT'. (A.1) 

Here x1 and X, are the susceptibilities for the fields e, , and 
e, , in the absence of interaction between the fields, i.e., in the 
case when g,, = 0: 

where y is the critical exponent for the susceptibility, while 
rf and T; are respectively the critical points for the appear- 
ance of a condensate in the g, , and e, , fields. The quantities 
I f , are, in the first E approximation, determined by small 
distances, do not depend on rl, , and can be included in the 
normalization of the g, ,, , fields. 

The vertex functions in the diagrams for a(?) are the 
sums of all the irreducible vertex diagrams, in which the 
lines correspond to the Green functions in the presence of a 
condensate. Therefore, the characteristic scale R,  which 
must be substituted into the equations (1.3), is the density- 
density correlation length R ,  for the monomers. Indeed 
allowance for the interaction with the condensate in the 
Green functions is equivalent to the consideration of the in- 
teraction of a given polymer with the remaining polymers in 
the solution. This interaction leads to a situation in which 
the scaling laws are "cut off' at distances of the order of R ,  
(Ref. 10). 

The approximation used allows us to estimate only the 
most divergent part of a @ ) ,  but this is not enough for us. Let 

FIG. 4. The ring skeleton diagrams, which are summed in the Appendix. 
A line in the diagrams corresponds to the Green function for the field cp, or 
q,; a line with a cross, to the mean valuep, or 7,; and a square, the sum of 
the irreducible vertex diagrams. 
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us introduce the dimensionless parameterp, = lBAB I/(BAA 
BBB ) I / , .  We are considering the region p, 4 1, R, %I, where 
we can assume that 

ril (R, )  =rZ2 ( R , )  =r ( R , )  =nZ&/4RCe 

and include lIR and in the normalization of the p, and p, 
fields. 

The sought sum of the ring diagrams constitutes a sin- 
gle-loop approximation for the renormalized Hamiltonian: 

The fields pR , and pR2 then have a physical meaning differ- 
ent from the physical meaning of the initially introduced p, 
and p,. Let us make the following substitution in HR (pR ): 

- 
+1,2a= ( ( P R  ic.*(~R 2a) lY2 

We obtain 

Ha($) = {+ [ A ,  (*'(r) +y (d ) + 2 ~ 2  $ 1 ,  ( x )  'ha ( x )  
a 

When A2#0 both fields separate out as a condensate, but 
one of them makes the dominant contribution: $,%$,. Since 
we are interested in the form of a($) in the region of small $,, 
we can make $, to be a constant, and integrate over the field 
$, after discarding the term r(R,  Assuming that 

we obtain the expression 

The second minimum of a($,) corresponds to a condensed 
(globular) state. The parameters A, and A, determine the 
density and thermodynamic functions of the condensaste. 
The condition afl/d$, = 0 yields: 

Setting 

we obtain from (A.5) the expression 

Representing x in the form 

we obtain for x, the equation 

Then in the first approximation in A22/(r$12)2 

It is not difficult to see that a($,, $,) is the thermodynamic 
potential 0 = - P V  of the corresponding polymer system. 
In the cases of interest to us $, $, andx, - 1 are of the order 
of E ,  and the formula (A.6) can be greatly simplified. 

It remains to establish a correspondence between the 
renormalized quantity (p, ,) and the initial quantities p, , 
pB , and ( p  '). Using (A.4), we obtain 

Since 

we have 

As a result, we obtain the formula 

The quantities F and P assume their forms when they are 
expressed in terms of R,. In that case 

We find, in complete agreement with the theory of phase 
transitions, that Fcc R, - d .  AS to the numerical factors, they 
have, of course, been estimated only in order of magnitude. 

The applicability of the formulas (A.4)-(A.9) is limited 
by the conditions A,(I?$12 and A, 5 A,.  

"This explanation was offered by A. Yu. Grosberg and I. Ya. Erukhimo- 
vich during a discussion of the present paper. It is not suitable for quanti- 
tative computations, since it leads to incorrect results for the chemical 
potential of a monomer (see the Appendix), although it does give for the 
condensate density an estimate that is correct in the first approximation 
in E (cf. (1.9)). 

2' We use the subscripts A and B to indicate the monomer species to which 
the quantity in question pertains. If these subscripts do not occur in 
some relation, then that relation is valid for either monomer species. 
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We use, wherever it is legitimate to do so, the Flory values for the critical 
exponents. 
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