
Spontaneous strains in an incommensurate phase and their effect on the transition 
to a commensurate one 

V. A. Golovko 

Evening Metallurgical Institute, Moscow 
(Submitted 21 November 1984) 
Zh. Eksp. Teor. Fiz. 88,2123-2132 (June 1985) 

Strains produced in an incommensurate phase by their interaction with the order parameter 
owing to the presence of the Lifshitz invariant are considered on the basis of a phenomenological 
theory. Exclusion of the strains from the thermodynamic potential produces in the latter a term 
whose form differs from that of those customarily employed. Minimization of the thermodynam- 
ic potential leads to a self-consistent system of equations for the order parameter in the incom- 
mensurate phase. Using as examples two cases for which the equations for the order parameter 
can be solved with mathematical rigor, it is shown that when the strains are taken into account the 
transition from the incommensurate to the commensurate phase is of first order. One of these 
cases explains the character of the spontaneous strains in the entire region where the incommen- 
surate phase exists. It is also shown that in a "clamped" crystal the incommensurate-commen- 
surate transition is of second order, but its singularities are other than those obtained if the local 
strains are neglected. 

Clarification of the influence of spontaneous strains on 
the properties of an incommensurate phase is worthy of at- 
tention primarily in connection with the question of phase 
transitions from an incommensurate phase to a commensur- 
ate one, a question widely discussed in the literature. Ac- 
cording to most theoretical papers, this transition should be 
con t i~u~us ' -~ :  experiment, however, shows it to be of first 
order (see Ref. 6 and the references therein). Account was 
taken in that reference of the connection between the order 
parameter and the strain, and the result was a first-order 
transition, but a different approach to treatment of this con- 
nection' yielded a second-order transition as before. 

This problem was considered in greatest detail in Ref. 8, 
but the conclusion arrived at there, that the connection 
between the order parameter and the strain leads to a first- 
order transition, cannot be regarded as convincing for a 
number of reasons. In Ref. 8, as in other cited papers, the 
"constant amplitude" approximation is used, but even if the 
strains are disregarded different methods of finding this am- 
plitude can lead to a different order of the t ran~i t ion .~  In 
addition, this approximation is valid only in the limiting case 
of weak anisotropy in the space of the order-parameter com- 
ponent~ . '~  We point out also that in Ref. 8 the symmetry of 
one part of the Hamiltonian does not correspond to the sym- 
metry of another part, and the free energy is not bounded 
from below as n+w , nor is it clear how these circumstances 
affect the final conclusion. 

It is of interest to consider the question of the incom- 
mensurate-commensurate phase transition with allowance 
for strains in cases when there is a rigorous mathematical 
approach to the equations that describe the incommensurate 
phase."~12 This is the subject of the present paper. We obtain 
first some general results concerning strains in the entire 
region of existence of the incommensurate phase, and their 
connections with the external stresses. These results are 
needed also because spontaneous strains are discussed in 

Refs. 6-8 only near the point of transition into the commen- 
surate phase, and furthermore the approach there is not gen- 
eral enough. We shall consider also the case of a "clamped" 
crystal, which has its own distinguishing properties. 

STRAIN IN INCOMMENSURATE PHASE 

We start with the thermodynamic potential used in 
Refs. 11 and 12, adding to it several terms: 

d 

1 
@=@,+@ - / ( 5 , + ~ , ) d z ,  

2-T ; 

where d is the period of the functions 6 , (x)  + &,(x); 
u1 = uxX, u2 = uyy , u3 = uZz are the components of the 
strain tensor, oi are the corresponding components of the 
stress tensor, and summation from 1 to 3 over the dummy 
indices is stipulated. The expression for 6 , (x)  is the same as 
in Ref. 11. The expression for 6, was written under the as- 
sumption that the crystal has orthorhombic symmetry in the 
high-temperature (symmetric) phase (suitable examples of 
such crystals are given in Ref. 1 I), when ui are invariants 
and 6, contains products of ui by the Lifshitz invariant 
p2de, /dx. For other symmetries, terms in the thermody- 
namic potential are also possible, made up of products of 
Lifshitz invariants by invariant combinations of the compo- 
nents of the strain tensor. The quantities Ai j  are the elastic 
moduli in the symmetric phase. The last term of 6, was 
added to ensure that is bounded from below, as will be 
shown later on. 
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Note that, generally speaking, mixed invariants other 
than those in (2) are possible, containing the strain-tensor 
components and the order parameter, e.g., uXyp2 cos2p. 
Such invariants, however, merely renormalize the thermo- 
dynamic-potential coefficients (see below) and therefore do 
not influence the type of the incommensurate-commensur- 
ate transition. The mixed invariants taken into account in (2) 
are of only one type, the most significant for the problem on 
hand (in particular, the invariants uip2, whose role is the 
same in commensurate and incommensurate phases, have 
not been written out). 

Since the strain tensor is expressed in terms of the strain 
vector U, the independent variables should be taken to be the 
components of U. In our case periodicity is possible only 
along thex axis, so that the most general form of the U vector 
components is 

U,=fl (2) +a6y+a5z, UY=f2 ( 5 )  +azy+ a4z, 

Uz=f3 ( x )  +a4'y+a3z, 

where ai = const. Determining from this the strain tensor13 
and recognizing that uxy = u,, = uyz = 0, since these com- 
ponents are not linked with the order parameter when (2) is 
used, we obtain df2/dx = - a,, df3/dx = - a,, a, = - a;. 
The constants a,, a,, and a, correspond to pure rotation of 
the crystal and play no role. In addition, we obtain u, = dfl/ 
dx, u, = a,, u, = a,. Substituting this in (2) and minimizing 
@ with respect to f l  with allowance for the fact that u1 is a 
constant (this follows from the equilibrium equation doik / 
dxk = 0, Ref. 13), we get 

df l  ri d q  
U 1 = - = - -  p Z -  + a,. 

dx  hi,  dx  
The appearance in (3) of an arbitrary constant ai that 

must be additionally defined is due to the specifics of the 
strains. Were we to minimize (2) with respect to ui as with 
respect to ordinary normal coordinates, no arbitrary con- 
stant would appear and substitution of the results in (2) 
would lead to simple renormalization of the components. 
The fact that (3) contains two terms that are not determined 
simultaneously is due to the qualitative difference, in a solid, 
between the spatially inhomogeneous and homogeneous 
strains (cf., e.g., Ref. 14). We note that if the aforementioned 
invariant uVp2 cos2p were added to (2), an arbitrary con- 
stant would likewise appear, but its determination by the 
method used below to determine ai would show it to be zero. 
In this case the reason is that the point symmetry of the 
incommensurate phase is the same as that of the symmetric 
one, l5 and the presence of a constant part in uxy would mean 
a change of the point symmetry. 

Upon substitution of (3), that part of 0 which contains 
ui takes the form 

d 

where 6, = 6; - r:/All. We determine the constants ai by 
minimizing 0 with respect to them (this corresponds to 
minimization of @ with respect to the averaged macroscopic 
strains iii), and obtain thus the equations 

These equations are easily solved by introducing the 
elastic compliancesxij given by xijAjk = Sik , SO that we get 
ai = xijAj. If a free crystal is considered (ai = 0), by substi- 
tuting the constants ai in (4) and taking (1) into account we 
obtain 

where det[,yij] is the determinant of the matrix [x i j ] ,  
xi1 = xll - A , ', and the remaining x;, = xi,. Since the 
quadratic form A i j  ui uj is positive-definite, it follows that 
det[xij] >O andx;,  20, withx;, = 0 only ifx,, =x13 = 0. 
Therefore b>O always. For the sake of clarity we consider 
anisotropic body and introduce in place ofAij the hydrostat- 
ic compression modulus K,, and the shear modulus p,, .13 

We then obtain from (8), putting r, = r2 = r, 

Thus, exclusion of the strains from the initial thermo- 
dynamic potential leads to expression (7) in which the last 
term differs substantially from the preceding ones. This term 
can be broken up into two factors and represented as a renor- 
malization of the coefficient u of the Lifshitz invariant 
(u+u + bI/2). It can be seen here that the renormalization 
depends on the structure of the incommensurate because of 
the presence of I,  i.e., it is nonlocal. Expression (9) shows 
that this effect results, as might be expected, from a charac- 
teristic property of the solid, viz., the presence of a shear 
modulus that gives rise to elastic long-range action. We note 
that the quantity b of (8) is zero not only in the isotropic case 
at p,, = 0. Thus, the conclusion of Ref. 7 that the incom- 
mensurate-commensurate phase transition remains of sec- 
ond order even when the strain is taken into account applies 
to the special case r2 = r, = A l 2  = A l 3  = 0 (and then 
xi1 =x12 =X13 = 0), when b = 0, too. This was obtained 
because the connection between the order parameter and 
only one component ul = u,, was taken into account in Ref. 
7. 

Expression (7) contains two unknown functions, p(x) 
and p (x), the equations for which we obtain by minimizing @ 
with respect to them: 
6p"-6p (cp')'-26,p3 (q1 ' )~+2~pq '  

-ap-pip3-yip5-p2p3 cos 4q=0, (10) 
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6p(p"+6,p3cp"+26p'vf+46,pZp'cp'-2ap'+pzp3 sin 4(p=0, (1 1) 

where the prime denotes a derivative with respect to x and 
5 = a + bI. These equations are of the usual form, but the 
last term of (7) introduced here an unknown constant I ,  a 
self-consistent equation for which is obtained after substitut- 
ing the solutions of these equations in (5). 

Let as also find the condition that separates from the 
solutions of Eqs. (10) and (1 I), with different values d of the 
period, a period such that @ reaches an absolute minimum. 
This condition d@/dd = 0, just as relation (9) of Ref. 11, is 
reduced by using (7) to the form 
6 6 i  a P i  
- [ (p') 2+pZ(q,')2] + - p4 (cpf) - - PZ - 
2 2 2 4 

To clarify some details, we consider the constant-ampli- 
tude approximation p = const. In this case (5) yields 
I = .rrp2/2d and, following the procedure used to derive Eq. 
(6) of Ref. 9, we get from (7) 

Here and elsewhere K and E are complete elliptic integrals 
with modulus k, and @, is the thermodynamic potential of 
the commensurate phase (we assume for the sake of argu- 
ment that 0, > 0). 

We use (13) to cast light on the lower bound of @. At 
finite p the value of @ increases without limit as k+O, with 

Therefore @ is bounded from below at all p only if 8,  > b. 
This demonstrates the need for introducing in (2) the term 
containing 6; , with 6; > b + r;/i l , , .  

Introducing the soliton density n = l/d, we obtain 
from (1 3) as k+ 1 

The sign of the last term indicates attraction between the 
solitons, and this leads to a first-order incommensurate- 
commensurate phase transition in accord with Refs. 6 and 8. 
We see that the introduction of a,, which makes correct the 
behavior of @ as k+O (i.e., as n+m), does not change the 
behavior (14) of @ as n+O, something not obvious before- 
hand. 

Consider now an incommensurate phase near the point 
a = a, of the transition from a symmetric phase. As p+O 
Eqs. (10) and (1 1) have the solutions p = const and 
p '  = Q = const, with I =p2Q, so that (cf. Ref. 16) 

Since 6, > b, the denominator in p2 and @ remains positive 
(at p, > O), and therefore the spontaneous deformations do 
not alter the order of the transition from the symmetric to 
the incommensurate phase. 

CASE OF EXACT SOLUTION 

An exact solution of the equations for an incommensu- 
rate phase was obtained in Ref. 11 at definite values of the 
constant. This solution turns out to be convenient also when 
the strains are taken into account. To apply directly the re- 
sults of Ref. 11 we must put 8 ,  = 0. Since we need 8, > b for 
@ to have a lower bound, we must see to it that the @ mini- 
mum corresponding to the incommensurate-phase equilibri- 
um state not land in the region of "unphysical" parameters 
where @+ - W .  

At 6, = 0 Eqs. (10) and (1 1) agree fully with Eqs. (1.3) 
and (1.4) [the number 1 preceding a decimal point labels an 
equation from Ref. 111. Their solution is therefore given by 
Eqs. (1.5)-(1.7) with a replaced by a. These equations must 
be supplemented by an equation for I ,  which is obtained by 
substituting (1.5) in (5): 

where a, = d / 6 ,  q, = a/6. In place of (1.10) and (1.11) we 
obtain from (12) and (7) 

It follows therefore that relation (1.12) remains unchanged. 
At the specified values of the other paremeters, Eq. (15) 

yields for I three roots. The root chosen must tend to zero as 
k+O and k-tl, as follows from (5) (the two other roots tend 
to infinity in these cases). 

Since the expression for @ - bI  2/2 coincides according 
to (1 6 )  with the expression for @ [Eq. (1.10) with the substitu- 
tion o+5], we obtain as k-1, according to (1.21) 

As k-1 we can neglect 1 - k 2  compared with 
I - K -'- ln-2(1 - k 2, [this follows from (1 5)], and we get 
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@ > @, . The incommensurate phase is therefore unstable at 
k z  1; the transition to the commensurate phase occurs be- 
fore k reaches unity, and is of first order. We note that the 
sign of the last term in (13) differs from that in (17), since 
there was no minimization with respect to the period d in 
(13). 

The solution considered sheds light on the behavior of 
the spontaneous strains in the entire region where the incom- 
mensurate phase exists. Consider for simplicity the case 
y = 0, when c = 1 (Ref. 11). Equation (15) takes then the 
form 

This equation must be solved jointly with (1.15), with re- 
placement g-& in the latter. Numerical calculation shows 
that a finite real value of I exists at all k only when 
b < 0.07 An influential fact at b > 0.07 P,/q; is that 
we assume 6, = 0, and some of the results may be unrealistic. 
We shall therefore not consider the case P , 4 ,  which was 
analyzed in Ref. 11. We note that this restriction on b is not 
stringent since the superstructure wave vector go is small at 
a = a,. 

Figure 1 shows a curve at whose points the solution 
considered is in equilibrium (cf. the figure in Ref. 11). It 
shows also the variations of the superstructure wave vector 
Q = a/2d (i.e., the wave vector corresponding to the order 
parameters 7 and {, Ref. 1 1) and the integral I vary on this 
curve. The integral I determines the averaged spontaneous 
strains E, ,  so that at o, = 0 we have from (3) and (6)  E, 
= - xi j  rj I. We note that Q does not vary greatly over the 

entire region of existence of the incommensurate phase, as is 
frequently observed in experiment (see, e.g., Refs. 17 and 18). 

CASE OF SMALL COEFFICIENT P2 
Consider now another case, when a rigorous mathemat- 

ical approach to the solution of Eqs. (10) and (1 1) is possible. 
This occurs in the case of weak anisotropy in the space of the 
order parameter, i.e., at small P2/Pl (Ref. 12), thus supple- 
menting the foregoing analysis that is valid when P2 is close 
to or exceeds p, (see Fig. 1). Since the term with the coeffi- 
cient y does not play a substantial role in the incommensu- 
rate-commensurate phase transition, we put for simplicity 
y = 0. We shall now, however take into account, however, 
the terms with the coefficient 6,, since they can play a notice- 
able role, as was shown above. Allowance for these terms 
requires that the details of the solution be modified some- 
what compared with Ref. 12. 

We introduce the dimensionless parameters x ,  0 ,  p, 5 
and the functions r, $, and f: 

FIG. 1 .  Relation between a/ao and fi2/fi1 at which the employed solu- 
tion corresponds to an equilibrium state of the incommensurate phase 
(curve 1); the wave vector of incommensurate superstructure Q (curve 2, 
whichshows Q /qo)and theintegral I (curve 3, whichshows/3,I/a&,)asa 
function of a/ao. The arrows mark the point of transition to the commen- 
surate phase. The curves were plotted at bq;//3, = 0.02, and the point 
indicated corresponds to a = - 1.51a0 (k = 0.994). 

We proceed next as in Ref. 12. In the region where 
sin 2$is not small, which corresponds to a domain wall (soli- 
ton), we use Eqs. (10) and (1 l), the solution of which we seek, 
after making the substitution (1 8), in the form 

m m 

For the first terms we obtain 

( sin 2$ ( ( s i n2$ (  
f l  = , f z = -  

f 'i' 2 ~ 1 ; ~ '  . 
Since the succeeding terms contain sin 21) in the denomina- 
tor [R, -(sin 2$)3 - " , fn -(sin 21,b)~ - " 1, the series (19) con- 
verge asymptotically, e.g., in the interval 0<$<a/4, if 
0 ($)>P 'I2. 

At small $, which corresponds to the inner region of the 
domain, where the structure is practically commensurate 
(sin 2$z0), we substitute (18) in (10) and (11) and seek the 
solution of the latter in the form 

m m m 

where p is an auxiliary ~arameter. l 2  The first terms are 

The function $ was chosen for convenience, to have in the 
commensurate phase 2$ = 0 if P2 is assumed. where y =pgo x ,  and the constant a is connected with ,u by 
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a relation that takes in first-order approximation the form 
a2 =p/8x2. The series (20) are asymptotic if x is not too 
large, and in this case 0 ($) < 1. The convergence regions of 
the series (19) and (20) overlap and can be joined, e.g., at 
$-P 'I4 and at an appropriate value of x obtainable from 
(20). 

To supplement the procedure of Ref. 12 we must calcu- 
late I. This can be done by substituting the series (19) and 
(20) in (5). The thermodynamic potential is obtained from 
(18), and in the upshot we get 

It is clear hence that @+@, as p-0, the last term predomi- 
nates over the penultimate one, and @ > @, . The spontane- 
ous strains cause therefore the incommensurate-commen- 
surate transition to be in this case of first order. Note that in 
this case (small P2), as can be seen from (2 I), we cannot put 
6, = 0. 

The results can be compared with those of Ref. 19, 
where it was shown that for ordinary (commensurate) transi- 
tions, if the heat capacity of the solid becomes infinite at the 
transition point when no account is taken of the strains, in- 
teraction of the mode corresponding to the order parameter 
with acoustic phonons leads to a first-order transition. The 
heat capacity of the incommensurate phase diverges as the 
point of transition to the commensurate phase is ap- 
proached, if the strains are not taken into a~oun t . " "~  We 
have shown in the present paper that allowance for the spon- 
taneous strains also leads to a first-order transition, and de- 
duced this on the basis of the Landau theory of the thermo- 
dynamic potential. If the crystal with the incommensurate 
phase is regarded as isotropic, allowance for the strains, just 
as in the isotropic model considered in Ref. 19, does not 
change the order of the transition if the shear modulus is 
zero, inasmuch as in this case b = 0 according to (9). 

"CLAMPED" CRYSTAL 

We consider now a clamped crystal, i.e., a crystal in 
which there are no macroscopic strains overaged over space 
(E, = 0). Local strains cannot be eliminated by homogen- 
eous stresses, so that one cannot assume ui = 0. At E, = 0 
we have from (3) 

Substituting this in (6) we get ui = ri I,  thus determining the 
stresses needed to clamp the crystal. Substituting next all 
these relations in (4) and taking (1) into account we get 

where bo>O, since A l l  > 0 always. 
In expression (23) for a, the sign preceding the last term 

turns it diifferent from that in (7), leading to reversal of the 
signs of the last terms in (17) and (21). In these cases we 
obtain there @ < a,. The incommensurate-commensurate 
phase transition in a clamped crystal is thus of second order 
irrespective of the presence of local strains determined by the 

stresses (3) and (22). 
The transition will have, however, a character different 

from that obtained by simply putting ui = 0. Consider this 
with Eq. (14) as the example. If we assume ui = 0, i.e., put 
b = 0 in (14), we find as the transition point is approached 
( p-pc ) that n - /In( p, - p)  1 - ', and this determines the dis- 
tinguishing features of such a transition. If, however (23) 
is taken into account, replacing b in (14) by - b,, the expo- 
nential can be neglected and, leaving out 8 ,  for simplicity, we 
get from ( 14) as p-p, : 

n 
@=mC+np,2 (Pz6)'" (p-pc) + - b,p,ln2, 

8 

This is the expression for the usual thermodynamic po- 
tential of the Landau parameter, with an order parameter 
n1I2, so that the incommensurate-commensurate transition 
in a clamped crystal will be a second-order phase transition. 
The equilibrium of the soliton density is then given by 

n = 
16pz" I6Pz2 (a-a,) 

r ~ ' b , q ~ ~ 6 " '  (pc-p)= n 5 b o S a 3  (pi-@,) ' (24) 

where P2 = - a/( Dl - P2), and a, is the value of a at the 
transition point. A similar result was obtained in Ref. 20 for 
a monolayer of atoms on an organic substrate (the condition 
El  + E, = 0 was used). 

An incommensurate-commensurate phase transition in 
a clamped crystal has nonetheless certain peculiarities. If a 
is regarded as an ordinary linear function of temperature, 
the soliton density decreases abruptly as a*, because of 
the presence of the small term q, in the denominator of (24). 
Let us find the heat-capacity discontinuity in this transition: 

Here, too, go is in the denominator and the jump will be 
large. We note that Eqs. (24) and (25) are, strictly speaking, 
valid only for small P2, when the constant amplitude ap- 
proximationlo is valid, and must be regarded as approxima- 
tions if the p2 are not small. 

We consider in conclusion the incommensurate phase 
at arbitrary stresses. In this case, using (6), we obtain in lieu 
of (7) 

The increment to the integral is zero if 

If the stresses satisfy this equation, the incommensurate 
phase behaves as if no account were taken of the stresses, 
although the latter are present and are given by (3) and (6). In 
the isotropic case and under uniform hydrostatic stresses 
(a, = u, = a,) we obtain from (2) (up is the Poisson coeffi- 
cient 13) 
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At stresses intermediate between the two values of (28), 
the crystal behavior relative to the incommensurate-com- 
mensurate phase transition is that of a clamped one; an anal- 
ogous stress range is obtained also from (27). Note that the 
term "clamped crystal" was used above in a somewhat arbi- 
trary sense, since not all the terms responsible for the ther- 
mal expansion were taken into account in the thermodynam- 
ic potential (cf. Ref. 21). The arguments just advanced show 
that the results deduced from (23) hold also in a stress range 
wider than that in which the crystal is clamped in the arbi- 
trary sense indicated above. 

The author thanks A. P. Levanyuk and D. G. Sannikov 
for discussions that prompted this study. 
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