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The linear response of polarization to a strain gradient is examined. It is shown that it is possible 
to distinguish four contributions of different physical origin to this effect, namely, two bulk and 
two surface contributions. A microscopic theory is developed for the bulk contributions, using 
the rigid-ion approximation, and a phenomenological description is developed. It is shown that 
the bulk effect is different for static inhomogeneous strain and a propagating sound wave. The 
magnitude of the effect is estimated for the surface contribution. It is shown that the bulk and 
surface contributions are of comparable order of magnitude. The feasibility of an experimental 
investigation of the effect in ordinary dielectrics and ferroelectrics is discussed. 

1. INTRODUCTION 

The flexoelectric effect consists of the appearance in an 
inhomogeneously deformed body of dielectric polarization 
proportional to the strain gradient. This phenomenon was 
first predicted theoretically by Mashkevich and T~lpygo,"~  
who studied the long-wave lattice dynamics of crystals with 
diamond structure. A phenomenological description of the 
effect was proposed by K ~ g a n . ~  It effectively takes into ac- 
count terms of the form 

in the free energy density, where w is the displacement v$ctor 
and P is the polarization.'' The symmetry of the tensor f was 
analyzed by Indenbom, Loginov, and O ~ i p o v . ~  

Although the flexoelectric effect is possible in crystals 
of any symmetry, there is particular interest in centrosym- 
metric crystals that do not exhibit the piezoelectric effect. 
Thus, the flexoelectric effect plays an important role in the 
description of the interaction between elastic strain and free 
electrons in a nonpiezoelectric crystal. According to the esti- 
mates reported by Tolpygo2 and K ~ g a n , ~  the flexoelectric 
effect and the strain potential ensure the same order of mag- 
nitude for the interaction energy between an acoustic wave 
and free carriers. 

Until now, it has always been implicitly assumed in dis- 
cussions of the flexoelectric effect that its "general proper- 
ties" are analogous to the properties of the piezoelectric ef- 
fect. In particular, it is considered that: (1) under the same 
macroscopic electrodynamic conditions, the effect manifests 
itself in the same way in statics and dynamics, i.e., under the 
conditions of inhomogeneous static strain and propagating 
acoustic wave and (2) the effect is essentially a bulk effect, 
i.e., when it is determined from changes in the total polariza- 
tion of a finite specimen under homogeneous strain, the sur- 
face contribution is small in the parameter d /L  (d is the 
thickness of the disturbed surface layer and L is the smallest 
of the characteristic linear dimensions of the specimen).'' 

In this paper, we discuss the flexoelectric effect in detail 
and show that it does not exhibit any of these properties. In 
particular: (1) the proportionality factor between polariza- 

tion and the strain gradient is different in a propagating wave 
and in static inhomogeneous strain, where, in general, the 
difference is of the order of these quantities themselves and 
(2) under inhomogeneous strain of the crystal, the surface 
contribution to the average dipole-moment density, evaluat- 
ed for the specimen as a whole, may turn out to be of the 
order of the bulk contribution. We shall also discuss the 
properties of the piezoelectric effect in pyroelectrics, since 
this question turns out to be fundamentally related to the 
surface contribution to the flexoelectric effect. 

Our results are in conflict with the results reported on 
the flexoelectric effect in Ref. 4, and with the work of Born 
and Huang6 and Martin7 on the piezoelectric effect in pyro- 
electrics. The reasons for this discrepancy will be discussed 
below. 

Section 2 is devoted to the phenomenological descrip- 
tion of the flexoelectric effect. Section 3 and the Appendix 
give a solution for the response of optical displacements to a 
strain gradient. Section 4 uses the results of Section 3 to 
obtain a microscopic expression for the phenomenological 
parameters introduced in Section 2 in the description of the 
flexoelectric effect. Section 4 also analyzes the piezoelectric 
and flexoelectric response to a spatially uniform perturba- 
tion in a finite specimen, and provides a more precise defini- 
tion of the flexoelectric effect together with a discussion of 
the surface contribution to it. Section 5 reviews all these re- 
sults in the case of an ordinary dielectric and a ferroelectric. 
It also gives a critical review of Ref. 4. 

2. PHENOMENOLOGICAL DESCRIPTION 

One of the manifestations of the flexoelectric effect is 
that an acoustic wave propagating in a crystal of any symme- 
try is accompanied by a polarization wave whose amplitude 
is proportional to that of the strain-gradient wave. Simple 
phenomenological considerations can be used to verify that 
the proportionality factor between the polarization and the 
strain gradient is different for the sound wave and the sta- 
tionary strain gradient. Actually, the symmetry of any crys- 
tal enables us to include not only the terms (1) in the expres- 
sion for the free energy density, but also the additional term 
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in the phenomenological expression for the kinetic energy 
density. Inclusion of the additional terms (1) and (2) in the 
phenomenological expression for the density of the Lagran- 
gian leads to the following equations of motion for the acous- 
tic displacements and polarization: 

h 

where E is the macroscopic electric field, x is the permittivi- 
ty tensor, E is the tensor of elastic moduli, and p is the den- 
sity. 

Analysis of (3) and (4) will readily show that the rela- 
tionship between polarization and strain gradient is different 
in the case of static strain and an acoustic wave. In the for- 
mer case, the two are related by the tensor xap fm,, and, in 
the second, by ,yzp( f + ,up5~5y6,/~), The contribution 
due to the tensor f will be called the bulk static flexoelectric 
effect and the additional contribution that appears in the 
dynamic situation (related to the tensor 3) will be called the 
dynamic flexoelectric effect. We shall show that these two 
contributions are of the same order in the case of the sound 
wave. If we start with the fact that the contribution of the off- 
diagonal part of the kinetic energy (2) should, in general, be 
of the same order as its usual diagonal part, we find that the 
order of magnitude estimate for the components of the ten- 
sorp is p -M /e, where M is the average mass of an atom in 
the crystal and e is the electron charge. If we combine this 
with the standard estimatec-e2/a4,p -M/a3 (a is the char- 
acteristic atomic separation), we find thatpc/p -e/a. On the 
other hand, f-e/a (Refs. 1-4). We thus see that the two 
contributions are, in fact, of the same order in this case. 

Within the framework of the proposed phenomenologi- 
cal scheme, the flexoelectric response in the static and dy- 
namic situations may be essentially different. 

It is readily seen that the above discussion is based on 
the assumption that the tensor ,i2 differs from zero. At first 
sight, this is a surprising assumption in view of the fact that 
the diagonal form of the kinetic energy is employed in micro- 
scopic calculations. Let us examine this apparent contradic- 
tion. 

Microscopic calculations commonly employ the Jacobi 
coordinates (see, for example, Ref. 8) and the coordinate of 
the center of gravity of a unit cell is identified in the long- 
wave limit with the acoustic displacement vector w. The mi- 
croscopic potential energy density of the crystal, looked 
upon as a function of the normal phonon coordinates P and 
space derivatives of w and P then turns out to depend formal- 
ly on the distribution of the masses of the atoms in the unit 
cell. It is clear that the introduction of potential energy that 
depends on the mass distribution is incorrect. However, this 
error does not show up in the lowest orders in spatial disper- 
sion: the elastic constants and piezoelectric moduli calculat- 
ed in the classical approximation using this potential energy 
do not depend on the mass distribution. However, when the 
flexoelectric response is calculated, the error does show up 
because the static flexoelectric coefficient is found to depend 

on this distribution. It follows that, when the flexoelectric 
effect is described, we can no longer identify w with the posi- 
tion of the center of gravity of the cell and w must, in fact, be 
redefined so that the physically meaningless dependence of 
the static potential on the mass distribution is removed. It is 
clear that this redefinition will, in general, mean that the 
kinetic energy will no longer be diagonal, so that the appear- 
ance of the off-diagonal term (2) in the phenomenological 
expression for the kinetic energy density is perfectly under- 
standable. Henceforth, our microscopic description will not 
rely on the use of transformations of coordinates that depend 
on the mass distribution in the unit cell, so thai we shall 
automatically obtain an expression for the tensor f that will 
be independent of the mass distribution, whilst the expres- 
sion for /2 will depend on this distribution. 

The above phenomenological scheme describes the bulk 
effect. However, when the polarization response to a con- 
stant strain gradient in a finite specimen is examined, we 
have to take into account surface as well as bulk contribu- 
tions. It is known that the surface contributions are small in 
the case of the piezoelectric e f f e ~ t , ~  but this is not so in the 
flexoelectric effect, for which there are, in fact, two essential 
surface contributions. 

One of these contributions is due to a surface piezoelec- 
tric effect, i.e., a piezoelectric effect in the thin surface layer 
in which the lattice is distorted by the presence of the sur- 
face. It turns out that this can simulate the flexoelectric ef- 
fect. Since this contribution can be reduced to another effect, 
it will be of no interest in the present context, and we shall 
limit ourselves to a brief analysis of it when we discuss the 
final results. 

The second contribution cannot be reduced to other ef- 
fects and, at first sight, it is not obvious that it must appear. 
We shall not formulate a rigorous phenomenological scheme 
for its description, and will limit ourselves to showing that 
this contribution must appear. We shall then estimate it and 
explain it qualitatively (see the end of Section 4). 

3. OPTICAL DISPLACEMENTS IN AN INHOMOGENEOUSLY 
DEFORMED CRYSTAL LATTICE 

The aim of this section is to find the displacements with- 
in the unit cell in an inhomogeneously deformed crystal 
when these displacements are proportional to the strain gra- 
dient. We shall start with the equations for the displace- 
ments r:, of atoms from their respective equilibrium posi- 
tions (n is the lattice vector,p is the number of an atom in the 
unit cell, and a is the Cartesian coordinate): 

h 

where m, is the mass of thepth atom and Q is the short-rang 
part of the matrix of force constants. The contribution to Q 
of the long-range part of the dipole-dipole interaction will be 
taken into account, whenever necessary, within the frame- 
work of macroscopic electrodynamics. 

We are interested in only the long-wave acoustic solu- 
tions of (5), and will assume that the wave vector K satisfies 
the inequalities LsK -')a. Born and Huang6 investigated 
only the elastic and piezoelectric properties of the lattice, 
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i.e., they confined their attention to the solution of (5) in the 
first order in Ka, and then wrote down the condition for the 
correction of order (Ka)'. We are interested in the response 
to the strain gradient, and will therefore have to find the 
solution in the next order in Ka. We shall repeat the set of 
iteration equations obtained in Ref. 6, and then provide a 
resum6 of the analysis of these equations given in Ref. 6, 
since both will be useful in the discussion of our results. 

It was shown by Born and Huang6 that, if we seek the 
acoustic solution of (2) in the form 

rapn = Uap exp [iK (n+xp) - iot ] (6) 

(x, is the radius vector of thepth atom in the unit cell), the 
contributions UF', UF', and Uf' to Up in the zeroth, first, and 
second orders in Ka, respectively, can be found from the 
following set of iteration equations: 

( 0 )  ( 0 )  Aap,a'p' Ua'p'=O, (7) 

~ k i ! ~ ~ ~ ~  uLfLv = - i ~  6 A'"@ ap,avp '  u::;' 7 (8) 
(0)  (2)  Aap,a~P~Ua,P~=- 

where 

Moreover, Born and Huang6 established the following 
properties of this ~ys tem.~ '  The solution of (7) is an arbitrary 
vector that is independent ofp: 

The consistency condition for the higher-order iterations is 
that the right-hand sides of the corresponding equations are 
orthogonal to any such vector. The consistency condition of 
(8) for UF1 is satisfied automatically because of the particular 
properties of the matrix 2 "'. Its solution is 

where f;. is a specially defined inverse of the matrix Â  (O'. The 
consistency condition of (9) for UF' becomes the equation 
[after the substitution for UF' from (1 l)] for the propagation 
of sound in the approximation of elasticity theory. It has the 
form 

This concludes the discussion given in Ref. 6. The response 

of displacements within the cell to a strain gradient UFJ, in 
which we are interested, can be found from (9). Substituting 
(10) and (1 1) in (9), and using the consistency condition (12) 
for UF', we have 

where s is the number of atoms per unit cell. 
It is readily verified that, in the space-time representa- 

tion, relations (1 1) and (13) assume the form 

where = dw,/dxB is the unsymmetrized strain tensor. 
Expression (14) was used in Ref. 6 in the description of the 
piezoelectric effect. Expression (15) will be used below in the 
description of the flexoelectric effect. 

To conclude this section, we make one further impor- 
tant remark in relation to the range of validity of (14) and 
(15). In deriving (14), the consistency condition of (8) was 
satisfied identically, so that (14) can be justifiably used both 
for static and time-dependent deformation. Equation (9) was 
used to obtain (15). Its consistency condition (12) is the dis- 
persion relation for acoustic waves in the approximation of 
the theory of elasticity, so that expressions (13) and (15) were 
obtained only for w and K satisfying this dispersion relation. 
Hence, strictly speaking, expression (15) cannot be used in 
the case of inhomogeneous static deformation. We shall 
show in the Appendix that (1 5) is valid in the static case as 
well. 

4. DIELECTRIC POLARIZATION IN INHOMOGENEOUSLY 
DEFORMED CRYSTAL LATTICE 

In the last section, we found the displacements of the 
sites of an inhomogeneously deformed crystal lattice from 
their equilibrium positions in the undeformed lattice. For 
the microscopic description of the flexoelectric effect, we 
must now determine the response of the polarization to these 
displacements. In the general case of a crystal of arbitrary 
degree of ionicity, this response can be obtained within the 
framework of the approach employed by Martin7 to describe 
the piezoelectric effect. However, in this paper, we shall con- 
fine our microscopic analysis to the approximation of unpo- 
larizable point ions (this was also used in Ref. 4). In our view, 
this is a useful approach because even this approximation 
will exhibit all the basic features of the phenomenon whilst, 
at the same time, the analysis remains simple and lucid. 

Let us begin with the dynamic case. We shall find the 
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polarization response to the strain gradient in the acoustic 
wave. By definition, the change SP  in the polarization is re- 
lated to the change S p  in the bound charge density by 

div 6 P = - 6 p .  (16) 

Let us take the acoustic wave in the crystal in the form given 
by (6), so that, starting with (16), we can readily obtain the 
amplitude P, of the polarization wave accompanying sound 
in the form 

where Q, is the charge of thepth atom in the unit cell and v is 
its volume. It is clear that (16) enables us to determine only 
the longitudinal part of the polarization. The transverse part 
of the polarization is defined in the usual way (see, for exam- 
ple, Ref. 9). Using the expression for Up obtained in the last 
section, we can now determine the contributions to the po- 
larization in the lowest orders in Ka. Substituting (10) in (17), 
we verify that there is no contribution in the zero order (this 
is the approximation of the theory of elasticity). This means 
that, in the approximation of the theory of ela~ticity,~' the 
acoustic wave propagating through the crystal lattice of ar- 
bitrary symmetry will not produce a polarization wave. This 
is a consequence of the fact that the unit cell is electrically 
neutral. Substituting (1 1) in (17), we have, in first order in 
spatial dispersion, 

This is the result obtained by Born and Huang for the piezoe- 
lectric effect in the rigid ion modeL6 The flexoelectric re- 
sponse appears in the next order in spatial dispersion. Substi- 
tution of (13) in (17) yields the following expression for this 
response in the acoustic wave: 

(PK) a 

(19) 
Comparison of (19) with (4) gives us th t  microscopic 

expression for the phenomenological tensors f and ,ii intro- 
duced above: 

The tensor assumes a particularly simple form in the case 
of the diatomic crystal with ion masses and charges m,, Q 
and m,, - Q, respectively: 

~ a e = 6 a a  (mi--m2) /2Q, (21) 

which follows from (20) when we take into account the ob- 
vious expression for the susceptibility (see, for example, Ref. 
6): 

~ a p = v - ' Q p r a p ,  B P  ' Q P , .  

Let us now consider inhomogeneous static deforma- 
tion, confining our attention to the simplest situation with a 
constant strain gradient. We shall find the linear response of 
mean polarization in a crystal of initial volume V to inhomo- 
geneous deformation specified by the unsymmetrized strain 
tensor 

According to Ref. 10, the polarization averaged over the 
crystal is the mean dipole moment density, so that 

where 

is the volume of the deformed crystal, and R ," and ," are the 
radius vectors of the lattice sites before and after deforma- 
tion, where 

1 d e a p  + - - R ~ ~ " R ~ ~ ~ + U ~ ~ '  +u,':' . .. . (23) 
2 d x ,  

The second and third terms in this expression represent the 
displacements of sites in the approximation of the theory of 
elasticity. The fourth and fifth terms are the contributions to 
the displacements in the first and second orders in spatial 
dispersion, which are given by (14) and (15). Using (22) and 
(23), we finally obtain the expression for SP: 

where 

in which Pi and QaB are the mean dipole- and quadrupole- 
moment densities of the charge distribution in the unde- 
formed crystal. The first three terms in (24) correspond to 
the response of the mean polarization of the crystal to the 
deformation, and the last three to the response to the gradi- 
ent. From the standpoint of flexoelectric effects, we are only 
interested in the last three terms, but we shall see below that 
the correct interpretation of these terms will be based on the 
correct interpretation of the first three "piezoelectric" 
terms. There appears to be no published work containing the 
correct interpretation of the piezoelectric effect in this for- 
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mulation of the problem. We shall therefore begin with an 
analysis of the piezoelectric contribution. 

Expressions similar to the first three terms in (24) were 
previously encountered in the literature, for example, in the 
book by Born and Huang6 and in Martin's paper.' It was 
considered in these publications that the first and second 
terms were nonzero only in pyroelectrics, with Po under- 
stood to be a constant of the medium, i.e., the spontaneous 
polarization of the pyroelectric material. Roughly speaking, 
the first term was due to the change in the dipole moment 
vector of the unit cell and the second was obviously a conse- 
quence of the change in its volume. Despite its physical at- 
traction, this interpretation cannot be regarded as satisfac- 
tory. In fact, according to (25), Po is the mean dipole moment 
density evaluated over the entire crystal, i.e., it is the ratio of 
its total dipole moment to its volume. However, it is well- 
known1' that the total dipole moment of the crystal may 
depend on its boundary, and may be different from zero for a 
crystal of any symmetry. Hence, it is clear that Po is unrelat- 
ed to spontaneous polarization, and is in the first instance 
determined by the surface structure of the crystal. 

However, the definition of the piezoelectric effect in 
crystal physics is constructed so that these terms do not con- 
tribute. According to the classic textbook on crystal physics 
by Nye," the piezoelectric effect is not the change but the 
appearance of polarization in response to mechanical stress, 
i.e., the appearance of a dipole moment in a crystal whose 
initial dipole moment was reduced to zero by the presence of 
free charges deposited on its surface (for example, from the 
ambient atmosphere). The product VPO must then be under- 
stood [in view of the derivation of (24)] to be the total dipole 
moment of all the charges in the crystal, including the free 
charges deposited on the surface. The definition of the pie- 
zoelectric effect is thus devised so that Po must be regarded 
as identically zero, and the first two terms in (24) do not 
contribute to the effect. Since all standard methods of inves- 
tigating the piezoelectric modulus in the spatially homogen- 
eous problem correspond to the definition of the piezoelec- 
tric effect as given in crystal physics, the terms noted above 
are not seen experimentally. The piezoelectric effect is thus 
described by only the third term in (24). When the expression 
for U"' given by (14) is taken into account, this term corre- 
sponds to the result that follows from the long-wave method, 
i.e., (1 8). More precisely, this correspondence obtains only to 
within the order of magnitude of the ratio of the volume of 
the surface layer in which (14) is incorrect to the volume of 
the entire crystal. To this precision, the piezoelectric modu- 
lus is independent of the properties of the surface, and is the 
same in static and dynamic cases. To conclude our interpre- 
tation of the piezoelectric contribution, we note that, both in 
the static spatially homogeneous and "acoustic" cases, the 
entire above contribution appears only in the first order in 
spatial dispersion. The contribution that arises in the ap- 
proximation of the theory of elasticity turns out to be ficti- 
tious. The analysis of the fourth, fifth, and sixth terms in (24) 
will now be carried out by analogy with the analysis of the 
piezoelectric terms. 

We begin with terms that arise in the approximation of 
the theory of elasticity, i.e., the fourth and fifth terms in (24). 

If we use the considerations employed above in the analysis 
ofthe first two terms in (24), QaB and I will not be equal to the 
corresponding averages evaluated over the unit cell, but will, 
in fact, be the averages over the entire volume of the crystal. 
It is readily verified that they are analogous to Po in that they 
are determined by the structure of the crystal surface. For a 
correct interpretation of the contribution that we are consid- 
ering, we must improve the crystal-physics definition of the 
flexoelectric effect so that it corresponds to the method 
adopted to measure it in the spatially-homogeneous formu- 
lation of the problem. We shall define the flexoelectric effect 
as the appearance of polarization in an inhomogeneously 
deformed crystal, which is proportional to the strain gradi- 
ent when the quadrupole moment of the undeformed crystal 
is zero. This definition corresponds to the situation where 
free charges deposited on the surface of the crystal compen- 
sate not only the dipole but also the quadrupole moment of 
the crystal. Compensation of the quadrupole moment is ob- 
vious on the basis of energy considerations, and has also been 
frequently verified experimentally (see, for example, Ref. 
12). Thus, if we use our definition, we must set Qap = 0, so 
that the fourth term in (24) does not contribute to the effect. 
At the analogous stage in the analysis of the piezoelectric 
effect, there were no contributions due to the surface. In the 
case of the flexoelectric effect, on the other hand, there re- 
mains the term containing I ,  since the above considerations 
do not allow us to set I equal to zero. The point is that the 
requirement that Q, = 0 corresponds to the requirement 
that the quadrupole component of the field around the crys- 
tal must be zero. On the other hand, the distribution of 
charges for which QaB = 0 but I # 0 does not produce a field 
around the crystal in the quadrupole approximation. It is 
also clear that compensation of the multipole field compo- 
nent should not, in general, lead to the vanishing of I ,  since 
the higher multipole moments correspond to the expansion 
of the angular dependence of the charge density in terms of 
higher-order spherical functions,13 whereas I is the projec- 
tion onto the zero-order Legendre polynomial orthogonal to 
them. The net result is that, using (24) and (1 5 ) ,  we can write 
the flexoelectric contribution to polarization in the form 

where? is defined by analogy with I except that, when the 
sum is evaluated, we have to take into account all the charges 
in the original crystal, including surface charges which en- 
sure that the macroscopic electric field is zero both inside 
and outside the crystal. This formula is valid to within a 
quantity of the order of the ratio of the volume of the surface 
layer in which (15) is incorrect to the volume of the entire 
crystal. 

Comparing (26) with the flexoelectric response (19) ob- 
tained for an acoustic wave, we see that only the last two 
terms of the equations are the same. These are the contribu- 
tions of the bulk static flexoelectric effect. In accordance 
with the phenomenological analysis, the dynamic flexoelec- 
tric effect [first term in (19)] does not appear in statics. How- 
ever, in statics, there is a new term in the case of the bounded 
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crystal, namely, the first term in (26). It involves the quantity - 
I,  where 7 itself depends on I and on the disposition on the 
surface of the initial crystal of the charges responsible for 
compensating its multipole moments. It is clear from (25) 
that I is also a function of the structure of the crystal surface. 
The quantity 7 and, with it, the entire contribution corre- 
sponding to the first term in (26) are thus exceedingly sensi- 
tive to the surface properties of the crystal. We can therefore 
call this the surface flexoelectric effect.5) Simple estimates 
show that 7-e/a. Since f-e/a, we see that the contribution 
of the surface flexoelectric effect is of the same order as the 
bulk contribution in ordinary dielectrics [cf. (20) and (26)l. 

To conclude this section, let us try to elucidate qualita- 
tively the origin of the above contribution to the flexoelectric 
effect. 

The static bulk flexoelectric contribution is due to the 
fact that the lattice that has been inhomogeneously de- 
formed in accordance with the laws of the theory ofelasticity 
is not in equilibrium from the point of view of displacements 
within the unit cell. It is the displacements that are necessary 
for true equilibrium that give rise to this contribution to the 
effect. There is an analogy here with the piezoelectric effect; 
a piezoelectric regarded as uniformly deformed in the ap- 
proximation of the theory of elasticity [see (23)] is not in 
equilibrium from the standpoint of polar optical displace- 
ments, whereas a crystal in which each atom is a center of 
inversion is in true equilibrium under this deformation, and 
in this case the piezoelectric effect occurs in the former. 

The dynamic contribution to the effect will formally 
vanish when the masses of the atoms in the unit cell are equal 
[cf. (20) and (21)], and it may then be shown that the effect is 
due to the nonuniform mass distribution among the cell 
charges. It is clear that this nonuniformity will not manifest 
itself in statics, but will lead to additional deviations from 
the approximation of the theory of elasticity in the dynamic 
case. 

Before we proceed to the interpretation of the surface 
contribution to the flexoelectric effect, let us elucidate the 
physical significance of7. It follows from the definition that? 
is the mean density of the trace of the quadrupole moment 
that is defined not in a trace-free manner (see, for example, 
Ref. 9). It is known that the macroscopic field E does not 
depend on this quantity,13 but it seems to us that the jump in 
the potential across the boundary of the body does depend 
upon it. To elucidate this, let us suppose, to begin with, that? 
corresponds to a constant trace density inside the body. It is 
then readily verified that the potential produced by this den- 
sity is 

Hence, it follows that the jump in the potential across the 
surface is equal to 2 ~ 7 .  Strictly speaking, additional justifi- 
cation is necessary before this result can be used for a crystal. 
However, it is known that the potential distribution obtained 
in the analogous approximation for the quadrupole-moment 
component producing the macroscopic field is in reasonable 
agreement with experiment (see, for example, Ref. 12). This 

enables us to consider that the proportionality betweenIand 
the jump in the potential across the surface will also occur in 
the case of the discrete charge distribution. It is clear that, in 
a real crystal, this jump occurs across the electric double 
layer of atomic  dimension^.^' This type of layer can be 
formed during the compensation of the multipole moments 
of the crystal by surface charges. 

- The surface flexoelectric effect is expressed in terms of 
I ,  so that we assume that it is due to the above electric double 
layer. The origin of this effect can be explained as follows. In 
the initial crystal, all the multipole moments of the double 
layer are zero, and its only macroscopic parameter is the 
scalar magnitude of the jump across it, which is proportional 
to?. Under uniform strain, the layer acquires mean (but only 
even) multipole moments because an odd-rank tensor cannot 
be constructed from the strain tensor and ?. Odd moments 
will also appear under inhomogeneous deformation, includ- 
ing polarization proportional to the strain gradient. This, in 
fact, constitutes the flexoelectric effect. 

5. DISCUSSION OF RESULTS 

As indicated above, there is particular interest in the 
flexoelectric effect in nonpiezoelectric crystals. Let us exa- 
mine the consequences of the results obtained in this paper 
from the point of view of the polarization response to the 
strain gradient in such crystals. We begin with an ordinary 
dielectric and an intrinsic ferroelectric. 

Summarizing our results, we note that, in a crystal 
whose bulk symmetry does not allow the piezoelectric inter- 
action, the appearance of polarization proportional to the 
strain gradient can be due to four mechanisms of different 
physical origin, namely: (1) the bulk static flexoelectric ef- 
fect, (2) the bulk dynamic flexoelectric effect, (3) the surface 
flexoelectric effect, and (4) the surface piezoelectric effect. 
The first three mechanisms have already been discussed in 
detail, and it has been noted that, in an ordinary dielectric, 
the contributions of these mechanisms are, generally speak- 
ing, of the same order. Let us therefore examine the fourth 
contribution and show that it can be of the order of the first 
three in the case of an ordinary dielectric. 

In a nonpiezoelectric material, the contribution to po- 
larization, which appears in the first order in spatial disper- 
sion and governs the piezoelectric effect, is zero only in the 
interior of the specimen. Near the surface, the lattice is dis- 
torted and the above contribution may appear in the distort- 
ed surface layer. It is clear that surface piezoelectric proper- 
ties must depend on the structure of the surface and the 
crystallographic orientation of the crystal faces (a discussion 
of the analogous problems for ferroelectrics can be found in 
the paper by Levanyuk and Minyukov14), and, in particular, 
they may be different on opposite faces of the specimen. In 
this situation, surface effects in the spatially inhomogeneous 
experimental scheme can simulate not only the response, 
even if small, to the bulk strain, but also the response to the 
bulk strain gradient. Let us elucidate this by considering an 
example. Suppose that we have a dielectric plate, and the 
response to the strain gradient is orthogonal to a pair of plate 
faces. Suppose further that the piezoelectric moduli in the 
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surface layers are A ,  and A,, where A, corresponds to the 
layer with the greater strain. It is readily verified that, in this 
situation, the mean piezoelectric modulus must be incre- 
mented by an amount of the order of (A, + A,)d /L, where d 
is the thickness of the distorted surface layer and L the thick- 
ness of the plate, and there is also an increment to the mean 
flexoelectric coefficient of the order of (A, - A,)d. Using the 
estimated piezoelectric moduli ( A , d , ~ e / a 2 ) ,  and assum- 
ing that the scale d is determined by the characteristic inter- 
atomic separation a, we see that, in an ordinary dielectric, 
the contribution of the surface piezoelectric effect to the 
average flexoelectric coefficient is of the order of e/a, i.e., it 
is of the same order as the contribution of the bulk flexoelec- 
tric effect. 

We shall now analyze the polarization response to the 
strain gradient in the centrally symmetric paraphase of a 
ferroelectric. As we pass from an ordinary dielectric to a 
ferroelectric, the order-of-magnitude estimates of the contri- 
butions of the above four mechanisms are found to change in 
a different way. The two bulk contributions exhibit an anom- 
aly at the phase-transition point, and the order-of-magni- 
tude estimates obtained for them are greater by a factor of 
approximately x than for ordinary dielectrics. This can be 
verified by analyzing both the phenomenological relation (4) 
and the microscopic expression (19). The surface flexoelec- 
tric contribution shows no anomaly at the phase-transition 
temperature and the corresponding order-of-magnitude es- 
timates for a ferroelectric and ordinary dielectric should not, 
in general, be different. This follows from the fact that ?, 
which appears in these estimates [see (25 ) ] ,  is unrelated to 
any of the dynamic lattice parameters and should not be 
sensitive to the ferroelectric properties of the crystal. A uni- 
versal estimate of the order of magnitude and of the tempera- 
ture dependence cannot be made for the last contribution, 
i.e., the contribution due to the surface piezoelectric effect. 
This is so because the surface piezoelectric effect itself is very 
sensitive to the orientation of the crystal faces, the state of 
the surface from the standpoint of the surface phase transi- 
tion, and a number of other factors.I4 The analysis of this 
contribution may form the subject of a separate paper. Here, 
we merely note that the contribution of the surface piezo- 
electric effect to the polarization response to the strain gradi- 
ent in a ferroelectric may exhibit an anomaly. This possibil- 
ity is physically related to the fact that the characteristic 
width of the distorted surface layer in a ferroelectric may be 
determined not by the size of the characteristic atomic sepa- 
ration, but by the bulk value of the correlation radius.I4 The 
temperature anomaly in the piezoelectric moduli of this lay- 
er may also lead to an anomaly in the above contribution. 

Let us now examine possible experimental observations 
of the flexoelectric effect. We begin with the dynamic case of 
a propagating acoustic wave. The effect gives rise to a polar- 
ization wave that accompanies the acoustic wave in the pie- 
zoelectric crystal. When the polarization wave is longitudi- 
nal, the acoustic wave is accompanied by a macroscopic 
longitudinal electromagnetic wave. The above order-of- 
magnitude estimates correspond to an electric-field wave 
with an amplitude of the order of a few volts per centimeter 
in the case of ultrasound with wavelength in the micron 

range and strain-tensor amplitude of the order of Since 
electric induction does not change during the propagation of 
sound, the estimated amplitude of the accompanying field is 
the same for both ferroelectrics and ordinary dielectrics. An- 
other manifestation of the flexoelectric effect in the dynamic 
case is the relative displacement of the soft mode and the 
transverse acoustic branches in the ferroelectric. A theoreti- 
cal description of the phenomenon and an analysis of the 
corresponding experimental situation can be found in the 
book by Vaks.' We note that, in the "acoustic" situation, the 
static and dynamic bulk mechanisms contribute to the ef- 
fect, generally to the same extent, and are indistinguishable 
in the dynamic experiment. The separation of the two contri- 
butions necessitates a separate determination of the static 
bulk contribution from static measurements. 

In the static spatially inhomogeneous formulation of 
the experiment, the effect includes the following contribu- 
tions: static bulk, surface flexoelectric, and surface piezo- 
electric. In ordinary dielectrics, these three contributions 
are comparable, so that the experimental values of the flex- 
oelectric coefficients obtained in this situation may depend 
on specimen boundaries, the geometry of the experiment, 
and the quality of the crystal surfaces. This is the main clue 
for the experimenter. The most interesting situation from 
the point of view of the flexoelectric effect in the static spa- 
tially inhomogeneous formulation of the problem occurs in 
ferroelectrics. Firstly, in this formulation, we can directly 
measure the magnitude of the resulting polarization in zero 
electric field, so that the effect is several orders of magnitude 
greater in ferroelectrics than in ordinary dielectrics. Second- 
ly, in this formulation of the problem, the effect in ferroelec- 
trics will be due to, at most, two mechanisms, namely, the 
static bulk mechanism and the surface piezoelectric mecha- 
nism but, when the object and the experimental setup are 
suitably chosen, only the static bulk mechanism will provide 
a contribution. This means that the experimental data can be 
interpreted more unambiguously. As can be seen, it is pre- 
cisely in the ferroelectric case that static and dynamic data 
together provide us with the possibility of separating the dif- 
ferent contributions to the effect. 

We note that the exceptional sensitivity of the flexoelec- 
tric effect to surface properties may be exploited as an effec- 
tive method of studying surfaces. 

As far as we know, there have been no systematic stud- 
ies of the effect in crystals. A discussion of the first attempts 
at its experimental investigation can be found in Ref. 4. 

In conclusion, let us compare our results with those of 
Ref. 4. Insofar as the qualitative description of the pheno- 
menon is concerned, our paper contains two new properties 
of the flexoelectric effect as compared with Ref. 4, namely, 
the considerable difference between the bulk contributions 
to the effect in the static and dynamic formulations and the 
presence of important surface contributions in the static spa- 
tially inhomogeneous formulation of the problem. The re- 
sults obtained in the microscopic description are also appre- 
ciably different. The discussion given in Ref. 4 is based on 
relationships analogous to the fourth and fifth terms in (24h 
but with the following essential differences. The quantities Q 
and Ia re  interpreted in Ref. 4 as averages not over the entire 
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crystal, as in the present paper, but over the unit cell. The 
contribution obtained in Ref. 4 in this way is then interpret- 
ed as the bulk contribution. In our view, these identifications 
and interpretations are not entirely correct. A detailed dis- 
cussion relating to this point was given in Section 4 of the 
present paper in the course of the derivation of (26). More- 
over, the fact that the approach used in Ref. 4 in the micro- 
scopic description of the phenomenon is not correct is, in our 
view, indicated by the dependence of the flexoelectric coeffi- 
cient obtained there on the choice of the unit cell. This de- 
pendence can readily be demonstrated if we recall that, ac- 
cording to Ref. 4, the flexogectric coefficient is proportional 
to a linear combination of Q and I, calculated in the light of 
the above difference. At the same time, it is clear that Q and I 
determined in this way depend on the choice of the unit cell. 

The author is indebted to A. F. Andreev, I. V. Abaren- 
kov, 0. E. Kvyatovski!, and I. I. Tupitsyn for discussions of 
several problems examined in this paper, and to Yu. M. 
Gal'perin for reading the manuscript and for useful sugges- 
tions. 

APPENDIX 

The aim of this appendix is to prove the validity of (15) 
in the case of a static inhomogeneous strain. 

It follows from (5) that the condition for static equilibri- 
um of a lattice site, whose position is defined by the radius 
vector R zp, is 

Suppose that the macroscopic strain is given by the unsym- 
metrized strain tensor E,~(X), which is a slowly-varying func- 
tion of position. The problem is to find the displacements of 
atoms within the cell as slow functions of the coordinates, 
Up (x), which, in the sum over displacements, correspond to 
the theory of elasticity and ensure equilibrium in the lattice, 
lee., 

R ' 

must satisfy (27). Since only the small differences In - n' 1 are 
important in (27), it is convenient to write (28) in the form of 
an expansion in powers of the vector X = R' - R: 

Substituting this in (27) and evaluating the sum, we obtain 
the differential equation for Up (x): 

It is readily verified that, as we depart from the equality sign, 
the terms decrease as powers of the small parameter d l 4 1  (1 
is the characteristic scale of a change in E,). The solution of 
(30) will be sought by the method of successive approxima- 
tions. The first two iterations are 

The consistency condition for (31) in U:' is identical 
with the consistency condition for (8), and is satisfied identi- 
cally, whilst its solution is identical with the result obtained 
by the method of long waves, i.e., (14). The consistency con- 
dition for (32) [after elimination of U:' with the aid of (14)] is 
the static equation of the theory of elasticity [cf. condition 
(1211: 

It is readily verified that the solution (32) is identical with the 
first term in (15), q.e.d. 

'1 Here and below, we imply summation over all repeating indices. 
21This property is discussed in the case of the piezoelectric effect in Ref. 5. 
311n writing this set of equations, we have used a somewhat different nor- 

malization from that adopted in Ref. 6. These properties are therefore 
not literally the same as in the original text. 

4'Acc~rding to (10) and (6), this approximation corresponds to the acous- 
tic wave in which lattice-site displacements depend on the number of the 
atom in the unit cell only through the phase factor exp[iK . (kn + x, )], 
i.e., the wave propagates as in an elastic continuous medium. In this 
sense, the wave will be referred to as an acoustic wave in the approxima- 
tion of the theory of elasticity. 

5' It is clear that we cannot, within the framework of this scheme, provide a 
quantitative description of the surface flexoelectric effect, but it seems 
that the order-of-magnitude estimate of the effect obtained in this 
scheme should be correct. 

6l We note that a constant jump across an arbitrary segment of the surface 
is also a consequence of the fact that the macroscopic field is zero around 
and inside the initial crystal. 
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