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The anomalous magnetoresistance (AMR) in a two-dimensional hole gas near the (loo), (1 lo), and 
(1 1 1) surfaces of silicon is studied. It is shown that the AMR can be described completely if 
quantum-theoretic corrections to the spin-orbit interaction are included. The energy relaxation 
time of the two-dimensional holes is found by comparing the experimental and theoretical results. 
Two mechanisms are responsible for the energy relaxation-elastic electron-electron collisions 
that conserve the total angular momentum of the system, and inelastic hole-hole collisions with 
simultaneous scattering by impurities (which change the angular momentum). The investigation 
of the AMR revealed for the first time a mechanism of spin relaxation in two-dimensional sys- 
tems. The corresponding relaxation time is calculated for this spin relaxation mechanism in 
which the spin-orbit interaction in systems without an inversion center lifts the spin degeneracy of 
the quantum subbands. Information is obtained regarding the energy spectrum of the two-dimen- 
sional holes; in particular, the population characteristics of the light-hole subband (which is 
produced by dimensional quantization) are found for the principal crystallographic surfaces of 
silicon, and the magnitude of the spin splitting is determined for the first time. 

1. INTRODUCTION theoretical results yields information on the energy and spin 
~h~ discovery of quantum corrections necessitated by relaxation of the two-dimensional holes, in addition to some 

localization and interaction effects14 has led to a new area of On the energy 

research in the physics of disordered Fermi systems. In addi- 
tion to providing a deeper understanding of localization and 
interaction, the new methods also provide a powerful tool 
for analyzing electronic processes in these systems. In parti- 
cular, information about the nature of the interaction and 
the energy, spin, and intervalley relaxation5 unobtainable by 
other means can be gained from studies of the anomalous 
magnetoresistance (AMR) caused by the dependence of the 
quantum corrections on the magnetic field. 

Two-dimensional electron or hole gases near semicon- 
ductor surfaces are of particular interest. This is due in part 
to the fact that the properties that determine the behavior of 
the AMR (Fermi energy, impurity density, etc.) can be var- 
ied over wide limits, and in part to the detailed information 
available regarding the energy spectrum, which must be 
known accurately in order to compare the theoretical and 
experimental results. Extensive experimental data are avail- 
able regarding the behavior of the negative AMR in two- 
dimensional electron gases near silicon These 
data confirm virtually all of the theoretical predictions. 
However, much less work has been done on the AMR in two- 
dimensional hole gases, although these systems are of inter- 
est because the strong spin-orbit interaction alters the quan- 
tum corrections. ''-I4 

In this paper we report detailed experimental results on 
the AMR of two-dimensional holes near a silicon surface as a 
function of the temperature Tand excess surface carrier den- 
sities n, in a channel for several different surface orienta- 
tions. We also study how a strong isotropic deformation al- 
ters the AMR. Our results support all the basic theoretical 
predictions for two-dimensional systems with a strong spin- 
orbit interaction. A comparison of the experimental and 

2. THEORY OF THE AMR IN A TWO-DIMENSIONAL HOLE GAS 

2.1 Energy spectrum of two-dimensional holes near a silicon 
surface 

One characteristic feature of the energy spectrum of 
two-dimensional holes in inversion channels in MOS transis- 
tors is that dimensional quantization effects remove the de- 
generacy of the light and heavy hole bands at zero momen- 
tum k = 0. The two-dimensional hole spectrum has been 
studied both the~ret ical ly '~* '~ and experimentally (Shubni- 
kov-de Haas oscillations, cyclotron re~onance"-'~). These 
studies show that the effective mass m,* of the holes is not 
constant but increases with energy (the spectrum is nonpara- 
bolic). The mass m,* also depends on the orientation of the 
surface at which the two-dimensional holes are generated: 
m,*/mo = 0.4-0.6 for the (100) and (1 11) crystallographic 
planes, while m,*/mo = 0.3-0.4 for the (110) surface. The 
behavior of the Shubnikov-de Haas oscillations also reveals 
that for n, = 2.5.1012 ~ m - ~ ,  the Fermi energy E, for holes 
near the (1 10) surface crosses the bottom of a second (light- 
hole) subband which is produced by dimensional quantiza- 
tion of light holes of mass 0.2m0. No information is available 
regarding the population of the light-hole subband for the 
(1 11) and (100) orientations. We note that in general, the spin 
degeneracy of the holes should be lifted because of the lack of 
an inversion center in the potential well near the surface. 

2.2 Theory of the AMR in a two-dimensional hole gas 

Because the spin-orbit interaction is strong in the va- 
lence band, we anticipate that the behavior of the AMR in 
two-dimensional hole gases will be largely determined by the 
spin relaxation of the holes. Two situations can occur-ei- 
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TABLE I. Properties of the samples. 

*For inversion channels on 0.5-pm-thick silicon films on sapphire sub- 
strates. 

Orientation 

(m) 
(110) 
(111) 
(100)* 

ther E, <A or EF > A, where E, is the Fermi energy of the 
holes and A is the splitting of the heavy- and light-hole 
bands. In the first case, spin relaxation proceeds by the D'ya- 
konov-Perel' me~hanism,'~ because the spin degeneracy of 
the fundamental (heavy-hole) subband is lifted; spin-orbit 
scattering by impurities also plays a role.3 The AMR experi- 
ments in two-dimensional electron gases"1 show that spin- 
orbit scattering by impurities does not occur in the Si-SiO, 
system, so that the latter mechanism may be neglected. The 
expression for the magnetoconductivity then takes the form 

where 

Channel 
Maximum 

(t;) -'=ts-1+4/3a,,-', f (x) =In xf ~ ( ' / ~ + l / x ) ;  

here $(x )  is the logarithmic derivative of the gamma-func- 
tion, D is the diffusion coefficient, the factorb ( T )  reflects the 
effects of the magnetic field on the scattering by supercon- 
ducting  fluctuation^,^' T, is the phase relaxation time of the 
wave function due to inelastic collisions, and T~ is the spin 
relaxation time. 

On the other hand, if E, > A then the spin relaxation is 
caused primarily by carrier transitions between the light- 
and heavy-hole subbands. In this case T, -rp 43, and the 
magnetoconductivity is given by 

0.2 
0,25 
0.5 
5 

We note that (1) and (2) do not contain any terms associated 
with fluctuation interactions5 or Zeeman splitting," because 
these effects were negligible under the experimental condi- 
tions. 

1500 
2500 
1100 
1500 

3. EXPERIMENTAL METHOD 

We studied the magnetoresistance of p-channel MIS 
transistors fabricated by conventional planar technology on 
(loo), (1 lo), and (1 11) silicon substrates. Table I summarizes 
the basic properties of the samples. 

The measurements were carried out by a null method 
using a dc current; the field was less than 0.1 V/cm inside the 
samples, so that carrier heating was negligible. We used po- 
tentiometric probes to eliminate any possible contact effects, 

1200 
1200 
1200 
1800 

3 
3 
3 
36  

even though none was noted for the experimental range of 
magnetic fields H(3 kG. The measurements were carried 
out for T = 1.6-4.2 K and excess hole densities n, = (1- 
9).101' cm-' at the surface of the channel. The hole excess 
was calculated from the formula n, = C ( V, - V,) /e ,  where 
Cis the capacitance of the oxide layer, V, is the gate voltage, 
and V, is the transistor threshold voltage at T = 77.3 K. The 
above range of n, corresponds to k,l = 10-1 5, i.e., the basic 
assumption underlying the theory in Ref. 5 was well satisfied 
for our samples (here kF is the Fermi wave vector and I is the 
mean free path). We deduced the hole diffusion coefficient 
(needed to calculate T, and 7,) from the measured values of 
the conductivity G of the inversion layer together with the 
Einstein relation 

G=e21VD (3) 

1500 
1100 
1300 
1000 

for a degenerate system (here N = m,*/& is the density of 
states). The values for the effective mass m,* given in Ref. 19 
were found by analyzing the cyclotron resonance of the two- 
dimensional holes; they are the most accurate available and 
will be used here. Since the hole spectrum in nonparabolic, 
the state density in this case depends on the energy; we there- 
fore found E, by graphically integrating the dependence 
m,*(n,) found in Ref. 19. 

4. EXPERIMENTAL RESULTS 

A positive AMR was observed in all the samples, re- 
gardless of surface orientation. Figure 1 shows the depen- 

FIG. 1. Field dependence of the magnetoresistance of an inversion chan- 
nelona(lll)siliconsurface.a: T =  1.7K, n, = 1.3.1012cm-2(1), 1.6.1012 
cm-2 (2), 2.5.1012 cm-* (3).  The solid curve shows experimental results, 
the open circles give values found by Eq. ( I )  for T, = 6,8, and 12 ps and T, 
= 1.6, 1.05, 0.8 ps, respectively. b: n, = 4.45.1012 cm-', T =  4.2 (I) ,  2.6 
(2), 1.7 K (3) .  The solid curves show expeirmental results, the open circles 
give values from Eq. (1) for 7, = 7, 12, and 21.5 ps, T, = 0.7. 
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FIG. 2. Field dependence for a (100) silicon surface. a: T =  1.7 K, n, 
= 1.3.10L2 cm-2 (I), 1.6.1012cm-2 (2), 2.5.10'2cm-2 (3). Thesolid curves 

give experimental results, the open circles show values calculated from 
Eq.(2)forr, =3.2,3.7,4.9ps;b:np =4.4.1012cm-2, T=4.2(1),2.6(2),  
1.7 K (3).  The solid curve shows experimental values, the open circles give 
the values from Eq. (2) for r, = 1.7, 3.2, and 6.3 ps. 

dence of the magnetoconductance AG (H) on the magnetic 
field at T = 1.7 K for three hole densities (a) and for n, 
= const as T decreased (b) for the (1 11) orientation. We see 

that - AG was negative (i.e., the magnetoresistance was 
positive); the initial quadratic increase of AG with H became 
less rapid for higher H. The range of fields for which 
AG-H became narrower as 1/T and n, increased, and for 
n, = 2.4.1012 cm-2 and T = 1.7 K no region with AG-H2 
is discernible to the scale shown in Fig. 1. For H = const, on 
the other hand, ( AG I increased with n, and/or 1/T. Accord- 
ing to Fig. 2a, b the dependence AG (H ) for a (100) surface was 
similar; however, (AG (was somewhat smaller in this case 
and the dependence was quadratic for a wider range of H. 

We will show in the next section that for the (1 11) orien- 
tation, only the lowest (heavy-hole) quantum subband is 
filled even for concentrations as high as n, = 5.5. loi2 ~ r n - ~ .  
In this case we can use relation (1) to compare the theory 
with experiment. The open circles in Fig. la, b show AG (H) 
calculated from Eq. (1) for the parameter value indicated in 
the caption. The experimental and calculated results are in 
complete agreement. For H = const, I AG I increases with n, 
and l/Tbecause the characteristic time r, increases. Figure 
3a shows the dependence 7, ( T )  deduced by comparing the 
experimental results with Eq. (1); we see that r, is propor- 
tional to T -,. The mechanism responsible for the phase 
relaxation of the hole wave function will be discussed below. 
Because of the appreciable experimental error and the pres- 
ence of several adjustable parameters in the equations, we 
cannot conclude that hole scattering by superconducting 
fluctuations does not contribute to the magnetoresistance, 

FIG. 3. a: dependencer,(T)for np = 4.4.1012cm-2 (1) and 1.8.1012 cm-2 
(2). b: temperature dependence of (r, T)-I for n, = 4.4.1012 cm-2 (1) and 
1.8.1012 cm-2 (2). 

i.e., that P ( T )  = 0. However, the agreement between the 
theoretical and experimental results deteriorates if this con- 
tribution is taken to exceed 10% of the total magnetoresis- 
tance. It should be noted here that the value of r, found by 
comparing theory and experiment will not change by more 
than 10% if we include the Maki-Thompson corrections. 

Analysis of the experimental results for a two-dimen- 
sional hole gas on a (100) surface shows that they are accura- 
tely described by Eq. (2) withf l~0.1,  i.e., in this case we have 
ra -rp, which implies that EF > A. Comparison of the theo- 
retical equations (I),  (2) with the experimental results (Fig. 2) 
shows that AG (H) behaves differently for the (100) and (1 11) 
orientations because L, = (DT, )~ '~  was 70% larger for the 
(1 11) surface, although the mobility and effective carrier 
mass were almost identical. This difference in the character- 
istic lengths L, also suggests that the heavy- and the light- 
hole subbands were both filled in a (100) inversion channel 
even for n, as low as =: 1012 cm-2 [recall that only the heavy- 
hole subband was filled for the (1 1 1) channel]. Since the den- 
sity of states is then roughly 50% greater than when only a 
single subband as filled, the hole diffusion coefficient, the 
phase relaxation time r, , and hence also L, are several times 
smaller than for the (1 11) orientation. 

The magnetoresistance and the measured length L, for 
inversion channels on a (1 10) surface also yield information 
about the population characteristics of the higher-lying 
light-hole subband. We will discuss this in the next section. 

5. ANOMALOUS MAGNETORESISTANCE CAUSED BY 
OVERLAP OF THE FERMl LEVEL WITH THE LIGHT-HOLE 
SUBBAND 

The case of a (1 10) silicon surface was discussed in Sec. 
2, where we found that the second quantum subband (pro- 
duced by dimensional quantization of the light holes) begins 
to fill once n, reaches 2.5.1012 ~ m - ~ .  Clearly, this filling 
should appreciably alter the behavior of the AMR by chang- 
ing the parameter L $ = Dr,. Figure 4a shows the depen- 

FIG. 4. a: The dependence L :(n,) for a (1 10) silicon surface at T = 1.7 K. 
b: L Y(n,) for ( I l l )  silicon at T =  1.7 K. 

1230 Sov. Phys. JETP 61 (6), June 1985 Gusev et at. 1230 



dence L i (n,) found by measuring the AMR for two-dirnen- 
sional holes near a (1 10) surface. We see that L i increases 
steadily with n, for np(2.1012, which is consistent with fill- 
ing of the fundamental (heavy-hole) subband. However, L ; 
starts to decrease abruptly at n, = 2.5.1012 ~ m - ~ ,  passes 
through a minimum, and then starts to rise again. We can 
explain this behavior by assuming that the Ferrni level rises 
into the light-hole subband; in this case the density of Fermi- 
level states should suddenly increase by ~ 5 0 %  when EF 
crosses the bottom of the second subband, and this will be 
reflected in a drop in T,, D, and L i. We note that L (n,) 
peaks at the value of n, at which the Fermi level crosses the 
bottom of the light-hole subband, as determined from mea- 
surements of the conductivity and the Shubnikov-de Haas 
oscillations. The results are similar for the (1 11) orientation 
(Fig. 4b); in thiscase, however, L ;(n,)peaksat n, = 5.5.1012 
cmP2, which indicates that the light-hole subband starts to 
fill only after higher concentrations have been reached. l4 We 
did not observe any peaks or valleys in L i(n,) near the (100) 
surface for n, = (1-9).1012 ~ m - ~ .  This finding again sug- 
gests that the subbands for the (100) orientation were filled 
even for n, lo1* cmP2, as we concluded in the previous 
section. 

6. PHASE RELAXATION TIME OF THE WAVE FUNCTION IN A 
TWO-DIMENSIONAL HOLE GAS 

The AMR measurements shown in Fig. 3a reveal that 
r, increases as - T-P for a (1 11) surface, where p = 1.4; 
moreover,.r, also increases with n, . This indicates that hole- 
hole collisions are primarily responsible for phase relaxation 
in the two-dimensional hole gas. The value p = 1.4 demon- 
strates that there are two "Landau" and "impurity" relaxa- 
tion channels, which involve large and small momentum 
transfers, respectively. We can then write 

Expression (4) shows that the exponentp in 7, a T -Pshould 
be determined by two independent energy relaxation mecha- 
nisms with different temperature dependences. This can be 
verified by extrapolating the experimental dependence 

FIG. 5. a: The dependence e ( n , ) .  The circles show experimental results, 
the solid and dashed curves were calculated from Eqs. (5) and (6), respec- 
tively. b: r,(n,); the solid curve was calculated from Eq. (7) with C = 1.4, 
the open clrcles show experimental values. 

(.r, T)-'  to T = 0; A should then be equal to (7, T - l )  (0). 
Figure 3b shows that the experimental (7, T)- '  dependence 
is in fact linear. A similar extrapolation procedure can be 
used to find the magnitude of each contribution to 7,. Figure 
5a shows how the relaxation time r: = (AT)-' at T = 1.7 K 
depends on the surface excess hole concentration; 7: repre- 
sents the contribution to 7, from the impurity mechanism 
(i.e., associated with scattering by static defects such as im- 
purities or rough spots, which promote hole collisions with a 
small momentum transfer). Two different theoretical ex- 
pressions have been derived for TF; according to Ref. 23, 

while Refs. 24 and 25 give 

These expressions ar clearly fundamentally different, since 
one predicts that T:K T- '  while the other gives 
TF a T -' In T. Figure 5a plots the dependences r:(n,) giv- 
en by (5) and (6); clearly, Eq. (5) describes the experimentally 
measured time r: more accurately than Eq. (6), which gives 
values nearly an order of magnitude too low. The error in 
determining the "effective mass of the density of states" is 
probably responsible for the discrepancy observed for n, 
g3.1012 ~ m - ~ .  We note that Eq. (5) also correctly describes 
the time 77 measured in two-dimensional electron gas- 
es.26,27 

Figure 5b presents some experimental results for ry 
= (BT 2)-', which represents the contribution to T, from the 
Landau mechanism, i.e., from collisions with large momen- 
tum transfers - k,. The theory in Refs. 28 and 29 gives the 
expression 

for the two-dimensional case; here the coefficient Cis insen- 
sitive to EF. Since TV cannot be measured accurately 
enough to pick up the weak logarithmic dependence on T, we 
have retained only the linear and quadratic terms in Tin Eq. 
(4). Figure 5b shows how the calculated and experimental 
values of TF depend on n,; Eq. (7) with C = 1.4 is seen to 
describe the experimental results satisfactorily. The same 
value C = 1.4 is also found from energy relaxation studies 
for two-dimensional electron 

7. ANOMALOUS MAGNETORESISTANCE AND SPIN 
RELAXATION IN A TWO-DIMENSIONAL HOLE GAS 

Carrier transitions from the heavy to the light hole 
bands and/or the D'yakonov-Perel' mechanism may be re- 
sponsible for spin relaxation in a two-dimensional hole gas 
(see Sec. 2 above). Our analysis of the experimental results 
(Secs. 4,5) showed that the light-hole subband starts to fill up 
at n, = 2.5.1012 cm-2 and n, = 5.5.1012 cm-2 for the (1 10) 
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and (1 1 1) orientations, respectively, whereas both subbands 
are filled for a (100) surface even for n, = 1.1012 cm-', the 
lowest concentration in the experiment. In this case, scatter- 
ing of holes from one subband to the other results in rapid 
relaxation of the hole spins during times T, -7, . Thus if EF 
< A, the D'yakonov-Perel' mechanismz0 is solely responsi- 
ble for the spin relaxation, i.e., the relaxation is due to split- 
ting of the subbands by the spin-orbit interaction in the MIS 
inversion channel, which lacks an inversion center. Some 
consequences of this splitting were recently investigated in 
Refs. 30-32 for GaAs-AlGaAs heterostructures. 

In general it is difficult to distinguish these two spin 
relaxation mechanisms, because EF lies a distance (fi/rP 
from the bottom of the light-hole subband before the latter 
starts to fill, and this situation is almost impossible to ana- 
lyze theoretically. In addition, the experimentally measured 
time r, was just 3 4  times greater than the momentum re- 
laxation time and therefore could not be measured accurate- 
ly. The energy distance between the subbands must be in- 
creased if the spin relaxation processes are to be examined in 
detail. The increased spacing will then eliminate the inter- 
band scattering processes, and the spin will relax more slow- 
ly so that r, can be measured. This situation occurs in inver- 
sion channels in silicon-on-sapphire MIS transistors, where 
the compressive strain in the silicon films increases the ener- 
gy gap between the subbands severalfold. Figure 6a shows 
how the magnetoresistance (MR) of an inversion channel in 
silicon-on-sapphire depends on H for three excess concen- 
trations n, at the surface. For small n,, we see that - AG is 
positive for all H (i.e., the MR is negative). As n, increases, 
- AG increases for small H but then passes through a maxi- 

mum and becomes negative (n, = 1.6-1012 cm-"). Finally, 
for n, = 2.10" cm-2 - AG is negative for all H. Similar 
behavior is found for n, = const when T varies; Fig. 6b 
showsAG (H)for T = 3.4,2.05,and 1.6K. Weseethat - AG 
remains positive longer as T drops, i.e., the field H, at which 

FIG. 6. Field dependence of the magnetoresistance of an inversion chan- 
nel on a (100) silicon-on-sapphire surface. a: T =  1.7 K, n, = 2.3.1012 
cm-2 ( I ) ,  1.6.1012 cmP2 (2), 1.3.10'2 cm-2 (3). The solid curves plot the 
experimental results, the circles give values from Eq. ( 1 )  for 7, = 7.7, 5.4, 
and 4.2 ps, 7, = 2.3, 4.1, 5.4 ps, respectively. b: n, = 1.4.1012 ~ m - ~ ,  
T =  1.6 ( I ) ,  2.05 (2), 3.4 K (3). The solid curves give experimental values; 
the circles show values calculated from Eq. ( I )  for 7, = 4.1,3.4, 1.2 ps and 
r9 = 5.2, 5.1, 5.4 ps, respectively. 

FIG. 7.7, ( 1 )  and 7, (2) as functions of temperature. The symbols 0 and 
A show values for n, = 1.4.1012 cm-2 and n, = 2.55.1012 ~ m - ~ ,  respec- 
tively. 

AG vanishes increases with 1/T. We can describe this theor- 
etically by assuming that the magnetic field suppresses the 
contribution to the conductivity from the Anderson local- 
ization that accompanies the relaxation of the hole spins. In 
this case, (1) implies that r, > r, for small n,, and the MR is 
negative. The spin relaxation rate and the time r, increase 
with n, (Ref. 12), so that r, < r, for larger n, and the mag- 
netoresistance becomes positive. For n, = const, r, in- 
creases appreciably with 1/T whereas r, remains un- 
changed. Thus, although r, > T ,  at T = 4.2 K, the 
inequality is reversed at lower T and the MR becomes posi- 
tive. This situation can be altered as follows: we can keep T 
constant, change the gate voltage so as to decrease r,, and 
increase n,; or we can keep n, constant in the channel, and 
increase T, by cooling the sample. In either case, the MR 
will change sign from negative to positive. The open circles 
in Fig. 6a, b show the theoretical values of AG (H ) calculated 
from (1) for the values of r, and 7, indicated in the caption; 
the theoretical and experimental values are seen to agree 
closely. Figure 7 plots r, and r,, found by comparing the 
experimental and theoretical results, as a function of T for 
two cases: 1) n, = 1.4.10'' cm-' (in this case r, > r, for all 
Tin the experimental range); 2) n, = 2.55.10" cm-2 (in this 
case, r, < 7, for all T) .  Once again, we see that r, a T -,, 
just as for the unstrained samples. The values r,, L, for a 
(100) silicon-on-sapphire surface were somewhat higher 
than for unstrained (100) surfaces, even though the mobili- 
ties were almost identical in both cases. This again confirms 

z,. 8 )  A , ,  meV 
1,5r 

FIG. 8. a: ~ , ( n , ) ;  b: A,@,). 
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that the heavy- and light-hole subbands were both filled in 
the unstrained (100) samples. 

Figure 7 shows that the spin relaxation time is indepen- 
dent of temperature (as expected for a degenerate gas). We 
measured rfl as a function of n, in order to examine the spin 
relaxation mechanism in more detail. The results (Fig. 8a) 
show that T, dropped abruptly as n, increased. If (A,T,)/ 
fig 1, the theory gives the expression 

for spin relaxation by the D'yakonov-Perel' mechanismz0; 
here A, is the magnitude of the spin splitting, T, is the mo- 
mentum scattering time, and the coefficient a depends on the 
scattering mechanism (a = 1 for a short-range potential). 
Figure 8b shows the dependence A,(n,) calculated from Eq. 
(8), with rfl (n,) and T, deduced from the AMR and conduc- 
tance measuiements, respectively. Clearly, A, increases with 
n,. Although this agrees with the calculated results in Ref. 
15, the magnitude of A, deduced from the measurements is 
just one-third of the calculated splitting. Because no method 
is presently available for accurately calculating the energy 
spectrum of the two-dimensional holes, there is little to be 
gained by pursuing this discrepancy further. A more de- 
tailed analysis will require further theoretical and experi- 
mental work for systems which possess a spin-orbit interac- 
tion but no inversion center. 

8. CONCLUSIONS 

The anomalous magnetoresistance observed in two-di- 
mensional hole gases on silicon surfaces is accurately de- 
scribed by a theory that allows for dimensional quantization 
(localization) effects in systems with a strong spin-orbit in- 
teraction. The energy relaxation time of the two-dimension- 
al holes can be found as a function of temperature and excess 
hole concentration by comparing the experimental and theo- 
retical results. Analysis of these dependences shows that the 
energy relaxation is due to inelastic hole-hole collisions (plus 
elastic scattering by static defects). Our study of the spin 
relaxation time 7, has revealed a novel mechanism in which 
the spin-orbit interaction lifts the spin degeneracy in systems 
without an inversion center. Analysis of the anomalous mag- 
netoresistance also provides information on the energy spec- 
trum of two-dimensional holes that cannot be obtained by 
other means. In particular, we have obtained new informa- 
tion about how the higher (light-hole) subband is filled for 
the principal (loo), (1 lo), and (1 1 1) silicon faces. 

In conclusion, we thank B. L. Al'tshuler, A. G. Aronov, 
and D .  E. KhmelYnitskiT for numerous helpful discussions, 

M. V. ~ n t i n  and A. M. Palkin for helpful remarks, and I. G. 
NeizvestnyT for his interest and encouragement. 
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