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An exact theory for the Gunn effect in narrow-band conductors at high temperatures is derived 
through a solution of the Fokker-Planck equation for the kinetics of the heavy particles in a strong 
electric field. Explicit analytic solutions are found for the structure of the moving domains, and 
their stability is studied. The effect of thermal diffusion on the velocity of the Gunn domains is 
studied. The dependence of this velocity on the shape of the domains and the boundary conditions 
is studied. The possibility of experimentally observing the Gunn effect in various types of conduc- 
tors with narrow allowed bands is discussed. 

1. INTRODUCTION 

Several compounds and systems with narrow allowed 
bands have recently been studied in connection with the 
search for conductors of new types. Among them there have 
been many quasi-lD organic conductors and semiconduc- 
tors1 and some molecular crystals and  polymer^^,^ in which 
the width of the allowed electron bands is M 5 0.01-0.1 eV. 
In some of these compounds, e.g., anthra~ene,~ tetracene, 
and tetrabenz~fulvalene,~ a substantial nonlinearity of the 
voltage-current characteristics j (E )  has been observed in 
strong electric fields E- lo4-10' V/cm. The current reaches 
saturation, and the differential conductivity a, = dj/dE 
vanishes. The characteristic field (E,) at which the pro- 
nounced nonlinearity sets in depends strongly on the tem- 
perature T, decreasing significantly as the temperature is 
lowered from 290 to 140 K (Ref. 2). This behavior suggests 
that a, may go negative in stronger fields or at lower tem- 
peratures, so that a domain instability and the Gunn effect 
may 

The simplest mechanism to explain the saturation and 
subsequent decrease ofj(E) is the finite nature of the motion 
of the electrons in the narrow bands in a strong field. This 
effect leads to the asymptotic decrease j(E ) cc E -' as E+w 
which was studied by Keldysh9 and Bychkov and Dykhne.1° 
The functional dependence j(E ) for such systems has been 
calculated1 explicitly for arbitrary E. Those calculations 
used the Fokker-Planck equationJ2 describing the kinetics of 
heavy particles which are scattered inelastically by phonons. 
This equation had been used earlier by Bychkov and 
Dykhne10 to calculate the decreasing asymptotic behavior of 
j(E ) in strong fields. In the case of an additive of the electron 
spectrum, 

E ( P ) = Z e , ( p . ) ,  a=x.y.z (1 
a 

variables can be separated" in the three-dimensional 
Fokker-Planck equation,12 and this equation reduces to 
three one-dimensional equations of the type 

where T is the temperature of the phonon heat reservoir. 

It is assumed here that B does not depend onp. This is 
true in, for example, systems with a band whose width M is 
smaller than the characteristic phonon frequencies w,. For 
such systems, two-phonon Compton processes become the 
primary mechanism for inelastic scattering." The electron 
spectrum is additive [see (1)] in the strong-coupling approxi- 
mation, in which case we have 

e ( p )  =-M cos ( p a )  . (3) 

This approximation usually gives a good description of the 
electron dispersion relation for narrow-band organic con- 
ductors' and molecular crystals.2s3 Equation (1) also de- 
scribes the kinetics of electrons in quasi-1D organic conduc- 
tors' and molecular crystals.273 Equation (1) also describes 
the kinetics of electrons in quasi-1D organic conductors and 
polymers and in 1D superlattice,13 where, despite the 3 0  
electron spectrum, it gives a good description of the kinetics 
of the carriers in strong, uniform, time-dependent electric 
fields. l4 This success apparently indicates that the distribu- 
tion function is a quasiequilibrium function of the transverse 
momentum components. 

The region over which Eq. (2) applies to quasi-1D or- 
ganic conductors and semiconductors' is quite broad. The 
reason is that the primary mechanisms for the inelastic scat- 
tering of electrons in such systems are their interactions with 
high-frequency intramolecular vibrations, which have a 
small dispersion, ''.I6 A -0.001 eV(wo-0. 1 eV, and with 
low-frequency acoustic phonons with a low Debye frequen- 
cy, w, -0.001 eV (Ref. 17). Because of the small quantities 
A, w, (M-0.01-0.1 eV, the scattering of the electrons is 
quasielastic, since in the case of high-frequency phonons this 
scattering can occur only as an effective Compton scattering 
with a small energy transfer -A. In the quasi-1D case, a 
small energy transfer in forward scattering corresponds to a 
small momentum transfer, so that the Fokker-Planck ap- 
proximation can be used.12 By virtue of the quasielastic na- 
ture of the scattering here backscattering is equivalent to an 
impurity scattering whose incorporation leads to no more 
than an effective renormalization of certain parameters of 
the system, as we will show below. The slight change in ener- 
gy which occurs during backscattering can also be incorpo- 
rated in the Fokker-Planck approximation, in the form of 
corresponding differential terms. 

The Fokker-Planck approximation should also hold 
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well in 3 0  molecular crystals such as anthracene, since the 
bandwidth in these substances, estimated from the maxi- 
mum electron v e l ~ c i t y , ~ , ~  v - 10,- lo4 cm/s, corresponds to 
M- 10-3-10-4 eV(wD, a,-0.01 eV, so that again there 
would be an effective Compton scattering of phonons by an 
electron with a small momentum transfer at T <  wD , w, (Ref. 
11). 

An explicit expression for the voltage-current charac- 
teristic j(E ), with its characteristic peak, can easily be found 
directly from the solution of Eq. (2) in a static and uniform 
field E. In particular, at high temperatures, T )M, with dis- 
persion law (3),  we have1 

wherep,/e is the average carrier density in the system, the 
lattice constant is a = 1, and the quantity B does not depend 
on p. Expression (4) gives a good description of the experi- 
mental data on the voltage-current characteristics in anthra- 
cene2 at E < E, and provides a correct estimate at Eo- lo5 
V/cm with reasonable values of the mean free path with re- 
spect to inelastic scattering, I = M /B - 10 A. The substan- 
tial increase in I with decreasing temperature makes it possi- 
ble to explain the significant decrease in E, in the interval2 
140 < T <  290 K, raising the hope that it will be possible to 
experimentally observe a descending region of the voltage- 
current characteristic and the Gunn effect at lower tempera- 
tures or stronger fields. 

In the present paper we derive an exact theory for the 
Gunn effect in narrow-band conductors at temperature 
T )M. We show that all the characteristics of the system, 
including the explicit analytic solutions for the structure of 
moving domains, can be found directly from kinetic equa- 
tion (2). The exact solutions which are found make it possi- 
ble, in particular, to carry out a comparative analysis of the 
various phenomenological approaches which are ordinarily 
taken in the theory for the Gunn e f f e ~ t ~ - ~  and to test the 
validity of their underlying physical assumptions. 

For example, it turns out that in this system, despite its 
pronounced deviation from equilibrium, the Einstein rela- 
tion between the mobility p(E ) and the diffusion coefficient 
holds in lowest order in P( 1 : D (E ) = Tp(E ), where T is the 
temperature of the phonon heat reservoir. This circum- 
stance indicates that the phenomenological approach taken 
by Knight and Pe te r~on ,~  which is based on the assumption 
of the Einstein relation, has certain advantages over other 
 approximation^,^-' which usually ignore any functional de- 
pendence D (E) completely. It should be noted that the Ein- 
stein relation holds only in lowest order in P in the case 
under consideration in the present paper, so that in its most 
general form the relationship between D andp  is quite com- 
plicated. This point indicates that there are severe restric- 
tions on the range of applicability of any phenomenological 
approach, including the Knight-Peterson approximation, in 
the theory of the Gunn effect. 

The model which we discuss here can also resolve some 
questions which have not been studied in the phenomenolo- 

gical e.g., the effect of thermal diffusion on the 
domain velocity, which makes this velocity effectively a 
function of the shape of the domains. 

We must emphasize that attempts to directly observe 
the Gunn effect experimentally in narrow-band conductors 
may run into definite difficulties, since even in organic com- 
pounds with a very nonlinear voltage-current characteris- 
tic2s3 j(E ) it is not yet possible to go beyond the saturation 
region; stronger fields will apparently be required to observe 
the descending region of this characteristic. This is not an 
insurmountable problem, however, and it does not rule out 
the possibility that suitable systems will be found in the near 
future among the large number of organic compounds which 
are presently available1-3 and whose behavior in strong elec- 
tric fields has not been studied adequately. 

The conditions are most favorable for the observation of 
the Gunn effect in semiconductors such as1 Cs2(TCNQ), and 
(TEA) (TCNQ), and also in corresponding molecular crys- 
tals and polymers.2.3 Because of the low carrier density, 
n - 1013-1015 ~ m - ~ ,  the conductivity is a- 10-2-10-5 S/ 
cm (Ref. I) ,  so that the maximum current density j1 -aEb 
which arises in the system is 0.1-1 A/cm2 at the typical val- 
ues M-0.01 eV and 1- 10-10' A, at which we have 
E, = M/el- lo4-lo5 V/cm. The low carrier density leads to 
a large Debye length rD - lo2-lo3 A, which determines the 
characteristic width of the Gunn domains4-' and the range 
of applicability of the gradient expansions used in the pres- 
ent paper. 

It is extremely difficult to observe the Gunn effect in 
compounds which are good conductors, with n - 101'-1019 
cm-3 and a- 10'-lo3 S/cm (Ref. I), because of the small 
Debye length, rD - 10 A, and the high current density, 
jl - lo5 A/cm2, in strong fields E- lo3 V/cm. This comment 
also applies to narrow-band metals such as U2Znl, and 
UBe13 (Ref. 18), where we find M- 0.001 eV, so that a signif- 
icant nonlinearity of the voltage-current characteristic 
could also appear at fields as low as E-  lo3 V/cm. Further- 
more, this effect may be strongly suppressed by the wider 
bands which may occur in these compounds along with the 
narrow f bands. In these systems, however, certain other 
types of domain instabilities, e.g., the thermoelectric insta- 
bility, which occurs in normal metals and which is described 
by the same phenomenological methods19 as are used to de- 
scribe the Gunn effect, may be observed in relatively weak 
fields E-  10 V/cm. 

In addition to the systems mentioned above, very nar- 
row bands with M- 10-4-10-5 eV correspond to the quan- 
tum tunneling of light ions20-22 and the motion of defects in 
quantum crystals.23 Narrow bands with M-0.01 eV can 
also be produced artificially in semiconductors with a super- 
lattice. l3,l4 Such systems have recently attracted heightened 
intere~t, '~-'~ as have the Gunn effect and other types of do- 
main instabilities in  solid^.'^,^^-^' A curious point is that the 
voltage-current characteristics of superlattice systems can 
be described quite well by expression (4) (Ref. 14). 

2. BASIC EQUATIONS OF THE GUNN EFFECT 

To derive the basic equations of the Gunn effect, we use 
Eq. (2) and a cosinusoidal dispersion law (3). Taking Fourier 
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transforms in the electron momentum p in that equations, 
we find the following system of equations for the Fourier 
compounds of the distribution function, f, : 

We see from the general structure of this equation that under 
the conditions p( 1  and X % l  = M /B it can be expanded in a 
series in these parameters. Doing so, we find a closed system 
of equations for the three lowest harmonics, fo, f,, and f- ,, 
which determine the charge density p, the current density j, 
and the average kinetic energy of electrons, W, respectively: 

In this notation, the system of equations takes the following 
form, where we are including terms of up to third order in /3 
and I /X  inclusively and also the Poisson equation: 

where ?t is the static dielectric constant, 

and the quantitiesx, are defined by 

Equations ( 8 )  and ( 9 )  describe the relaxation of the elec- 
tron energy, with allowance for Joule heating, and the relax- 
ation of the electric current, with allowance for diffusion 
terms, respectively. 

From Eqs. ( 7 )  we find, in particular, the known relation- 
ship between j and the given external current J: 

The condition XBI clearly holds if the carrier density is 
not too high for Gunn domains with a scale dimension4-' 
X-rD = ( x ~ / 4 ~ e ~ ~ ) " ~ .  When this condition holds, we 
might note, the scale times t - X / v ) l  / v - B  -' are also quite 
long. Accordingly, in the lowest order in these parameters 
we can omit from Eqs. ( 8 )  and (9) the terms containing time 
derivatives and also the small terms on the right side. 

As a result, these equations simplify considerably, be- 
coming 

In particular, in the case of a uniform, static external field E 

we find expression (4)  forj(E ) from these equations. 
In terms of the dimensionless variables 

a=t/zol ao=xEo/4n~poV ( E , ) ,  e=E/Eo, ( 1 3 )  

x=X/10, o = V ( E o )  , = r D 2 Z l  V ( E o )  = p M / 4  ( 1 4 )  

we find the the dimensionless quantities 
j=jlpoV(Eo),  f=JlpoV(Eo) ,  p=p/po, w=4nWlxEo2 

( 1 5 )  
and given in lowest order inpand X / I  by the following equa- 
tions: 

j=f-e,, p=e,+l, b = ( 2 ~ , / 1 ) ~ ,  ( 1 6 )  

bw-e j=-2p, bj+ewb2=-8p,/p2. ( 1 7 )  

The subscripts x  and T mean differentiation. Eliminating the 
variablesj,~, and w from these equations, we find the follow- 
ing equation for the electric field ~ ( x ,  7): 

-d ( 8 )  E ~ + V  ( 8 )  (ex+ 1 )  +c,=f, e ~ ~ - l l  ( 1  8 )  

where 

v ( ~ ) = 2 & / ( 1 + ~ ~ ~ ) ,  a ( & )  =d0l(l+e2), d0=2(l/prD)2. ( 1 9 )  

The constant d o ,  which determines the diffusion coeffi- 
cient d ( E )  in ( 1  9 ) ,  is proportional to the square ratio of the two 
independent small parameters I / rD ( 1  andp( 1 .  In the most 
general case, this constant can thus be much larger than uni- 
ty, it can be much smaller than unity, or it can have an inter- 
mediate value do - 1 .  

Equation ( 1 8 )  has the form of a nonlinear diffusion 
equation and a simple physical meaning, corresponding to 
the usual balance between the field current and the diffusion 
current; the displacement current is also involved here. In 
lowest order in the small gradients, however, the thermal 
diffusion of the type EL: should also appear in this equation; 
in the case at hand, these terms are small, on the order of the 
parameter p. As we will see below, retaining these terms 
leads to some important effects, in particular, a dependence 
of the velocity of the Gunn domains on their shape. 

The general structure of Eq. ( 1 8 )  with arbitrary func- 
tions d ( E )  and V ( E )  has been studied in the phenomenological 
theory in several papers.4-' Because of the substantial lati- 
tude in the choice of these functions and the relationship 
between them in this case, several different approaches4-' 
have been taken to analyze these effects. 

Noteworthy among these approaches is the phenomen- 
ological theory of Knight and Pe t e r~on ,~  in which an Ein- 
stein relation is assumed to hold between p ( ~ )  = V ( E ) / E  and 
d ( E ) ,  and it is also assumed that the function V ( E )  is N-shaped. 
In the case of the present paper, the situation is similar, dif- 
fering only in an absence of the increase in V ( E )  in very strong 
fields. As a result, there are some qualitative differences, but 
we can still make use of several of the general results of Ref. 
4, and we can show that the Knight-Peterson approach has 
advantages over the other  approximation^.^-' 

3. STRUCTURE OF MOVING DOMAINS 

We are interested in traveling-wave solutions 
E ( X ,  T )  = E ( X  - CT) = ~ ( 6  ) of Eq. ( 1  8 )  with a periodic 6 depen- 
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dence corresponding to the condition of overall electrical 
neutrality of the systemU6 Substituting this solution into (18), 
we find the following ordinary differential equation for E({ ) 
for a constant external current/ 

- d ( & ) & t E f  ( u ( E ) - c ) E ~ = ~ - u ( E ) ,  e e B - I .  (20) 

This equation can be rewritten for an arbitrary domain ve- 
locity c as4 

where 

It follows from (21) and (22) that Eq. (18) has closed 
integral curves and periodic solutions E({ ) only with c =f, so 
that the domain velocity is determined exclusively by the 
external current. Taking into account the explicit functions 
d (E) and U ( E )  in (19), we can put the general expression for the 
integral of motion in (22) in the following form: 
do [ E ~ - ~ ~ ( E ~ + ~ ) ] . = C + E ~ - E ~ ( ~ + ' I ~ C ~ ) = ~ ( P  ( c ) ,  C=Cdo. 

If periodic solutions are to exist, the equation eS = 0, which 
is equivalent to the condition q, ( E )  = 0, must have three real 
roots E ~ ) E ~ > E ~ ,  SO that the constant C must satisfy the con- 
dition 

2 
C-GCGC,,  C*=l - - [ l T ( l - f 2 ) % ] .  

3 f 2  
(24) 

Here the quantities and c2 determine the maximum and 
minimum values of the electric field in a domain. 

In the general case do - 1, we would need to solve tran- 
scendental equation (23) for E~ in order to calculate&({ ). Fig- 
ure 1 shows a plot of the corresponding function &({ ) for the 
values do = 1, f = 1/2, and C = - 1. We note that the shape 
of the domain is very asymmetric in this case; we also note 
that the maximum field in the domain is quite high, and with 
C < 0 it goes off to infinity in accordance with E, =: 3/f in the 
limit f-0. This situation does not arise in the case of an 
ordinary N-shaped voltage-current character is ti^,^-^ in 
which case we have f > fo, and fo is the local minimum of u(E) .  

The asymmetry of the shape of the domains depends 
strongly on do and disappears entirely at do) 1, as obviously 
follows from Eq. (20), where terms of even parity in 5 are 
predominant at large values of do. In the case do(l, the 
asymmetry becomes very pronounced, and the domain 
structure converts into a sawtooth curve with characteristic 
v a l u e s ~ ~ B 1  - 1: 

FIG. 1. Field distribution in a domain for the case do = 1, f = 1/2, 
C =  - 1. 

and ef+l=exp(-rp ( & ) I d , )  for ~ ~ ( 0 .  (25) 

The period (a,) of the domain structure is e l  - E, in this 
case. 

Ifdo) 1, the left side of transcendental equation (23) can 
be expanded in the small quantity eb 4 1, and as a result we 
find 

where F (q,, k ) is an elliptic integral of the first kind. 1n this 
case the function ~ ( 6  ) can be expressed in terms of the elliptic 
sine29 sn({ ', k ): 

Figure 2 shows a corresponding curve of& versusi = { / 
doll2 for f = 1/2 and C = - 1. The period (no) of the super- 
structure is determined in this case by Eq. (26) with q, = n/2: 

where K is the complete elliptic integral of the first kind. In 
ordinary units, we would have no-rD at do R 1 and, 
no-lo-(l/prD2)-'%rD at do(l. 

In the case fz 1, the domain structure is smoothed over, 
and we h a v e ~ ~ = : ~ ~ = : l ,  andflocc(l - f ) - ' I 2 .  Analogously, 
this structure disappears as C-C- for arbitrary f, with 

= : E ~ ~ E ~ ,  where 

&a= ( I f  ( l - f 2 ) ' h ) l f .  (29) 

In this case, expressions (26)-(28) become valid for arbitrary 
do 2 1 and simplify ~ons iderab ly~~:  

E ( E )  =ez+ ( E ' - E ~ )  sinZ E', (30) 

In a similar way we find the functional dependence E({) as 
C-tC, with E ~ = : E ~  (Ref. 29): 

In this case, no tends toward infinity logarithmically. 

FIG. 2. Field distribntion in a domain in the case f = 1/2, C = - 1, do> 1. 
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The structure of the moving domains with do) 1 is anal- 
ogous to that of the ordinary soliton solutions of the 
Korteweg-de Vries This comment applies, 
however, only to traveling-wave solutions. It does not mean 
that the original equation, (1 8), is integrable by the method of 
the inverse scattering problem.30 Furthermore, analysis of 
Eq. (1 8) with the help of the general criteria for the integrabi- 
lity of nonlinear equations suggested by Sokolov and Sha- 
bat3' proves that it is not integrable by the method of the 
inverse scattering problem or by other methods of nonlinear 
wave theory .30 

4. STABILITY OF THE SOLUTIONS 

Knight and Peterson4 have derived a general theory for 
the stability of the solutions of Eq. (18) for arbitrary func- 
tions d (E) and u(E). They proved that the domain structures 
are unstable in the case of a given external currentf, while 
they are stable in the case of a given voltage with a negative 
staticimpedancez (0) = &/df (whichdescribesthebehavior 
of the current through a sample with a domain as a function 
of the average field 2). 

Making use the explicit functional dependence E({ ) at 
do) 1, in (26)-(3 I), we can put these general results in a more 
specific form and estimate the instability growth rate A, in 
the regime of a given current. We can also calculate Z (0) and 
determine the region in which domain structure exist. The 
quantity A, characterizes the region of frequency dispersion, 
Z (w), at small4-' w 2A0/r0 and determines the extent to 
which weak signals are amplified at low frequencies imposed 
on the strong static field. 

To evaluate A, we need to linearize Eq. (18) near the 
zeroth-order  solution^,({ ), determined at do) 1 by Eqs. (26)- 
(31), and analyze a small increment E,(x, T) = &'E,({). As a 
result we find an eigenvalue equation for the instability 
growth rate A: 

d2 [-@+ ~ ( I + E ~ ' ( ~ ) ) + ~ ( I - ~ E ~ ( S ) ) ]  E , ( E ) = o .  F=S/do'h. 

(32) 

This equation is equivalent to a Schrodinger equation with 
an effective potential 

~ ( ~ ) = ' h E ~ ~ ( ~ ) + 2 ( l - f e o ( ~ )  (33) 

which depends on A. 
We are interested in the maximum positive value of A,, 

so we should seek a ground state in potential (33) with a 
negative energy ( - A,). That such a state exists follows from 
the circumstance that the eigenvalue A = 0 in (32) corre- 
sponds to the solution E,({) = E , ~ ,  which has zeros at the 
points q, (E) = 0 [see (23)l. It follows from the fact that u (5: ) 
goes negative at at least certain values o f c  that the inequality 
A, < f '/2 holds; from this inequality, even at f < 1/2, we find 
A, 5 0.1. This inequality also implies that the instability 
growth rate is numerically small. At small values off ,  the 
quantity A, approaches zero rapidly, and the domain struc- 
ture could apparently be observed even at a fixed external 
current. Curiously, in the case of the ordinary mechanism 
for the Gunn effect an instability of this sort has been ob- 
served directly in experiments in 111-V semicond~ctors.~-' 

The quantity A, vanishes as f-1, since here we have 
~ , ( { ) z l ,  and the absolute minimum u($) = 0 in (33) is 
reached only withA = 0. While remaining a small quantity, 
A, depends quite strongly on the constant Cin (23) and on the 
currentf. The explicit functional dependence A,( f )  can be 
found easily in the case C-C, , in which E,(E) depends 
weakly ong, the potential u (5 )becomes semiclassical, andA, 
is determined by the position of its bottom at E , ( { ) ~ E ,  in 
(29). In the limit C-C* we thus find 

At f 4 l  we have A,( f )zf '/2; as f-1 we have 
AOz(2(1 - f ))'IZ; and the maximum value A, = 1/4 is 
reached at f = m. The small value ofA, at fg 1 and as f-1 
indicates a substantial dispersion of the impedance Z (a) at 
low frequencies 0 4 ~ ;  '. 

The periodic structure of the functional dependence 
E,({ ) gives rise to an entire narrow band of values ofA, so that 
the results above refer to the maximum value of A,, which 
corresponds to the top of the band. 

The criterion for the stability of the domain solutions of 
Eq. (18) in the case of a given external voltage reduces to the 
condition4-' Z (0) = &/df < 0. This condition follows in an 
obvious way from the general structure of Eq. (18), since as 
E({ ) is varied with unfixed f in (32) there is a shift ofA by an 
amount Z -'(0) = 6f /SE, which can give rise to negative val- 
ues of the growth rate, which would mean that the domain 
solutions are stable. 

To calculate Z (0) at do) 1 we use the explicit expression 
for E({ ) in (27). Averaging E over the period R, in (28), and 
using some known  relation^,'^ we find 

E = E ~ +  (EI-ES) E ( k )  l K ( k ) ,  (35) 

where E (k ) is the complete elliptic integral of the second 
kind. Figure 3 shows a curve of the voltage-current charac- 
teristic f (2) corresponding to (35) for the case C = - 1. At 
C <  0, the voltage-current characteristic of a sample with a 
domain begins at the point F = F,, f = f,, determined from 
the conditions C - ( A )  = Cand  F, = (1 + (1 -f,2)112)/fc; it 
then decreases to zero as F-cc in accordance with a law 
determined by the asymptotic relation F( f )z - 6/f lnf as 
f4. In the region .F > Z, , we have Z (0) < 0, and the domain 
structure is stable. At the point F = F, there is an abrupt 
change in f, corresponding to a metastability of the lower 
branch of the voltage-current characteristic at F < Z, , which 
is typical of Gunn systems of all types.&' 

In the case 0 < C < 1/3, at large values ofF there is also a 
critical value FC1, determined from the conditions 
C = C+(f, '  ), .Fcl = (1 + (1 -fcl 2)1'2)/fcl. Figure 4 shows a 

FIG. 3. Voltage-current characteristic o f  a sample with a domain at 
C =  - 1 in thecased,>l .  
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FIG. 4. Voltage-current characteristic of a sample with a domain for 
C = 0.05 in the case do) 1. 

plot off (2) for C = 0.05. As C-0 we havez,, -+co; as C+1/ 
3 we have Ecl +E, ,  and the region in which domain struc- 
tures exists contracts to zero. The change in the current at 
the point E,, also occurs abruptly; the current vanishes as 
f-1 in accordance with (1 - f )2. 

With a large number of domains the condition &/df < 0 
corresponds to stability with respect to periodic perturba- 
tions with a period"8 a,. The system may be unstable with 
respect to distortions of the periodic structure; this instabil- 
ity is described by the same growth rate8 A, as in the case of a 
fixed value off. This instability accordingly develops rela- 
tively slowly, at least at low currents, f S: 0.1, at which we 
haveil, S: according to (34), and a rather large number 
of domains, on the order of A ; ', can be observed in the 
system. 

where 

We are interested in a traveling-wave solution of Eqs. 
(36) and (37). Accordingly, substituting ~ ( x ,  r )  = E({ ) into 
these equations, and eliminatingp,j, and w with the help of 
(16), we find 

f - c = - ~ ( E ) E ; : + ( U ( E )  -c) ( e e + l )  - ~ I ( E ) E : ( E ~ + ~ )  

-ri ( E )  E S ~ ( E E + ~ ) - ~ ~ ( E )  ~ : e ( & a + l ) - r 3  ( E )  (40) 

where 

5. EFFECTS OF THERMAL DIFFUSION 

As was shown above, Eq. (18), which we derived from 
our original equations, (7)-(1 I), in lowest order in P and I / 
r,  , has simple solutions in the form of periodic waves which 
are traveling at a velocity c = f which does not depend on 
their shape and which is determined by the constant C in 
(23). The general structure of Eq. (18) corresponds to an ordi- 
nary gradient expansion for the current j, so that along with 
the purely diffusive term d ( E )  E,, this equation might con- 
tain terms of the type r ( ~ )  &:, which have a "gradient small- 
ness" on the same order of magnitude, and terms which are 
analogous to thermal diffusion,12 caused by a dependence of 
don the coordinates. As is clear from Eqs. (20) and (21), such 
terms may violate the condition for the existence of closed 
integral curves and periodic solutions E({ ) for Eq. (20), hav- 
ing a significant effect on the nature of the domain instabil- 
 it^.^ This circumstance was originally pointed out by Anisi- 
mov et in one of the phenomenological approaches 
possible. 

In the case at hand the thermal-diffusion terms are 
small, on the order ofp(1, and in the lowest order in this 
parameter they do not affect the general structure of Eq. (1 8) 
or the nature of the domain solutions. These terms do, how- 
ever, become important in the following orders inp, causing 
the velocity c to become a weak function of the domain struc- 
ture. 

To study this dependence we use our original equations 
(8) and (9), retaining in them small terms of the next higher 
order, which are described by the terms on the right side. In 
the calculation of the small quantities j2 and W2 we must use 
Eqs. (12), which were derived in the lowest order in P and I / 
r, . Finally, in terms of the dimensionless variables (1 3)-(15), 
Eqs. (8) and (9) become 

Equations (41)-(44) were derived in lowest order inp, so 
we have set c =f in  them in the spirit of the zeroth approxi- 
mation. We are also omitting small corrections -p 2/16 to 
d ( E )  and u(E), since they lead to only insignificant changes in 
the shape of the domains. 

6. DOMAIN VELOCITY 

To calculate the small corrections to the velocity c = f 
we can use the van der Pol For this purpose it is 
convenient to rewrite Eq. (40) as 

where c i s  determined by (22) and (23). 
Taking the average of the right side of (45) over the peri- 

od a,, we find the following expression for the velocity c 
from the condition for the conservation of integral (22): 
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c=j+6 ( C )  =/+a (C) Iy (C), (46) 
where 

It can be seen from (46)-(48) that the velocity c now 
depends on the constant e, which determines the shape of a 
domain. To calculate this functional dependence we need 
explicit expressions for ~ ( g  ), which can be found in the limit- 
ing cases do) 1 and do( 1. 

In the first case, expanding (4 1)-(48) in the small param- 
eter d; '( 1, we find the following expressions, after some 
straightforward manipulations: 

A straightforward analysis of the integrand in (49) 
shows that we have a ( C  ) > 0 for all the permissible values of 
the parameters and thus c <f. It also follows from this inte- 
grand that the expression in brackets in (49), divided by 
/3 'd0/16, does not exceed 1/2, so we have 16(C ) < 3/3 2do/ 
64 = 6(1 /8rD)'. Accordingly, even in the limit do) 1, the ve- 
locity shift S(C) contains, in addition to the small parameter 
(I /rD )', a small numerical factor - 0.1. This circumstance 
indicates that the deviations of c from f are slight, no greater 
than lo%, even at the range of applicability of the gradient 
expansions. This is a typical situation for all Gunn systems, 
and it has been observed repeatedly in numerical simulations 
of such systems (see the bibliographies in the monographs in 
Refs. 6-8). 

Expressions (49) and (50) simplify dramatically as 
C+C-, where we have E, Z E ~ Z E ~  in (29), and for S(C-) we 
find 

In the case d04 1 the domains acquire a sawtooth shape with 
no = E, - E'; this shape is determined by (25). It is not diffi- 
cult to see that y(C ) in (48) is dominated by the region E~ < 0, 
which makes an exponential contribution: 

The region > 0 dominates the corresponding integral (47) 
in this case, and for a ( C )  we find the following expression 
after some straightforward manipulations: 

where 

(54) 
It follows from (52)-(54) that the correction to the veloc- 

ity c in the case do( 1 is exponentially small, on the order of 
d; '. An elementary analysis of (54) shows that the sign of 
the correction depends strongly on f and C, as can be demon- 
strated particularly simply in the case C+C-, in which we 
have E, Z E ~ Z E ~  and 

a (C-) =(P/4d0)  (ei-e2) F ' ( E ~ ) .  (55) 

At f41 we have I:'(&,)=: - 17f /8 < 0, and as f-+l we have 
F ' ( E ~ )  z 224, (go)/5 > 0, so that the difference c - f changes 
sign in the intermediate region. 

In the region do(l, the small parameter in expansion 
(47) for a ( C )  in the gradients of E is the quantity /3/ 
4d0 = 2p ( prD /41 )2( 1, so that a necessary condition for the 
validity of this expansion is do)/3, which is equivalent to the 
inequality/34(1 /rD )'I3. Since this parameter is small, we can 
ignore the terms of higher order in in expansion (40). 
However, this parameter is formal in nature, required only 
for calculating the coefficient [a(C )] of the exponential func- 
tion in S(C). The reason for the exponentially small value of 
S(C) at do(l is the general structure of Eq. (40) for arbitrary 
functions d (E) and u(E). These functions determine only the 
specific function 4, (E) and the value of E, > 1 from the equa- 
tion f = u ( E ~ )  in the exponential factor in (52). 

Consequently, the circumstance that the corrections to 
the domain velocity c =fare exponentially small in the case 
of a small dimensionless diffusion coefficient d - Dro/lo2( 1 
is a common property of all Gunn systems to which gradient 
expansion (40) applies. In such systems we have d-vol/ 
VIo 5 vol / VrD 4 1 to the extent that I /rD 4 1 is small, since the 
typical electron velocity is usually vow V. 

The procedure outlined above for calculating the cor- 
rections to c in powers o f p  can also be used in higher orders 
of perturbation theory. Because of the small numerical fac- 
tors, which are typical of narrow-band systems, these correc- 
tions are relatively small, and even at P- 1 they lead to only 
small changes in c, as is particularly clear at d < 1, where 
they all contain exponentially small factors. 

7. CONCLUSION 

The conditions for experimentally observing the Gunn 
effect are most favorable in systems of the semiconductor 
type, in which we include molecular crystals such as anthra- 
cene and t e t r a ~ e n e , ~ ~ ~  quasi-1D organic semiconductors 

1226 Sov. Phys. JETP 61 (6), June 1985 A. A. Gogolin 1226 



such as Cs,(TCNQ), and (TEA) (TCNQ), (Ref. I), and some 
polymer  compound^.^ The maximum domain velocity 
c = ,4Ma/4 in these compounds should reach lo3-lo4 cm/s 
and should furthermore be significantly smaller at low cur- 
rents. The characteristic dimensions of the Gunn domains 
are -r ,  - lo2-lo3 A, so that the characteristic radiation 
frequencies are 108-1010 Hz and lie in the microwave range. 

It should be noted that the condition T >  M does not 
hold in some of these compounds since M reaches a value of 
0.1 eV and exceeds the maximum permissible value T=: 500 
K, above which these compounds decompose. This circum- 
stance should not, however, have any serious consequences, 
since the effective expansion parameter i s p  '/I64 1, SO that 
the shape and velocity of the domains should not undergo 
any pronounced. changes. 

The elastic scattering of electrons by impurities in such 
systems does not lead to any qualitative changes in the re- 
sults derived here. It can easily be incorporated in Eq. (2). 
For this purpose, in the 1D case, it is sufficient to add a term 
(1/2)vi (f (p) -- f ( - p)) to the right side of (2) to describe elas- 
tic backscattering with a frequency vi. The only conse- 
quence is a replacement of B by B + vi in (9); in the subse- 
quent expressions, this change leads to only a slight 
renormalization ofj, and Eo: 

The physical reason for this renormalization is the dif- 
fusive nature of the motion of an electron because of elastic 
scattering between elastic collisions; the result is a replace- 
ment of 1 by I '  = (1/(1-' + li -'))'I2. Analogous results are 
found when we incorporate quasielastic backscattering by 
phonons. In dealing with the 1D kinetic equation and elastic 
scattering we are ignoring localization effects,34 under the 
assumption that the degree of one-dimensionality of the elec- 
tron spectrum is not very high. 
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