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It is shown that even small deviations of the magnetic field from uniformity can substantially 
modify the magnetization precession in "e-B. Specifically, a two-domain structure forms if the 
magnetic-field non-uniformity is linear. The magnetization makes an angle - 104" with the field 
in one of the domains and is parallel to it in the other. These domains can explain the anomalously 
long persistence of the induction signal in 3He-B; moreover, the change in the induction-signal 
frequency with time discovered and investigated by Borovik-Romanov et al. [JETP Lett. 40,1033 
(1984)l is a consequence of the relaxation of the domain structure. 

1. INTRODUCTION 

Recent experiments1 have shown that our present un- 
derstanding of the phenomena observed in pulsed NMR ex- 
periments in superfluid 3He-B is incomplete.' An induction 
signal of anomalously long persistence (henceforth referred 
to as the slowly decaying signal, or SDS) was systematically 
studied in Refs. 1 and 2. The results indicate that for large 
initial tipping anglesp- 90" of the magnetization vector, the 
SDS in 3He-B persists some 10-100 times longer than the 
characteristic dephasing time of the magnetization preces- 
sion predicted from the magnitude of the spatial variations 
in the nearly constant magnetic field H,. Slowly decaying 
signals were first observed by Corruccini and O~heroff ,~ and 
somewhat later by Giannetta, Smith, and Lee.4 Apart from 
this, the other experimental results were in good agreement 
with calculations carried out for a spatially uniform station- 
ary precession of the nuclear spin.596 This apparently ex- 
plains why, in spite of their obvious interest, the unusual 
behavior of the slowly decaying signals did not seem to re- 
quire any fundamental changes in the interpretation of 
pulsed NMR experiments; instead, it was attributed3 to tex- 
tural effects in the experimental cells. 

In their experiments, Borovik-Romanov, Bun'kov, 
Dmitriev, and Mukharskiil detected and analyzed some 
quantitative characteristics of the slowly decaying signal 
which suggest an explanation for why this signal is present.' 
In the present paper we will expand on the brief theoretical 
treatment of SDS's presented previously in Ref. 7. Assume 
that 3He-B is present in a magnetic field with a small but 
nonzero gradient, and that the initial magnetization preces- 
sion is spatially uniform; we will then show that the preces- 
sion becomes modified shortly after the magnetization is de- 
flected by an rf tipping pulse-the structure breaks up into 
two or more domains, depending on the specific configura- 
tion of the field. The subsequent behavior of the structure is 
consistent with the experimentally observed properties of 
the SDS. The two-domain structure is the easiest to study; in 
particular, it was investigated in Refs. 1 and 2 and will be 
analyzed in detail here. (This case already contains the essen- 
tial physics, and the treatment generalizes straightforwardly 
to multidomain structures). 

2. TWO-DOMAIN STRUCTURE OF THE MAGNETIZATION 
PRECESSION 

We will not review all of the experimental results in Ref. 
1, where the influence of spatial variations in the magnetic 
field H, on spin precession was studied in detail. For our 
purposes, the principal findings were: 1) the induction signal 
persists even in gradients as large as - 10 Oe/cm; 2) in a 
nonzero-gradient field, the signal frequency changes with 
time at a rate that depends on IVH I. The first observation 
shows that in order to interpret the SDS theoretically, one 
must seek solutions of the spin dynamic equations which 
describe a stationary precession of the nuclear spins in 3He-B 
in nonuniform magnetic fields. 

The order parameter in 3He-B is a matrixh (n,8 ), which 
describes a rotation by ayangle 8 about the unit vector n. It is 
helpful to parametrize R in terms of the Euler angles; by 
definition, we then have 

whereh, (a) represents a rotation by a about thez axis, etc. If 
we temporarily neglect the energy dissipation, we must then 
solve the Leggett equations.' The motion of the order pa- 
rameter will be described in terms of the angels a ,  p, 
@ = a + y and the canonically conjugate combinations 
P = S, - Sc , S, , and Sc of the projections of the spin den- 
sity v:ctor S. Here S, and Sc are the projections on thez and 
f = Rz axes, respectively, and SB is the projection on the 
vector z X Y 1 z X f 1 (nodal line). In order to simplify the for- 
mulas we will choose the mass units so that the magnetic 
susceptibility x of 3He-B per unit volume is equal to 2, 
where g is the gyromagnetic ratio for the 3He nuclei. The 
energy per unit volume wil then have the dimensions of fre- 
quency squared, while the spin per unit volume will have the 
dimensions of frequency. in the spatially uniform case, the 
Leggett Hamiltonian takes the form9 

1 - a,"' (P+St) + - S:+UD (a, p, @). 
2 (2) 

The dipole energy U, in the B-phase depends only o n p  and 
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The abbreviation 

U, ( P ,  Q )  =2 / ,6Q2[cos  [ j - i / 2 +  ( l + c o s  P )  cos @I ' .  (3) 

If the system is not spatially uniform, we must replace 
the Larmor frequency wf' by a, (r) in Eq. (2) and add a term 
Fv equal to the energy density of the spatial fluctuations in 
the condensate. We will assume that H, is nearly constant 
and that w, depends only on z. This is true in typical experi- 
ments, because the small transverse fluctuations in H, modi- 
fy o, only to second order in (SH(/H, whereas the longitu- 
dinal fluctuations alter w, to first order. We will take w, to 
depend linearly on z in our calculations; special measures 
were taken to ensure this condition in the experiments in 
Refs. 1 and 2, where the measuring chamber was cylindrical 
with axis parallel to z. We will assume for definiteness that 
z = 0 corresponds to the bottom of the chamber (which is 
located downfield), so that w, (z) = w, (0) + zVw, . We will 
use the expression derived in Refs. 9 and 10 for Fv : 

F v = ' / ~ c , , ~ [ ~  ( 1 - u )  a' ( a 1 - @ ' )  +Q'2+P'2] 

- ( c I IZ-cIZ)  [ ( I - U )  a'-Q'] ' ;  (4) 

where we assume at the outset that all variables depend only 
on z. Here the primes denote derivatives with respect to z; 
u = cos /3, and cf and c: are phenomenological coefficients. 
For example, c i  and c: specify the dispersion law for the 
transverse spin waves inthe Leggett configuration (n parallel 
to H,) if the magnetic field is strong compared to the dipole 
energy UD : 

Here K ,, and k, are the components of the wave vector paral- 
lel and normal to H,. 

We can then write the Hamiltonian as a functional 

where the integration is over the entire volume of the helium 
in the chamber, and the Hamiltonian density is given by 

The equations of motion corresponding to (5) follow in the 
usual way: 

aa 8% a p  
-=- 

6% 
-=-- 

at a~ ' at 6 a  ' 

where, e.g., 

etc. We will require only the explicit form for the second 
equation, which reads 

will be used to denote various linear combinations of c i  and 
c: in what follows. Equation (8) expresses the fact that the 
quantity 9 = JPdV is conserved, and the expression in the 
curly brackets is the flux density j: of P in the z direction. (9 
is conserved because the coordinate a conjugate to P does 
not appear explicitly in the expression for the Hamiltonian 
density). 

We now seek solutions of system (6) that describe a sta- 
tionary spin precession with constant frequency w,, i.e., so- 
lutions such that 

If we substitute (10) and (1 1) into the left-hand side of (6), the 
latter reduces to the stationarity condition 

B = J ( % + U P )  d v .  (12) 

The precession frequency w, is not known a priori; it can be 
regarded as a Lagrange multiplier corresponding to the con- 
straint JPdV = const and will ultimately be determined by 
the value of JPd V. 

We now remark that in all the experiments in which the 
SDS was observed, the spatial variations in the field were 
much smaller than the dipole energy UD or the field H, it- 
self. Indeed, the total variation in the magnetic field over the 
length of the measuring chamber was usually less than a few 
Oersteds, while H, was - 100 Oe and U, was equivalent to a 
field 50-80 Oe. This suggests (and experimental results con- 
firm) that the characteristic length of the spatial variations of 
the resulting stationary state is large compared with the di- 
pole length ID - cm, so that also Fv < UD . We therefore 
split the Hamiltonian density (5) into two parts-a principal 
part which has no explicit dependence on z, and a small cor- 
rection. It is helpful to express the frequency 0, (2) in the 
form 

i.e., so that the constant spatial component is given by 
w, = w, ; the point 2, is such that w, (2,) = w, . In order to 
find solutions that describe stationary states, we must there 
minimize the functional 

3 [ (%Io) 1 u L = w p +  a P P )  - ( z - z o )  ( P + S : )  VwL+F.]dV.  (13) 

This will be done in two steps by exploiting the smallness of 
the spatially nonuniform terms. We first find the extremals 
of the spatially uniform part to lowest order: 

15 j ( % ( " ) + ~ p P )  dV-0.  (14) 

This problem was already analyzed in Ref. 11, where the 
stationary solutions for the spatially uniform case were list- 
ed. The initial state is produced immediately after the rf tip- 
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FIG. 1 

ping pulse deflects the magnetization by an angle& it corre- 
sponds to the solution 

SZ=ap COS S s = ~ P r  Sfl=O, (I5) 

which belongs to the family denoted by lb in Ref. 11. The 
angle @ satisfies the equation 

cos P+cos Q+cos P cos @='/Z, (16) 

which can be used to find <P whenp is specified. The angle a 
is unrestricted. For p and q5 satisfying - 1/4(cos P( 1 and 
- 1/4(cos cP( 1, Eq. (16) describes a line in the/3, <P plane 
along which the potential U, has a degenerate minimum as a 
function o f8  and @ (Fig. 1). It is thus clear that the solutions 
(15), (16) form a degenerate family of extremals for the func- 
tional (14). To lowest order the angles a and /3 can vary 
arbitrarily in space (subject to cos /3 > - 1/4). This degener- 
acy is lifted only when the omitted terms are retained. 

The corrections to the lowest-order Hamiltonian can be 
minimized to next higher order by substituting the con- 
straints (15) and (16). This gives the extremum condition 

6 1 [ F , - ~ ~  cos p (I-z.) vaLlav=o. (17) 

Taking a and u = cos /3 as the independent variables [with 
@ expressed by (16) in terms of u], we readily find that 

The integrand in (17) can thus be recast in the form 

We get the equation 

by varying a ;  this is just the condition aji/az = 0 [cf. Eq. (8)], 

with <P' expressed in terms of u'. Equation (19) implies that jr 
= const. Since the helium was contained in a closed vessel in 

the experiments in Refs. 1 and 2, jf was equal to zero at the 
chamber walls; jf const therefore implies that j: = 0 every- 
where. Using (1 8), we thus find the relation 

between a' and u'. An additional equation can be derived 
from (17) by considering variations with respect to u; it must 
be solved jointly with (20). It will be helpful to substitute (20) 
into (18) before calculating the variation with respect to u. 
We get 

where the term w, (z - z,)Vw, has been added in order to 
ensure that the energy is measured relative to the equilibri- 
um value; this does not alter the equation for u. We define 
the dimensionless coordinate 6 = (z - zo)/il, where the char- 
acteristic length A = (ct/w, Vw, )'I3 is z2+10-' cm if 
H o z  100 Oe and c,, z 5 m/s. The functional then takes the 
form 

The factor multiplying (du/dl)' has poles at the end points 
u = - 1/4, 1 of the range of u. These singularities can be 
eliminated by defining the new variable v 

cos ~ = ~ / s ( u - ~ / g ) ,  (23) 

which ranges over the interval [O,a]. Expressed in terms of 
v , F  becomes 

where 
8cZ (cos u )  

m ( C O S  U )  = -- 
5c2 (COS V )  + 3cZ ( 1 )  a 

The Euler-Lagrange equation 

) '+ 51 sin u-O (25) 

follows from the requirement that (24) be an extremum. The 
boundary conditions must be specified before we can choose 
the required solution of (25). We note that since the length 
L - 1 cm of the measuring chamber was large compared to 
the characteristic length A, the boundary conditions may be 
imposed for 6 + f w ; we will require that the solution be- 
comes spatially homogeneous in both limits (we will discuss 
the appropriateness of this condition below). It is clear from 
Eq. (25) that in order for the solution to be spatially homo- 
geneous we must have sin v = 0, or v = 0, a ;  we therefore 
consider neighborhoods of these points. For v + 0 we have 
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the familiar Airy equation 

It has a solution that decays as 

for { -+ + co (we note that this solution oscillates for nega- 
tive { ). 

Similarly, for v -+ IT we set v = IT - $, so that $satisfies 
the equation 

where = { [m( - I)]-'I3. This equation is similar to 
(26) but has a solution that decays as 

1 2 
Ip--exp(--  I t I >l4 3 1 ~ 1 " )  (29) 

for f + - C C .  Relations (27) and (29) show that in order to 
satisfy our requirements, we must have v(6 + + co) = 0 
and v({ -, - co) = IT, which in terms of the original varia- 
bles means that P-.+ 0 as z + + cc and P+ 6, as 
z--+ - 00. 

The solution thus describes a structure consisting of 
two domains (Fig. 2) separated by a narrow transitional re- 
gion (wall) of width -A located at ZZZ,? The magnetization 
is parallel to the field for z>z, but makes an angle 
8, = cos-'( - 1/4) with H for z <z,. Here the position z, of 
the boundary is determined by the integral JPdV over the 
volume of the measuring chamber, i.e., by the initial tipping 
anglep,. The magnetization precesses at the same frequency 
w, = w, (z,) throughout the 3He [here w, (z,) is the local 
Larmor frequency at the domain wall]. Substituting (29) for 
z <z, into the right-hand side of (20), we find that a' + 0 as 
we move away from the wall, i.e., the nuclear spins tipped at 
the angle 8, precess in phase even though the magnetic field 
is nonuniform. This phasing is responsible for the slow decay 
of the free-induction signal. In order to explicitly determine 
the form of the domain wall, we must solve (25) numerically 
and impose the required limiting behavior for { + w . 

FIG. 2 

FIG. 3 

Equation (25) contains the ration c:cf as a parameter; Fig. 3 
shows the solution obtained by setting c:/ci = 3/4, which 
corresponds to the limit T +  T, .  We can use Eqs. (16) and 
(20) to find the angles a and Q, as functions of z once u(z) is 
known. 

This solution is stable, because the two-domain struc- 
ture minimizes the functional 3. This is clear from the fact 
that 9 decreases if the magnetization is redistributed so as 
to maximize the longitudinal component M II where the field 
is strong and minimize it where the field is weaker. Since (1 6) 
implies that the tipping angle must satisfy - 1/4<cos /3< 1, 
the distribution of the magnetization is most favorable for 
the above two-domain solution. The energy of the domain 
wall is finite but its contribution to the total change in 9 is 
small of order (A /L )' for the two-domain solution. 

Further analysis is needed to determine the lower 
bound on cos /3. The bound cos /3 > - 1/4 was derived on 
the assumption that Eq. (16) is strictly satisfied, which is 
equivalent to assuming that UD is infinitely large compared 
to the domain wall energy. The extent to which (16) holds 
can be assessed quantitatively by considering the frequency 
of the oscillations that results when Q, varies from the value 
@(B) given by (16). We showed previously6 that when 
cosp+ - 1/4, the frequency of one of the oscillation 
modes tends to zero as (cos p + 1/4)'12 and (16) cannot be 
used for p<B,. We see from Eq. (3) that forp=: e,, violations 
of Eq. (16) will change UD by - flZ(cosP + 1/4)', which 
must be large compared with the possible decrease in the 
gradient energy: 

If we now substitute the asymptotic expression (29) for the 
solution near p = 8,, we get the condition 

for the solution derived using (16) to be valid. If we observe 
that cos p + 1 /4z  5?/16 and use (29) once again, (3 1) takes 
the form 

z/h&3 Or cos p + ' / r B I O - 3  

for typical parameter values. Asz <z, decreases further, (16) 
starts to break down in a neighborhood PZ do, and a transi- 
tional region forms in which P arid Q, must be regarded as 
independent. Eventually (near the bottom of the chamber), P 
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becomes greater than do. Although the behavior ofp  was not 
studied in detail for these z, it is clear that the departures 
from the solution considered above, in which P <  do every- 
where, will be small. Indeed, the local shift in the precession 
frequency that occurs when f l>  8, can compensate the spa- 
tial variations of the Larmor frequency. The familiar expres- 
sion5 

for the shift dg > do) may be used to determine when this can 
occur. As we move away from the wall (z<zo), fi should 
satisfy the above equation more and more clearly, i.e., 

We have&,, - do < 1/10 rad for typical parameter values. 
Moreover, the phase a of the precessing spins remains con- 
stant even though fl depends on z when P > do. Indeed, Eq. 
(8) implies that 

jzP= (u-1) [2c2 ( u )  a'-t2 (-1) @'I, (32) 

and we have @ -+ 0 in the limit, because any departure of @ 
from 0 when p > do will increase the energy by an amount 
comparable to the dipole energy U, . Thus once again the 
condition j: = 0 implies a' = 0, or a = const. 

The initially homogeneous precession is thus radically 
modified even by small field gradients; we can derive a corre- 
sponding lower bound on Vw, from the condition that 
A 5 L, i.e., 

Thus, gradients as small as IVH I 2 10-5-10-6 Oe/cm can 
modify the precession in typical NMR experiments using 
3He. Since the residual gradients in these experiments are 
typically - Oe/cm, a precession domain structure 
should clearly be expected. Our initial assumption that 
Vw, = const is not important here; the above formulas will 
remain valid provided only that the characteristic length of 
the field variations is large compared to the thickness of the 
domain wall. However, we note that several domains may 
form and the domain walls may be curved if the spatial varia- 
tions of the field are not controlled during the experiment. 

3. DIPOLE ENERGY AND SPIN SUPERCURRENTS 

The splitting of the magnetization precession into do- 
mains is a direct consequence of the spin supercurrents in 
3He-B. The possibility of spin transport unaccompanied by 
mass transport in superfluid 3He-B was discussed in the liter- 
ature shortly after it was established that triplet-state Coo- 
per pairs are formed in 3He (Ref. 12). Attempts were made to 
explain the unconventional features of the nuclear spin re- 
laxation in the two 3He superfluid phases by invoking simple 
spin-supercurrent models and drawing on the analogy with 
mass supercurrents (see Ref. 13 and the literature cited in 
Ref. 3). However, the analogy between spin and mass cur- 
rents is quite limited. For one thing, spin the superfluid 
phases is generally violated because of the spin-orbit interac- 

tion. Furthermore, the equations of motion for the spin con- 
tain sources and sinks whose specific form depends on the 
dipole potential U,. The B-phase is exceptional in this re- 
spect because, as we have already noted, U, is independent 
of all the angles a, P, @; Pis  consequently a constant of the 
motion and obeys the usual conservation law (8). This fact 
permits us to consider the "flow" of P from one region of 
space to another. 

We can use Eq. (8) to define the spin supercurrent veloc- 
ity u p  in a natural way. Recalling Eq. (32) for the z-compo- 
nent of the flux of P and defining j: = Pvz, we find that 

The other components of vip vanish because the variables are 
independent of x and y. The velocity vtP involves the differ- 
ence of the gradients of the two angles a and @ and can 
vanish even if a' and @' do not; this is another important 
difference between spin supercurrents and mass currents in 
HeII, for example. The spin-current states in 3He-B are 
made up of various homogeneous states which are degener- 
ate on a two-dimensional surface; the latter surface becomes 
a sphere if we make the change of variables (23). This con- 
strasts with the case of mass currents in HeII, where the 
contributing states are initially degenerate on a circle. 

It will also be helpful to discuss the formation of dy- 
namic domains in 3He-B from the viewpont of the stability of 
the spatially uniform spin precession. According to Ref. 10, 
the determinant 

d2U. a 2 U ~  A = -  -[ "'". I' a(D2 d (cos P ) '  dQ 8 cos p 
must be positive in order for the precession to be stable (here 
A is evaluated for fl, @ corresponding to a specified station- 
ary solution). Since the intermediate case A = 0 holds for the 
solutions given by (1 5) and (16), they describe a metastable 
precession which does not change spontaneously but is des- 
tablized even by very small nonuniform external perturba- 
tions. 

We can picture the formation of a two-domain struc- 
ture in a weakly nonuniform magnetic field as follows. The 
spins start to precess at the local Larmor frequency shortly 
after the application of the initial tipping rf pulse. Because 
w, depends on z, the magnetization spirals about the z axis 
and a gradient Va is generated. The resulting current j: [see 
Eq. (33)] carriesp along the z direction. The chamber walls 
block the spin current, so that P increases at one wall and 
decreases at the opposite one. This continues until a state is 
reached in which j: vanishes everywhere (cf. Sec. 2). The 
energy ofthe initial state is higher than for the final state; the 
latter is therefore not reached until the transient oscillations 
generated during the formation of the two-domain state 
have been damped. 

4. RELAXATION OF THE TWO-DOMAIN STRUCTURE 

The states that correspond to a spatially uniform spin 
precession in the B-phase do not relax for f l<  8, (Refs. 14 
and 1 I), and this fact is also of great significance for the 
formation and observation of the two-domain structure. In- 
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deed, because such states make up the two-domain struc- 
ture, the latter can relax only to the extent that the preces- 
sion is not spatially uniform. The relaxation is therefore 
quite slow and involves an expansion of the region in which 
the magnetization is parallel to the field dB = O") at the ex- 
pense of a corresponding shrinkage of the region where 
p=  19,. The consequent motion of the domain wall toward 
weaker fields causes the precession frequency in the entire 
structure to decrease. This mechanism explains the change 
in the SDS frequency with time noted experimentally by 
Borovik-Romanov et al.' 

In order to compare our results quantitatively with ex- 
periment1e2 we will calculate the time derivative of the 
precession frequency in the hydrodynamic approximation, 
i.e., we will assume that w,r<l and 1 4 ,  where 7 is the reci- 
procal of the collision frequency for the quasiparticles and I 
is their mean free path. Recalling that the SDS frequency w, 
is equal to the Larmor frequency at the wall: w, = w, (z,), 
we find that 

We will calculate dzddt by using the expression 

d ~  as, as, d s  
-= - j { ~ { ~ ~ ~ - - -  

dt a z  32 + T.,,(,+B[Hxs I ) ' } ~ v  

for the rate at which energy is dissipated by the entire struc- 
ture. The dissipative function in the right-hand side is the 
leading term in the expansion of dE  /dt with respect to the 
spatial and time derivatives of S. The integration extends 
over the volume of the measuring chamber, and the first 
term in the integrand describes the energy dissipation due to 
spin diffusion (D,c, is the spin diffusion tensor). By symme- 
try (cf. Ref. lo), we can write the diffusion tensor in the 
form2' 

where Aic is the instantaneous value of the order-parameter 
matrix at z, t. If we substitute Aic = Ric(a,p,@) for the B- 
phase into (35) then into (34), we see that if all variables de- 
pend only on thez coordinate, only the isotropic component 
D l  of the diffusion tensor appears in the dissipative term. 
Indeed, we have Si = ( S  lR, for the solution given by (1 5), so 
that 

dS 
Riz- = 

dR<z 1 d(RizRi,) 
ISIRt,-=-- IS1 d z  = 0. 

d z  dz 2 

If Is is the characteristic length over which S varies in some 
region, then the contribution of this region to the dissipative 
function will be - I//,. The contribution from the neighbor- 
hood of the domain wall is therefore particularly important. 
If we substitute the expression for the Si in terms ofa,  P into 
(34), we find that 

per unit cross sectional area, where 

is - 1 and depends on the shape of the wall. If Dw/c2 is 4 1, 
then the dissipative terms in the equations of motion will be 
small compared to the gradient terms and we can take the 
position z, of the domain wall, found in Sec. 2 by neglecting 
dissipation, as a first approximation. Numerical integration 
then leads to the value u o z  1.1. Unfortunately, this approxi- 
mation is not very accurate. Because c2 tends to zero as 
T + T, and wpr + co as T + 0, the hydrodynamic approx- 
imation is inconsistent with a small diffusion tensor except 
in a very narrow temperature interval. The dissipative terms 
in the equations of motion must therefore be included in 
order to find the shape of the domain wall. The coefficient u 
will then differ from uo and in general will depend on Dw, / 
c2. We also expect that S will vary over distances -A near 
the chamber wall which bounds the precessing domain on 
the opposite side. The contribution of the chamber wall to 
the dissipative function will then be comparable to the con- 
tribution from the domain wall itself, and this will also affect 
u. Thus, in order to calculate u accurately one must include 
the dissipative terms and also analyze the bundary condi- 
tions on the wall of the measuring chamber. However, this 
constitutes a separate problem which we will not pursue 
here. 

The second (volume) term in the dissipative function 
(34) describes the bulk relaxation of the structure by the Leg- 
gett-Takagi mechanism14; ref is a phenomenological con- 
stant. Writing o, (z) = gH,(z), we get the expression 

L 

L 

=-r.,,S2 1 sin2 p[wp-oL(z )  I2dz (37) 
0 

for the bulk dissipation. For a field with I V H I = const we 
have 

if the width of the domain wall is neglected. To within the 
same approximation, the energy of the structure (relative to 
the equilibrium value) is given by 

L 

5 
E = J S ~ ( I - C O S  p ) d ~  = -s2zo.  

0 
4 (39) 

Combining (36), (38), and (39), we get the equation 

for the velocity of the domain wall; multiplying by Vw,, we 
obtain 

where small terms -L (Vw, )/a, have been neglected. 
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An estimate reveals that the second term in Eq. (40) is 
approximately equal to (zJA )2(zoV~L /wp) times the first; 
their ratio may thus be small or of order unity, depending on 
Vw, and the position z0 of the domain wall. The first (diffu- 
sion) term becomes dominant as the structure relaxes and z0 
decreases, and the wall velocity approaches the constant val- 
ue 

these experiments unambiguously because no special mea- 
sures were taken to regulate the field gradient. 

In this paper we have analyzed in detail only the station- 
ary two-domain structure in 3He-B; neither the formation 
process nor the possible motions of the domain wall have 
been considered. Dynamic studies are of particular interest 
because of the important role played by the spin supercur- 

The maximum wall velocity thus increases with Vw, as 
(Vw, )4'3. 

We have Dw,/c2>1 for T very close to T,. No slowly 
decaying signals or two-domain structures were observed for 
T=: T, in Refs. 1-4, and further study is needed in this case 
to determine how the magnetization moves in a weakly non- 
uniform magnetic field. 

5. DISCUSSION 

The formation of the dynamic domain structure can 
explain the basic features of the slowly decaying signal, as 
may be seen from the fact that Eq. (40) gives a satisfactory 
description of the time change of the SDS frequency found 
experimentally by Borovikov-Romanov et al.,' whose direct 
observations also demonstrated conclusively that two-do- 
main structures do indeed exist. 

In addition to generating the SDS, the relaxing dynamic 
domain structure provides a mechanism for magnetization 
relaxation in 3He-B for tipping angles P < 0,. No other 
mechanisms leading to relaxation of a spatially uniform 
precession are currently known. Dynamic domains can also 
form in continuous-wave NMR experiments if the pump 
power is high enough to replenish the energy dissipated at 
the domain wall. This suggests that the formation of a do- 
main structure may have been responsible for Webb's16 and 
O~heroffs '~ experimental results, in which behavior similar 
to the nonlinear ferromagnetic resonance was observed in 
3He-B. These experiments detected a shift in the precession 
frequency which depended on the magnitude of the longitu- 
dinal component of the magnetization. Such shifts are not 
found in 3He-B when the precession is spatially uniform but 
do occur during domain formation. The required shift agrees 
in order of magnitude with the estimated field gradients in 
the Webb-Osheroff  experiment^.'^^'^ The results found there 
also revealed a lack of symmetry in the direction of the fre- 
quency shift, which can readily be understood by postulating 
a domain structure. Unfortunately, it is difficult to interpret 

rents. Further theoretical and experimental work is thus 
needed to analyze the oscillations of the domain structures 
and the motion of the domain walls. 
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with the experimental work in Refs. 1 and 2, and I want to 
thank A. S. Borovik-Romanov, Yu. M. Bun'kov, V. V. Dmi- 
triev, Yu. M. MukharskiY, and K. Flachbart for many stimu- 
lating and fruitful discussions. I am also grateful to A. F. 
Andreev, G. E. Volovin, V. L. Golo, and V. P. Mineev for 
their interest in this work and for helpful advice and con- 
structive criticism. 

''The reader may consult the paper by Borovik-Romanov, Bun'kov, Dmi- 
triev, Mukharskii, and Flachbart in the current issue of JETP for a more 
detailed discussion of these and other experimental results. 
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