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In our analysis of particle dynamics we distinguish two limiting cases corresponding to motions 
with velocities much smaller and much larger than the group velocity of a wave packet. We obtain 
the conditions for the stochastization of the motion in these cases and show that in the second case 
the stochastic mechanism for increase in the particle energy has an upper bound. This restriction 
is universal. We construct and consider standard mappings generated by the motion in the field of 
a wave packet and establish the conditions for the transition to a quasilinear equation. We study 
the role played by dissipation. We obtain the mapping for both limiting cases, taking into account 
dissipation and we find the conditions for the occurence of stochastic attractors. We evaluate the 
limiting energies for particle acceleration. 

1. INTRODUCTION 

The study of the motion of particles in the field of wave 
packets is a typical problem for many problems of the dy- 
namics of a continuous medium and, in particular, of a plas- 
ma. Since a perturbation, represented in the form of a wave 
packet, of the equilibrium state of the medium contains a 
large number of hamonics, the particle motion becomes ex- 
traordinarily complex. Under well defined conditions one 
can describe it using a kinetic equation which is known for a 
plasma as the quasilinear equation.' One can find various 
aspects of its applications in review  article^.'^ 

The main condition which allows us to change from the 
regular dynamics of particles to their kinetic description is 
that no particles be captured in some way from the waves of 
the packet.' In well-defined very simple situations this con- 
dition is connected with the condition of overlap of reson- 
ances. In this way it has been possible to find a quantitative 
criterion for the possibility of using the quasilinear equa- 
t ion '~~  without assuming the existence of random phases for 
the waves constituting the wave packet. 

The real situation is much more complicated, and this 
determines the large number of attempts to improve or re- 
consider in some way or other the quasilinear plasma theory. 
The difficulty in defining exact criteria for the applicability 
of the kinetic description lies in the fact that the waves in the 
packet have different phase velocities and dispersion effects 
may suppress the evolution of the stochastic particle dynam- 
ics. Those cases which might be subject to an exact analysis 
are therefore of particular interest. 

We consider in the present paper two such cases: the 
case of a time-like packet and the case of a space-like packet; 
these are two different limiting situations in the structure of 
a wave packet. The stochastic dynamics evolves principally 
differently in these cases. This enables us to reveal the gen- 
eral physical picture of the occurrence of a stochastic de- 
scription of particle dynamics using the quasilinear equation 
and to evaluate the time for the decoupling of the corre- 
sponding phase correlations. 

The method used in this paper reduces the problem of 
particle dynamics to an exactly analyzable mapping. More- 
over, this method also enables us to consider particle dynam- 

ics when there are friction forces present and to establish the 
conditions for the appearance of a stochastic attractor in 
that case. 

2. THE TWO TYPES OF WAVE PACKETS AND PARTICLE 
DYNAMICS FOR A TIME-LIKE PACKET 

We consider the one-dimensional motion of a particle 
determined by the equation 

We make the following simplifing assumptions about the 
structure of the wave packet: 

k,=k,+nAk, o,=o,+nAo, En=Eo, (2-2) 

where n is an integer and where the summation in (2.1) goes 
from - N to + N. Equations (2.2) mean that the dispersion 
effects are small and that the spectral characteristics of the 
packet are fairly uniform and symmetric. We can then write 
(2.1) in the form 

N 

We introduce the parameter 

where v = 1 and v, is the group velocity of the packet. We 
write also 

k,x-o,t=$(x, t ) ,  Akx-Aot=E. 

When 7 4 1  we can approximately put {z - Aot and in that 
case the packet will be called a t-packet. When 7) 1 the op- 
posite case occurs: CzAkx and we have an x-packet. 

We consider first of all the first case (74 1) and we shall 
assume that Nin Eq, (2.3) is so large that we can put" N --+ co 
in (2.3). Then, (2.3) takes the form 

rn 
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-- - ',' T cor p (r ,  t )  s ( t - ~ T I ,  
ko n=-- 

where 

Tis the period of the &-pulse sequence and the distance Ao 
between the modes of the packet can be estimated as follows: 

A o - [ d o ( k ) / d k ]  Ak. (2.6) 

We can write Eq. (2.4) in the form of a mapping ?if we 
integrate it over a vanishingly small region around the point 
t ,  = nT and connect the quantities at times t, and tn + , . 
This gives . :{  F=v+ ( K / k O T )  cos p 

i$=l#+o ( F )  T 7 (2.7) 

where 

K=Qo2T2=eEokoT2/m, v=2, o ( v )  =k,v-oO, 

v=v (t=nT-O), F=v (t= (n+ I )  T-O), 

p=p[x (t=nT-0), t=nT-01, 
(2.8) 

$=$[x(t= ( n + l )  T -0 ) ,  t= ( n f l )  T-01. 

The notation (2.8) introduces the dimensionless parameter K 
and the canonically conjugated pair of variables (v,$) taken 
at two successive points directly preceding the action of a 6- 
pulse. 

Mappings of the kind (2.7) have been rather well stud- 
ied.5.7 When K5 1 there occurs a local instability leading to 
stochastic particle dynamics. This manifests itself in the fact 
that the phase correlation $ is exponentially decoupled: 

aa 

where the time for the decoupling of the correlation when 
K) 1 equals5v8 

7,-2T/ln K .  (2.10) 

One gets the condition for the local instability from (2.7) 
using the relation 

K=max Id$/d$-1181. (2.11) 

Equations (2.9) and (2.10) determine the nature of the 
particle dynamics on a short time scale - T. For long time 
scales there occurs in the space of the velocities v a slow 
diffusion described by the formula 

aF 1 a aF ---- (2.12) 
D-, 

at  2 av av 

where F = F(v, t )  is a velocity distribution function and 
D = e2E: T/2m2 is the diffusion coefficient. Since the diffu- 
sion coefficient for the mapping (2.7) is independent of v ,  it 
follows from (2.12) that 

i.e., the particle energy increases. It will become clear pres- 
ently that this property holds true also in the more general 
case. 

Let the wave amplitudes En,  the frequencies w, and the 
distances between the modes Awn in (2.2) not be constant, 
but depend slowly on n. It is then clear that under the condi- 
tion 74  1 at which we obtained Eq. (2.12) a generalized quasi- 
linear equation such as (2.12) will also hold, but now with a 
diffusion coefficient8 

where the "smeared" 8-function 

has been introduced and where the T, is defined by Eqs. (2.9) 
and (2.10). We must now assume in them that Eo is some 
characteristic value of the E, averaged over the wave pack- 
et. The same also is true regarding Eqs. (2.5) and (2.6). 

The average particle energy ( g) is equal to 

From (2.12) and (2.14) follows one of the main physical 
consequences when the stochasticity condition (2.11) is satis- 
fied5: d (%')/dt > 0. This inequality is established directly 
and means an unbounded increase in particle energy ("sto- 
chastic heating"). If we take into account that the number N 
of the modes in the wave packet is finite, we see that the 
maximum particle energy is determined by the maximum 
phase velocity of the wave contained in the packet. 

The unbounded increase (with the reservation just 
made) in particle energy is caused by the inequality 74  1, i.e., 
v 4  I vg I = ldu, /dk I .  The appearance of particles with high 
velocities leads to a violation of that inequality and it is thus 
necessary as a matter of principle to consider the other limit- 
ing case p )  1, i.e., the case of an x-packet. 

Apparently, just this fact leads to a number of difficul- 
ties encountered in various papers where attempts are made 
to justify the quasi-linear equation. We shall show presently 
how one can obtain an exact description for the case 7% 1. 

3. PARTICLE DYNAMICS IN A SPACE-LIKE PACKET 

When 7 )  1 we can use the approximation g z  Akx and 
as N + w Eq. (2.3) becomes 

m 

.. $aoe 
re- cos lp (z, t )  cos nAkr  

ko n=-(0 

where we have introduced the characteristic length of the 
system L = 2.r/Ak which determines the distance Ak 
between the modes of the wave packet. 
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Using (3.1) we write down an equation for the energy 29: - 
. QO2 a=- , L cos 9 (x, t)x . Z 8 (x-nL) . 

We can pr,ceed with Eq. (3.2) in the same way as we ob- 
tained the T-mapping (2.7), i.e., integrate (3.2) in the vicinity 
of the nth and the (n + 1)st 6-pulses and connect the values 
of the variables near those points. In that case, the nth 6- 
pulse of the force, for instance, acts at the time t = t, which 
is found from the equation 

x n = x  ( t , )  =nL; n=O, I, . . . , (3.3) 
h 

We shall call the correspondin~ mapping the L-mapping. 
In actual fact, getting the L-mapping is rather a delicate 

procedure. It follows from Eq. (3.2) that the quantity 8 and, 
hence, alsox, is discontinuous (it has a jump) in the point x, . 
The right-hand side of Eq. (3.2) contains therefore a product 
oftwo generalized functions, of the kind 6' (x)S(x), with singu- 
larities which coincide. Generally speaking, such a product 
is not defined uniquely (for a study of this problem, see Ref. 
9). In a real physical situation, however, there should not be 
any ambiguity, as the particle trajectories are unique. For 
large values of N one can reason as follows. 

Let N be finite and large. There (3.2) contains instead of 
the 6-functions "peaks" of width Ax - L /N = 2r/NAk. On 
the other hand, the function $(x,t ) has a characteristic vari- 
ation scale - l/ko. Let this variation be very slow, i.e., let the 
inequality 1/NAk4 l/ko be satisfied. We have then a sym- 
metric case in which we may take 

where p * (a) are, respectively, the left-hand and right-hand 
values of the function p (x) which has a discontinuity at the 
point x = a. 

Using these relations and integrating (3.2) in the vicinity 
of tke points x, = nL and X, = x, + , = (n + 1)L, we find 
the L-mapping: 

L :  { 8 = 8 + m  (Qo2/ko) L (sign F+sign u )  cos $ 

ij=$+koL-ooT (8) 1 (3.4) 

where T (8) is the interval between successive times deter- 
mined by Eq. E.3); ($,*) are a pair of canonically conjugate 
variables (the L-mapping conserves measure) and one must 
complete (3.4) with an equation defining F: 

We obtain Eq. (3.5) by integrating (3.1) in the vicinity of a 
point t, and in it we have for the sake of simplicity omitted 
everywhere the index n. The values of ($,u,$) and ($,E;,$) are 
determined in accord with (2.8). 

We discuss some details of the L-mapping. If v and F 
have the same sign, then 

g = 8 + m ~  (Qo2/ko) cos $ 
g=*+k,L-ooT (3) 

If v and F have opposite signs there occurs a simple rotation 
mapping: 

Oneeasily establishes the function T ($). It follows from 
(3.1) that outside the pointsx, we have v = const and, hence, 
the particle moves with a constant speed. Let L be the dis- 
tance between two successive points x, and x, + , . It is tra- 
versed in a time 

We have further assumed, as is usually done, that the pertur- 
bation in (3.1) is rather small. This means, in particular, that 
the change in velocity under the action of the 6-pulse is also 
small, i.e., 

We can therefore write Eq. (3.5) up to terms of order E~ in the 
form 

E=u+ (Qo2L/koIvI ) cos $, (3.10) 

which is formally the same as the first line of Eq. (2.7). Al- 
though these formulae for the change in the velocity are out- 
wardly similar, there is a principal difference between them: 
in (2.7) the mapping time T = const whereas in (3.10) the 
mapping time T = T (8) = L / I  v / depends on the particle ve- 
locity (or energy). 

In the same approximation (3.9) we may assume sign - v = sign u, as is clear from (3. lo), so that the pr%blem of the 
particle dynamics at 7) 1 reduces thus to the L, -mapping 
(3.6) where we must use Eq. (3.8) for T ($): 

F = 8 + m ~  (Qo21ko) cos $ (3.11) 
$=$+koL-o,L/ (2zlm)'". 

The remaining way of studying (3.11) is analogous to 
the analysis of the T-mapping. Following (2.11) we consider 
the parameter 

The condition for the occurrence of stochasticity K 2 1 leads 
to the inequality 

whose physical characier is completely different from the 
same condition for the T-mapping. Indeed, the stochasticity 
of the phase $ on the particle trajectory also leads as before, 
to stochastic heating and to a growth in the average value of 
lvl. However, this quantity cannot exceed a certain critical 
value v,,, which is equal to 

When v > v,,, the stochasticity (at least strong stochas- 
ticity) disappears and there is no further acceleration (at least 
over not too long time intervals). Of course, all these consid- 
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erations are valid up to the small terms which we have 
dropped. A similar situation was met with in the Fermi ac- 
celeration model in Ref. 10. 

The general picture of the particle dynamics now looks 
as follows: 

1) If v > v, = Ida, /dk I the motion occurs in the wave 
x-packet, and if condition (3.13) holds the particle gains en- 
ergy on the average until its velocity reaches either the maxi- 
mum phase velocity max (w, /k ) for a wave in the packet, or 
v,,, from Eq. (3.14). In the latter case the particle cannot 
reach resonance with waves having a phase velocity larger 
than urn,,. 

2) If v < urn,, the particle dynamics initially corresponds 
to the motion in a wave x-packet. If condition (2.11) holds 

eEokoT2/m-eEoko/m ( A o )  Z>l, (3.15) 

the motion of the particle is stochastic and its energy grows. 
When it reaches a velocity v - v, there is a change in the 
nature of the dynamics. Combining conditions (3.15) and 
(3.13) we get 

If (3.16) is not satisfied when v-v,, i.e., u, = w,/k, < v, , 
stochastic heating is on the whole discontinued. If (3.16) is 
satisfied, i.e., u, > v, the further picture of the development 
corresponds to the first case. 

3) The range of velocities v close to v, is a special one. It 
corresponds to a special kind of motion which may be called 
group resonance. Indeed, from the definition of { it follows 
that the condition ( = 0 is equivalent to the condition v z v, . 
Hence and from Eq. (2.3) it is clear that a particle with v v, 
is at resonance with the whole wave packet. It is therefore 
just the unification of the regions 77 < 1 and 77 > 1 (i.e., v < v, 
and v > v, ) which causes certain difficulties. We shall consid- 
er the problem of the group resonance separately. A 

We now turn to the kinetic description of the L, -map- 
ping (3.11). The time for the decoupling of the phase T, is, if 
we take (3.8) and (3.10) into account, equal to5 

The kinetic equation has the following structure: 

where 

and the averaging ( ( . . . ) ) is over the random phases t+h. If 
we neglect the finite correlation time we have from (3.19) and 
(3.6) simply ( (cos2$) ) = 4 and 

From (3.20) we get, in particular, the law of stochastic 
heating in the velocity range v(vrn,, : 

We draw attention to the fact that the kinetic equation 
has a Fokker-Planck equation type structure for the distri- 
bution function iO of different variables depending on 
whether the wave packet is a t-packet or an x-packet. 

4. STANDARD MAPPINGS 

The possibility to change in a number of physical prob- 
lems from differential equations describing the dynamics of 
the system to a discrete mapping enables us to simplify the 
investigation. In the case of a system consisting of one degree 
of freedom and excited by an external force (3/2 degrees of 
freedom) one can indicate some typical ("standard") map- 
pings which depend little on the concrete properties of the 
system. In this way problems about the dynamics, the stabil- 
ity, and the stochasticity in various physical objects obtain 
some universal structure and classification. In the present 
section we give simple physical considerations which distin- 
guish standard mappings and connect their classification 
with the cases considered above. 

We shall describe a mapping for a canonically conjugate 
pair of variables (p,x), where p is a generalized momentum 
(for instance, an action) and x a generalized coordinate (for 
instance, an angle). 

Let, to start with, the time interval T which the map- 
ping spans be constant and be independent of the number of 
the step. The simplest (standard) mapping then has the 
forms,7 

P : P=P+E sin x, T=x+ap. (4.1) 

We briefly elucidate its meaning. The first equation de- 
scribes the change in, for instance, the action under the effect 
of a single 6-pulse of the force. The change in the action 
Ap =j - p  has the simplest form in its dependence on the 
phasex. The change in the phase Ax = Z - x can be written 
in the form w(j)Tand,  assuming for w(p) the simplest form 
w(p) = const f w,p we are led to (4.1) where w,T = a and 
the phase2hifted by an unimportant constant. 

The T-type mapping (4.1) is the standard one. One can 
find a review of its properties in Ref. 7. It is the same as (2.7) 
(apart from the unimportant constant phase shift) and 
K = &a. 

The first equation in (4.1) is rather universal. The 
change in the phase Ax = wT in the second equation can 
have a different form. An alternative to (4.1) is 
w = w, = const and T =  T(p ) .  I f p i s  the ordinary momen- 
tum, we have T = const/p and the L,-mapping then occurs: 

Li  : p = p + ~  sin x, E=x+ alp. (4.2) 

It appears in the problem of the Fermi accelerationlo and 
when a particle moves in a billiards of "track" typee5 From 
(4.2) we get the stochasticity condition in the form 

I fp  is a quantity propozional to the energy of the particle, 
Ax = const/pi and the L2-mapping then occurs: 
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E2 : p = p + ~  sin x, Z=x+a/p'". (4.4) 

These are just the kinds of mapping (3.11) for a particle mov- 
ing in an x-packet. It follows from (4.4) that stochasticity 
occurs when 

h h 

The L,-, L2-mappings arise when the spatial step of the 
mapping is fixed. 

5. EFFECT OF DISSIPATION ON THE PARTICLE DYNAMICS 

So far we have studied the particle dynamics when there 
are no dissipative factors whatever. In a real situation the 
role of such factors may be played by particle collisions or by 
dissipation caused by collective processes. 

We shall assume that the magnitude of the dissipation is 
small. Taking it into account in its simplest form then re- 
duces to changing Eq. (2.1) to the following one: 

where y is the effective friction coefficient. Correspondingly 
in a wave t-packet Eq. (2.4) is replaced by 

DI 

Qo2 ;+@= - T cos $ 6 ( t -nT)  , 
ko ,,=-- 

where we have used the same notation as in (2.5,) and (2.6). 
Equation (5.2) generates the following ( T  - y)-map- 

ping: 

where 

F=yT, K  ( r )  = K p  ( I ? ) ,  p  ( r )  = (I-e- ')  /r, K = Q o T z .  

(5.4) 
%quations (5.3) are analogous toEqs. (2.7). When r = 0 the 
( T  - y)-mapping changes to the T-mapping (2.7). 

The properties of Eqs. (5.3) have been well ~ tud ied ."~ '~  
When K (T) 2 1 there appears a stochastic attractor. The se- 
quence of bifurcations of the transition from regular dynam- 
ics to the stochastic one was considered in Ref. 13. 

The simplest properties of the stochastic dynamics 
when K (r)( 1 can be understood starting from Kolmogor- 
ov's kinetic equation: 

Since ( (cos $) ) = 0 and ( (cos2$)) = 4, it follows from (5.2) 
that 

Substitution of Eq. (5.6) into (5.5) gives 

Hence 

where the moments (vn ) are evaluated using a distribution 
function F which satisfies the kinetic Eq. (5.7). The solution 
of Eq. (5.8) has the form 

where v t  is the value of (v2) at t = 0. 
For not too long times (Tt /T( 1) we get from (5.9) the 

usual result of stochastic increase of the particle energy: 

where K a n d p ( r )  are given in Eq. (5.4). Formula (5.10) con- 
tains the same linear law for energy growth with time as 
(2.13). However, later on the increase in the average energy 
( %' ) = m (v2)/2 ceases and it reached saturation as t -+ 03 

which according to Eq. (5.9) equals 

In particular, for small values T< 1 we get 

For large values T) 1 we get 

i.e., the power of the I?-dependence of the limiting "heating 
energy" of the particles changes. 

A 

&n effective method for evaluating correlators for T- 
and ( T  - y)-type mappings was developed in Refs. 14 and 
15. One can get Eqs. (5.12) and (5.13) from the results of Ref. 
15 forKs  1. The main physical content ofEqs. (5.11) to (5.13) 
lies in the fact that they determine not only the possibility for 
stochastic heating of particles by the field of a wave packet 
when dissipation is present, but also the limiting magnitude 
of the heating as function of the parameters (amplitude, dis- 
tances between the modes of the waves, dispersion) of the 
packet. To see this explicitly we rewrite, for instance, Eq. 
(5.12), using the notation: 

8 ,=e2EO2 (4my I do/dkI Ak)- ' .  (5.14) 

Equation (5.14) can also be used for the general form of 
a wave packet in which the quantities E, and dw/dk charac- 
terize, respectively, some values ofE, and dw, /dk averaged 
over the packet. 
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We now turn to a consideration of particle dynamics in 
an x-packet, taking dissipation into account. Instead of Eq. 
(5.2) we have 

OD 

which changes to (3.1) when y = 0. Introducing tF = mv2/2 
as before, we have from (5.15) 

LID 

c2 8-F 2 y 8 - 2 m ~  2 i. cos ip 6 (x-nL) . (5.16) 
k~ n=-m 

To simplify further calculations we restrict ourselves to the 
case when inequality (3.9) holds, which presupposes the per- 
turbation to be small. In that case signx does not change and 
integrating (5.16) over a time interval T containing only a 
single 6-pulse gives 

8 = e - 2 7 T [ 8 + 2 m ~  (c202/ko) cos $1. (5.17) 

We choose the time interval T = T ( g )  such that it equals the 
space between two successive 6-pulses of the force, i.e., 

Equation (5.18) determines T = T(tF). As the equation of 
motion has in the interval (t, + 0, t, + T - 0) the simple 
form i@ + 2 y g  = 0, this gives 

Equation (5.19) presupposes the existence of the inequality 

v =  ( 2 8 / m )  "'>yL, (5.20) 
which means that particles with velocities v(yL cannot tra- 
verse a length of path L during a finite time because of the 
deceleration due to friction force. 

It is now easy to use E p .  (5.17) and (5.19) to write down 
the final equations of the (L - y)-mapping: 

/ f = e a p [ - - 2 y ~  (go) I ~ O ,  

- 1 ~ , = 8 + 2 m ~ ( ~ . ' l k ~ )  cos ip 

h 

The main difference between it and the ( T  - y)-mapping is in 
that the time interval of the mapping depends on the particle 
energy and, as we shall see below, this can lead to interesting 
physical consequences. 

We evaluate the parameter K characterizing the degree 
of local instability of the system: 

h 

namics becomes stochastic. In that case the (L - y)-mapping 
generates a stochastic attractor. The detailed description of 
the corresponding dynamics will be given separately. Here 
we note merely that as y increases the parameter K increases. 
The cause of this is the following. Decreasing y leads to an 
increase in the time it takes to traverse a path of length L. 
The difference between the initial and final phases therefore 
increases. This, in turn, diminishes the degree of their corre- 
lation. The effect described here qualitatively operates in the 
velocity range bounded by inequality (5.20). 

6. CONCLUSION 

Our study of particle dynamics in the field of a wave 
packet has enabled us to distinguish between two typical 
limiting cases which differ in whether the wave packet is a t- 
packet or an x-packet. The packet properties themselves are 
in a certain sense arbitrary and depend not only on the spec- 
tral structure of the packet but also on the particle velocity. 

The main feature of the limiting cases considered here 
lies in that the analysis of the instability of the trajectories 
and the condition for the occurrence of stochastic dynamics 
can be carried out exactly. Thus we establish a number of 
exact conditions under which the kinetic description of the 
particle dynamics which in plasma theory is well known as 
the quasilinear theory, is valid. 

One of the important physical consequences is that a 
bound is imposed on the increase in the average particle en- 
ergy by stochastization of their motion. It is also interesting 
to note that the problem considered generates some map- 
pings which may be called standard ones by virtue of their 
typical nature. We shall consider separately the more de- 
tailed formal properties of those mappings. 
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