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Multiple scattering of an electromagnetic wave by a volume of liquid near the critical point is 
considered within the framework of a macroscopic approach in which the dielectric-constant 
fluctuations are assumed to be due to density fluctuations. The mean electric field strength and 
the coherence tensor are determined by using the exact Dyson and Bethe-Salpeter equations, 
whose kernels (the mass operator and the intensity operator) are related, via the mean Green's 
tensor, by the optical theorem in the theory of multiple scattering of waves. An exact equation is 
derived for the incoherent-scattering cross section, integrated over all angles, in terms of effective 
dielectric tensor of a randomly inhomogeneous medium and of the mean electric field. The calcu- 
lation and the aid of this equation is carried out in an approximation wherein the effective com- 
plex refractive index differs little from unity. It is shown that the integral cross section for inco- 
herent scattering near the critical point is bounded from above by the maximum geometric 
transverse section of the volume of the material. 

1. INTRODUCTION 

Critical opalescence is defined1 as the abrupt increase of 
scattered-light intensity, predominantly in the propagation 
direction of the exciting light, near the critical point of an 
individual substance or near the critical stratification or 
mixing temperature of binary solutions. The extinction coef- 
ficient, calculated according to the Ornstein-Zernike theory 
for a liquid in the single-scattering approximation, diverges 
logarithmically at the critical point itself, owing to the con- 
tribution of the small scattering angles. No such difficulty 
arises in real systems, since the correlation length of the den- 
sity fluctuations is restricted by the vessel dimensions.' The 
divergence is eliminated also when account is taken of dif- 
fraction by the volume of the l i q ~ i d . ~  The extinction coeffi- 
cient at the crucial point, however, is restricted also by an- 
other factor, namely the multiple scattering of the light.4 

The question of the value of the extinction coefficient h 
in multiple scattering of light in a liquid that is in a near- 
critical state was considered by Lakoza and ~ h a l y i . ~ . ~  They 
obtained by a macroscopic approach an equation " in the 
form 

h=h,/(l-hlL,), h,L,<l, (1) 

where h, is the extinction coefficient in the single-scattering 
approximation, and Lo is the characteristic dimension of the 
scattering volume. Equation (1) does not include the afore- 
mentioned saturation of the extinction coefficient at the 
critical point, in view of the multiple scattering. Moreover, 
the extinction coefficient should have according to (1) an 
additional divergence as the critical point is approached, 
when hlL,-+l .  The cause of these shortcomings of Eq. (1) is 
easily explained. The equation was derived in fact by using 
the Bethe-Salpeter equation in the ladder approximation.' 
In Refs. 5 and 6, however, no account was taken of the con- 
tribution of the extinction effect to the value of the bilinear 
combination of the Green's function averaged over the en- 
semble, so that the energy-flux conservation law in multiple 
wave scattering was violated. 

We derive here an exact equation for the multiple-scat- 
tering extinction coefficient h,  starting from the exact Dyson 
and Bethe-Salpeter equations.' The decisive factor in the 
derivation is the use of the optical theorem in the theory of 
multiple scattering of  wave^,^*'^ expressing the imaginary 
part of the mass operator in terms of the imaginary part of 
the mean Green's function and the intensity operator. The 
exact equation represents the extinction coefficient h as a 
double integral, over the scattering volume, of the product 
two quantities. One is the imaginary part of the effective- 
dielectric constant of a randomly inhomogeneous medi- 
um," and the other a bilinear combination of the mean elec- 
tric field. According to this representation the extinction 
coefficient coincides, in accord with its definition and the 
energy-flux conservation law, with the cross section for the 
absorption of the coherent radiation (of the mean field)'' per 
unit volume. In a randomly inhomogeneous medium with- 
out true absorption, coherent-radiation absorption is taken 
to mean energy-flux transfer from the mean field to the fluc- 
tuating component of the field-to the incoherent radiation. 
The extinction coefficient is calculated by means of the exact 
formula in an approximation using an effective complex re- 
fractive index for the mean field,' and neglecting, according 
to Hulst,13 reflection and refraction of the mean field at the 
boundary of the scattering volume. It is found therefore that 
the coefficent of extinction of multiply scattered light tends 
at the critical point to the ratio of the geometric cross section 
of the scattering volume to the size of the volume. This 
means that the scattering volume behaves at the critical 
point as a "black body" for the coherent radiation, convert- 
ing all of the incident coherent radiation into incoherent. 

2. INITIAL EQUATIONS 

In the macroscopic approach6 to light scattering in a 
substance (liquid) in near-critical state, use is made of the 
concept of the random dielectric constant ~ ( r )  = E, + E(r). 
Here .co = ( ~ ( r ) )  is the dielectric constant of the medium 
averaged over an ensemble of realizations (we assume this 
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mean value to be constant and equal to the dielectric con- 
stant of the homogeneous medium), and E(r) is its fluctuating 
part. Assume that a plane monochromatic electromagnetic 
wave with an electric field 

Eo (r) =Eo exp (ikonor), Eono=O, 

ko= (oIc) E ~ ' ~  
(2) 

is incident on the volume in the direction of a unit vector no. 
The mean electric field (E,(r)) and its mutual coherence 
tensor (E, (r)E ;I*, (r')), (the asterisk denotes the complex con- 
jugate) can be obtained the Dyson and Bethe-Salpeter equa- 
tions,' whose symbolic operator form is 

<G>=Go+GoM<G>, (3) 

<E><E'>=(E>X(E*>+<G)X<GG)K<EXE') ,  (4) 

4n0 E=- Gj. 
ic2 

In this notation, the symbol X denotes the tensor productI4 
of the vector functions or of the tensor kernels of the opera- 
tors G,,, (r,rl) and GZ', (r,rl) which are the Green's tensors of 
the electric field with and without allowance for the fluctu- 
ations of the dielectric constant of the substance. The mass 
operator M and the intensity operator K are specified by 
their kernels M,,,(r,rl) and K ,,,, yV, (rl,r; ;r2,r;), with the in- 
tensity operator acting on a certain test tensor @,,(r,,r2) in 
accordance with 

(K@),v(rl, r2) = jj drl' d r ~ ' K ~ ~ , , ~ ~ ,  (rl, ril; r2, r2') @ p , v r  (rir, rZ f ) ,  

with summation over repeated indices; j, (r) is the current- 
density vector [the source of the incident field (2)]. 

The operators M and K are specified in the Feynman 
diagram technique by infinite sums of highly connective dia- 
grams,' summation over which is impossible. General phys- 
ical requirements, however, call for the kernels M and K to 
satisfy certain relations. These include the optical theorem 
in the theory of multiple scattering of  wave^^^'^ 

M @ 1 - l @ M ' = ( ( G > @ l - I @ ( G * > ) K .  (6) 

Here A a B denotes the contracted tensor product of the nu- 
clei A,,, (r,rf) and B,,, (r,rl'), equal to 

3 drApp, (r, r') BpY, (F, r") ; (7) 

1 in (6) stands for the unit operator S,,,S(r - r'). 
Scattering of an electromagnetic wave by a volume of 

matter is described by the electric-field scattering operator 
Tpp, (r,rl) defined by the relation, 

E =Eo+GoTEo (8) 

and satisfying an analog of the Lippmann-Schwinger equa- 
tion'' with an effective scattering potential 
V(r) = - k ;B(T)/E,,. Incoherent wave scattering is charac- 
terized by fluctuation of the scattering operator 

U=(TXT'>-(T>X(T*>. (9) 

We introduce the Fourier transform of the kernel of operator 
(9), putting 

x e x p [ i ( ~ ~ r ~ - p ~ ' r ~ ' )  1 U,,~,vv~ (ri, p i f ;  r2, r2'). (10) 
The differential cross section for incoherent scattering of the 
wave in the direction of the unit vector n by the volume of 
matter takes then the form 

1 
Cine (n, no) = - lim r2 (Il inCn) = 

(nono) r + m  

(11) 
In the first equality Hi,.,, denotes the Poynting vector of the 
incoherent radiation 

and no is the Poynting vector of the incident wave (2); the 
origin r = 0 is inside the volume in the second equality, 
where 

Pyvt'=Gpy-n,,nv. 

Integrating (1 1) over all the scattering directions n we obtain 
the integral cross section for the incoherent scattering Cine . 
With the aid of the equation 

we introduce the cross section for the absorption of the co- 
herent radiation Ccoh,ab,, . Subject to the condition that the 
random dielectric constant is real, the integral cross section 
for incoherent scattering coincides with the cross section for 
absorption of coherent radiation1' 

Cinc=Ccoh.abs. (I4) 

The basic relations of the present section, meaning the 
second equation of (1 1) and Eq. (14), can be easily verified. 
The coefficient of extinction of multiple scattering of light by 
a volume of matter is defined by the integral coherent-scat- 
tering section per unit volume 0: 

h=Cin,lQ. (15) 

Neglecting single scattering, this definition coincides with 
the customary one. ' 

3. EXPRESSION FOR EXTINCTION COEFFICIENT IN TERMS 
OF THE EFFECTIVE DIELECTRIC TENSOR 

It follows from (8) and (9) that the fluctuation of the 
electric field is expressed in terms of the fluctuation of the 
scattering operator. Taken together with Eq. (4), this yields 

We act on (16) from the left with the operator 
G ,  ' x 1 - 1 x G ,* - ' and carry out the contraction (7) of the 
tensor products. Taking (3) into account, we get 
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The first two terms on the right are transformed, after ex- 
panding the expression in the square brackets, with the aid of 
the optical theorem (6) .  Using next again Eq. (4), we ulti- 
mately get 

The left-hand side of this relation is expressed with the aid of 
the Green's tensor of the electric field in a homogeneous 
medium1 

1 d2 exp( ikor )  
G,,: ( r )  =- ( t iNv + --) 

k,Z dx, dx, 4nr 

and with the aid of the Fourier transform (10) in terms of the 
integral incoherent-scattering cross section Ci,, The right- 
hand side of (18) contains the imaginary part of the mass 
operator 

where the supscript + denotes the Hermitian adjoint opera- 
tor. In view of the foregoing remarks, relation (1 8) is rewrit- 
ten in the form 

The double integral in the right-hand side of (21) is a qua- 
dratic form of the self-adjoint operator (20). It follows there- 
fore that this operator must be negative-definite: 

Im M<O. (22) 

The effective dielectric tensor ez;(r,r1) of a randomly 
inhomogeneous medium is introduced by the relation 
(EE ) = (E ) (Ref. 1 1). Writing for the field-strength 
vector of the electric field E, (r) the analog of the Lippmann- 
Schwinger equation1' and averaging it over the ensemble of 
the fluctuations of the dielectric constant of the medium, we 
obtain 

eff 
cPV ( r ,  r ' )  / ~ ~ = 6 ~ ~ ~ 6  (r-r') - ~ O - ~ M P V  ( r ,  r ' ) .  (23) 

This and (21) lead to an expression for the integral incoher- 
ent-scattering cross section in terms of the effective dielec- 
tric tensor of the medium and the mean electric field. 

4. EFFECTIVE-REFRACTIVE-INDEX APPROXIMATION 

We turn now to an approximate calculation of the dou- 
ble integral (21). We assume that the fluctuations of the di- 
electric constant of the medium are homogeneous and iso- 
tropic. In the interior of the medium the mass operator 
depends then only on the difference of its arguments, and its 
Fourier transform can be resolved into a sum of transverse 
and longitudinal components" 

Mwv ( p )  = J exp (-ipr) M,, ( r )  dr 

The effective complex refractive indices m, and m, of the 
tranverse and longitudinal components of the mean electric 
field inside the medium are determined with the aid of M,( p) 
and MI( p) by the dispersion relations 

The same dispersion relations yield the poles of the Fourier 
transform of the mean Green's tensor of the electric field in 
an unbounded randomly inhomogeneous medium. " In the 
solution of the first dispersion equation in (25) we assume 
that the refractive index differs little from unity. Then 

mt=l-i/zko-'Mt (ka) ,  ( M t  (ko) / I koZKI .  (26) 

The quantity 

as will be made clear below, coincides with the extinction 
coefficient of the volume of matter in the single-scattering 
approximation. Under condition (26) the mean electric field 
inside the scattering volume can be calculated in the geomet- 
ric-optics approximation, assuming according to Hulst13 
(see p. 202 of the Russian translation) that 

( E , ( r )  >=E,O exp ( i k o m t n o r ) .  (28) 

We substitute2' (28) in the integer of (21). This leads, 
after simple calculations, with allowance for (15) and (27), to 
the following expression for the extinction coefficient of 
multiple scattering of electromagnetic wave (2) by a convex 
volume of matter 

The integration here is over the maximum volume trans- 
verse section perpendicular to the wave-incidence direction 
no; L (r,) is the length from the entrance to and exit of the 
volume through which the beam passes in the no direction 
through the point r, of the maximum transverse section. 

5. SATURATION OF EXTINCTION COEFFICIENT AT THE 
CRITICAL POINT 

It can be seen from (29) that the extinction coefficient h 
does not exceed the value 

where Cgeo, is the maximum geometric transverse section of 
the volume. This limiting value is reached under the condi- 
tion3' hlL) 1, when the scattering volume behaves as a black 
body with respect to the coherent radiation. In this opposite 
limiting case of single scattering, hlL( 1, the extinction coef- 
ficient h =.h ,. The figure shows a plot of the ratio h /h, vs the 
"optical thickness" parameter hlL of a spherical volume of 
radius L, as calculated from (29). The figure shows also the 
analogous plot (upper curve) in accordance with Eq. It 
can be seen that the plots differ in shape. 

To calculate the single-scattering extinction coefficient 
h, we choose a mass operator in the lowest order of perturba- 
tion theory (the Bourret approximation, see Ref. 7, p. 403) 

1 168 Sov. Phys. JETP 61 (6), June 1985 Yu. N. Barabanenkov and E. G. Stainova 1168 



of (35), the value keg) 1.7 [see the table of h ,L /s as a function 
of 6 in Ref. 51. 

FIG. 1. Dependence of the ratio h /hl on the "optical thickness" param- 
eter hlL of a spherical volume of radius L. 

According to Refs. 5 and 6,  the effective scattering potential 
of the medium is 

where the partial derivative is taken at constant temperature 
T,p(r) is the macroscopic density of the material, andp, is its 
mean value. On the basis of (3 1) and (32) we get from (27) 

We have denoted by g, (k) the density-fluctuation corre- 
lation that is connected with the static structure 
factor S (k) by the simple relation (see Ref. 16, p. 285) 

1 
g2 ( k )  = j  dr exp (-ikr) ( A p  ( r )  Ap (0 )  )= - S ( k )  . (34) 

Po 

We choose the structure factor in accord with the Ornstein- 
Zernike theory of critical fluctuations,16 
S (k ) = g; '/(lWZ + k '), where 6 is the correlation length 
and go is the direct-interaction radius. According to (33), h, 
assumes then a known that yields for the optical 
thickness of the substance 

The parameter S = 2(k0()' increases without limit at the 
critical point, and the parameters remains finite. 

Let us determine the values of k0g starting with which 
multiple scattering of light near the critical point becomes 
substantial at a level h /hl (0.5. From the lower plot of the 
figure we find h ,L > 1.1, which yields at s = 0.1, on the basis 

6. CONCLUSION 

It is easily seen that the basic formula (21), with account 
taken of (23), can be obtained also without using (4), by mere- 
ly determining the tensor &;;(r,r1) and the electromagnetic- 
energy flux conservation law. The transition from (21) to (29) 
is made under the assumptions customarily used on going 
from the Bethe-Salpeter equation to the radiation-transport 
equation. l2  This is due, in particular, to the condition 6hl ( 1. 
Equations (2 1) and (29) can be generalized to the case when 
the mean values of the dielectric constant &,(r) and of its 
fluctuation T(r) are spatially homogeneous and behave as 
tensors. This permits allowance for the effect of the gravita- 
tional field for the vapor + liquid s y ~ t e m , ~  and considera- 
tion, besides critical opalescence of liquids and binary solu- 
tions, of similar phenomena such as enhancement of the 
scattered-light intensity near the temperature of a second- 
order phase transition," and in liquid  crystal^.'^ 

The authors thank the participants of V. I. Tatarskiys 
seminar for a discussion of the results. 

APPENDIX 

We indicate the assumptions under which Eq. (1) is ob- 
tained in the approach described in this paper. 

We verify first satisfaction of the electromagnetic-field 
energy-flux conservation law for the solution of Eq. (4). We 
note for this purpose that the Green's function (19) of an 
electric field in a homogeneous medium satisfies the equa- 
tion AGO = l ,  where the form of the differential operator A 
can be easily reconstructed. With the aid of this remark we 
derive from (4), taking (3) and (5) into account, the relation 

+ ( E ) X j * )  +[MXl-1XM*+ (1X(G '>- (G>X1)  K ]  ( E X E ' ) .  

(A. 1) 
Performing the convolution (7) and using the optical 
theorem (6), we get 

which is the integral form, averaged over the ensemble, of 
the electromagnetic-field energy-flux conservation law. 

We replace now, purely arbitrarily, the bilinear combi- 
nations of the mean field (E  ) and the mean Green's tensor 
( G  ) by bilinear combinations of the incident field Eo (2) and 
the Green's tensor Go (19) in a homogeneous medium: 

(E>X<E'>-EoXEo,  (G>X(G'>+GoXGo*. (-4.3) 

A similar replacement is then effected in the right-hand side 
of (A. 1) where, in addition, the first two terms in the square 
brackets vanish. We choose the intensity operator in the lad- 
der approximation 

K=<VXV>, (-4.4) 
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which is connected with the approximation (3 1) for the mass 
operator by the first-order optical t h e ~ r e m . ~  As a result we 
obtain in lieu of (A.2) 

The second term in the right-hand side of this equation 
should be non-negative by virtue of (22). To demonstrate this 
more convincingly, we note that in the radiation-transport 
theory approximation19 for Eq. (4), when 

( E ,  (r,) E.,' (r2) )= J d2n exp (ikonr) I, (R, n) , 

R= (rl+r2) /21 r=ri-r2, 
( A 4  

where I,,(R,n) is the tensor of the radiant intensity at the 
point R and in the n direction, this term takes the form 

Thus, the substitution (A.3) in Eq. (4) leads to violation of the 
electromagnetic-field energy-flux conservation law, with the 
scattering substance becoming energetically active. 

We turn directly to derivation of Eq. (1). We represent 
the solution of (4) in the form 

(EXE*>=(E>X(E*>+(G>X(G*>%(E>X<E*) ,  (A.8) 

where 9 is the sought operator. Substitution of (A.8) in (4) 
yields 

%=K+K(G> X(G*>%. (-4.9) 

We use, again purely arbitrarily, the substitution (A.3). It 
follows here from a comparison of (A.8) with (16) that the 
operator 9 coincides with U (9). We rewrite (A.9) in terms of 
the centroid coordinates and of a difference such as (A.6). 
We take the bilinear combination GoX G ,* in the Fraunhofer 
approximation19 

0 G:,,, (rl-r,') G,,, (r,-rzl) =P::- (nR-R () 

x (nR-RO 
1 

(4x I R-R' I ) , exp [ ikonR-R. (r-r') I ,  (A. lo) 

where n, - ., is a unit vector in the R - R' direction. We 
denote by Lo(R,n) the distance from the interior point R of 
the volume to its boundary in the n direction. We assume 
that when the product of this distance by a certain function 
of the variables R and n and over the volume of the substance 
and over all directions it is possible to take Lo(R,n) outside 

the integral sign in the form of a certain mean value Lo. 
Under the above conditions we obtain from (A.9) 

La + -J dZn'K, .,v,. , (n, n') P : ; , ~  (nr) PY,.!~, (n') 
(4n) 

Here 

K,,,,,, (n, nr)  =6,~6.,, (:) ( P O  2) ' LT~ (ko (n-nf)) . 

Equation (1) follows from (A. 11) on the basis of (1 I), (IS), and 
(33). 

"The symbols K and k, in Refs. 5 and 6 are the equivalents of out h and h,. 
 he mean field (28) is transverse. We are therefore not considering the 
longitudinal electric-field component whose value is estimated in Ref. 
11. 

"We note that according to (26) and (27) an opposite inequality of the form 
h,/k,<l, should also be satisfied. 

4)According to Refs. 5 and 6, the characteristic dimension Lo (1) for a 
sphere coincides with the radius of the latter. 
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