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We investigate the influence of coherent dragging of populations on the light pressure exerted on a 
three-level atom in a two-frequency light field. The A, V, and cascade configuration schemes of 
the atomic levels are considered. It is shown that in the case of a A atom the influence of the 
coherent dragging manifests itself differently in comoving and contermoving light waves. In the 
former case, at exact resonance between the waves and the transitions, the light pressure is zero 
regardless of the atom velocity. In the latter case the influence of the coherent dragging is substan- 
tial only at some definite atom velocity. For the V and cascade configurations, the light-pressure 
force differs from zero at all atom velocities. 

I. INTRODUCTION 

The pressure of resonant optical radiation on a two- 
level atom has been recently investigated in detail many 
times.' At the same time, experimental progress in the con- 
trol of atom motion by laser-radiation pressure has demon- 
strated the advantages of exciting atoms by multifrequency 
radiation that is at resonance with several atomic transi- 
tions. In particular, the use of multifrequency radiation is 
effective in laser cooling of atoms.2 An advantage of the mul- 
tifrequency excitation is that it permits prolonged resonant 
interaction of the atoms with the radiation. The latter, in 
turn, permits an appreciable light pressure on the atom to be 
maintained for a long time. 

It is known that excitation of a multilevel atom by 
multi-frequency radiation has a number of features not pos- 
sessed in the case of a two-level atom. Principal among them 
is coherent dragging of atomic  population^.^-^ This dragging 
forbids in many cases an atom to be excited from sublevels of 
the ground states. This means that an atom situated in a 
resonant-radiation field may possibly not be acted upon by 
the light pressure. 

The simplest multilevel scheme in which atomic-coher- 
ence effects are significant is a three-level atom. The ques- 
tion of resonant-radiation pressure on a three-level atom was 
considered earlier6.' in connection with an analysis of meth- 
ods of laser cooling of sodium atoms. The three-level atom is 
the model of a real multilevel atom that has a hyperfine 
structure in the ground and excited states. No account was 
taken in Refs. 6 and 7, however, of the atomic-states coher- 
ence, which is immaterial in the presence of a large number 
of closely-spaced levels. 

We report here an analysis of the features of resonant 
light pressure for a nondegenerate three-level atomic system 
excited by two-frequency optical radiation. We consider 
three possible schemes of exciting the three-level atom by 
two monochromatic light waves and indicate for each 
scheme the dependences of the light-pressure force and of 
the diffusion tensor on the atom velocity. 

We emphasize that the manifestation of the effect of 
atomic coherence in problems dealing with resonant light 
pressure differs from its manifestation in spectroscopic 
problems of atom excitation, for in the former case we in- 
clude the atom motion into consideration. In spectroscopic 
problems, the effectiveness of excitation of an immobile 
atom is determined only by the conditions of the resonance 
between the immobile atom and the frequencies of the atom- 
ic transitions. In resonant-light-pressure problems the 
Doppler effect causes in addition a dependence of the excita- 
tion on the atom velocity and on the exciting-wave-vector 
directions. 

2. QUALITATIVE ANALYSIS OF ATOMIC COHERENCE 

Consider in succession the atomic-level schemes shown 
in Fig. 1. Assume that a A-configuration atom (Fig. la) is 
excited by two waves, both propagating in the positive z di- 
rection. The effectiveness of exciting an atom having a veloc- 
ity projection v, depends on the conditions of the resonance 
between the atomic transitions and the radiation. Let the 
wave of frequency w, be at resonance with the transition 
12)-+/3), and the wave of frequency w, at resonance with 
1 I ) - + /  3). In view of the Doppler effect, the frequencies of 
the exciting waves in the atom's rest system are respectively 
w, + kv, and w, + kv, .  Coherent dragging of the popula- 
tion occurs in the A configuration when the difference of the 

FIG. 1 
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wave frequencies, considered in the atom's rest system, coin- 
cides with the frequency interval between levels I 1) and 12) 
of the ground ~ t a t e ~ - ~ :  

( 0 1 - 0 3 1 + k ~ ~ )  - ( w ~ - c ~ I ~ ~ + ~ u ~ )  = ( 0 1 - 0 2 )  -w2t=0.  (1) 

Regardless of the velocity, the atom is not excited by the 
light field in this case. In other words, when the A atom is in 
a resonant field, it it not subject to the action of the light 
pressure under condition (1). The situation is different for a 
A configuration of atomic levels in the case of opposing light 
waves. Assume that a wave offrequency w, propagates in the 
negative z direction, and a wave with frequency o, in the 
positive. In this situation, the coherent-dragging condition 
takes in the rest system of the atom the form 

It follows hence that if the waves propagate counter to each 
other an atom with a A level configuration is not excited by 
the radiation only at one velocity that satisfies the condition 
(2). 

The failure to excite the atom under conditions (1) and 
(2) is physically due to the onset of a coherent superposition 
of the lower states 11) and 12). This superposition of the 
atomic state is not coupled optically with the upper state (3) ,  
so that the atom remains at the lower levels under conditions 
(1) and (2). 

If the atomic levels are in a Vconfiguration (Fig. lb), the 
atom is excited into the upper states 11) and 12) at any veloc- 
ity. The absence of coherent dragging in the case of a Vatom 
is due to radiative decay of the atomic coherence between the 
upper levels. Accordingly the radiation pressure on the atom 
does not vanish at any atom velocity. For the same reason, 
coherent dragging is likewise not decisive in a cascade con- 
figuration of atomic levels (Fig. lc). 

It follows thus from the foregoing qualitative consider- 
ations that coherent dragging can influence strongly the 
light pressure only in the case of a A configuration of the 
atomic levels. We consider below a kinetic equation for A 
atoms that interact with two light waves. 

3. BASIC EQUATIONS 

We assume that the light field is a superposition of two 
Gaussian wave with polarization unit vectors e, and e,, fre- 
quencies w, and w,, and wave vectors k, and k,; 

E ( r ,  t )  = e l E l  exp [-  (x2f y2 )  / 2 p O z ]  c o s ( ~ i t F k l z )  

+e2E, exp [ - ( x Z + y 2 ) / 2 p O 2 ]  ~ o s ( ~ ~ t - k ~ z ) .  (3) 

We have introduced here a Cartesian coordinate frame 
whose z axis coincides with the propagation direction of the 
w2 wave. The quantity po determines the scale of the field of 
the beams in the XY plane. Each beam in (3) is a laser beam 
with TEM,, fundamental mode. 

We assume for the sake of argument that the waves of 
frequency o, and w2 excite respectively transitions I1)-+/3) 
and (2)+(3) transitions. The j1)+12) transition is assumed 
to be dipole-forbidden. The level (3) decays with a total 

spontaneous-emission probability I? = 4y, while the partial 
probabilities of the transitions /3)+12) and 13)-41) are 
assumed equal. 

To describe the atomic motion it is convenient to use an 
initial density matrix in the Wigner representation. Without 
dwelling on the well known equations for the Wiger density 
matrix,' we note that for the functions that determine the 
relative probability of spontaneous photon emission in a 
definite direction we assume the spherical-symmetry ap- 
pro~imation.~ 

Next at times t)y-' and under conditions fiki2/ 
2M(fiy (i = 1, 2), which are satisfied for dipole transitions of 
atom, the system of equations for the atomic density matrix 
can be reduced to a single kinetic equation for a classical 
distribution function w(r, p, t ).'Op" To this end it is necessary 
to expand the Wigner density-matrix elements in powers of 
the photon momenta and use the rotating-wave approxima- 
tion and the rate-equations approximation. These transfor- 
mations yield a system of equations that is conveniently writ- 
ten in terms of Bloch variables6*': 

We have introduced here equations for the detunings 
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and for the Rabi frequencies, which we assume to be equal to 

The upper and lower signs in the system (4) correspond to 
light waves propagating with and counter to the beams, re- 
spectively. 

To obtain from the microscopic equations (4) a kinetic 
equation for the atomic distribution function w(r, p, t ) we 
can apply to the system (4) the Bogolyubov analysis used 
earlier in Ref. 10. Such a derivation of the kinetic equation is 
premised on the treatment ofthe functions h (r, p,t ) = Q, R, s, 
f, q, g, u,  n as functionals of the distribution function 

Using this method, which was described earlier in Ref. 10, 
we can write an equation for w in second order in the photon 
momenta: 

In the case of light beams propagating in the same direction 
[the upper sign in (4)] the components of the radiation force 
acting on a A atom are equal to (i = x, y)  

The components of the momentum-diffusion tensor are 
D,,=Dy,=A2kZyD,, D,,=h2kZy [D,+Dd(l+d) 1, 

D,=2GAZL-', Dd=2GA2L-', (84 

and the nonadiabatic increment to the diffusion tensor1' is 
defined as 

For opposing light beams (lower sign in (4) the radi- 
ation-force components F, and F, and diffusion coefficients 
D, and D, are also determined by expressions (7b) and (8a). 
In this case, however, the light-pressure force is zero F, = 0 
at any atom velocity and the expression for the nonadiabatic 
increment to the diffusion tensor takes the form 

We have introduced here the notation 
Al=u/y, A2=E/y, A=Q/y, G=2V2/y2, 
L=2 (A,2+A2Z+2) Az-GA2+4G2. 

We emphasize that the kinetic equation (6) with the coeffi- 
cients (7)-(9) is meaningful in the rate-equations approxima- 

tion. These equations, generally speaking, limit the permissi- 
ble light-wave intensity in accordance with the relation 
("J + 2V2) 4 w,,. 

4. RADIATION PRESSURE ON A ATOM 

Consider the behavior of the light-pressure force and of 
the momentum-diffusion tensor in the case of a A atom in 
light beams having the same direction. The light pressure 
force F, and the diffusion tensor Dii depend substantially, 
according to (7a) and @a), on the resonance between the light 
waves and the atomic transitions. We can distinguish here 
between two basic cases.' The first is resonance, when the 
light-pressure force is close to zero at any atom velocity. This 
case is realized at light-field frequencies that are close to 
those of the atomic transitions 

The second case is that of appreciable detuning from exact 
resonance: 

We discuss first the behavior of the light-pressure force F, 
(Fig. 2a). If condition (10) is satisfied the effect of coherent 
dragging of the population decreases radically the light- 
pressure force (7a). At exact resonance 101 = 0 the light 
pressure force vanishes. With increasing detuning from the 
exact resonance the light-force pressure Fz first increases in 
absolute value because of the decreased contribution of the 
effect of coherent dragging, and reaches a maximum value 
(fora fixed saturation parameter G ) at I 01 - y(1 + G ) ' I 2  (Fig. 
2a, curve 3). With further increase of the detuning (curves 4 
and 5) the light-pressure force is decreased by optical pump- 
ing of one of the lower levels. The components F, and F, of 
the gradient force behave similarly (Fig. 2b). The compo- 
nents F, and F, , however decrease much less abruptly than 
the force F,, since the gradient force is governed by the po- 
larizability of the atom and is not greatly influenced by opti- 
cal pumping. 

FIG. 2. Dependence of the radiation-force components F, (a) and Fx (b ) 
on the atom velocity at different detunings of the frequency o, of the 
second wave from resonance with the transition 12) - 13) for G = lo3, 
f13 , /y  = 270. The numbers at the curves correspond respectively to de- 
tunings f13,/y = 250,240,230,200, 170. 
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FIG. 3. Gradient-force component F, vs the atom velocity in the case of 
opposing saves at G = lo3 and n , , / y  = - 270. The numbers on the 
curves correspond respectively to detunings n , , / y  = 265, 130, and 30. 

The diffusion-tensor components Dii have in the case of 
waves propagating in the same direction a smooth bell- 
shaped dependence on the velocity projection v,. The in- 
cluence of the population dragging and of the optical pump- 
ing on the diffusion tensor are similar to their influence on 
the light-pressure force F, . 

We consider now the case of opposing waves. The inter- 
esting effect here is the vanishing of the light-pressure force 
F, at any A-atom velocity. The reason is the equality of the 
relaxation constants in the transitions 13)-tll) and 
13)-+12) and of the moduli of the wave vectors of the oppos- 
ing waves, lk, 1 = lk, 1 = w3,/c = w3,/c. The gradient force 
has in the case of opposing waves a dip at a velocity satisfying 
the condition (2). The general character of the velocity de- 
pendence of the gradient force is shown for different detun- 
ings in Fig. 3. Besides the contribution of the coherent-drag- 
ging effect, the gradient force depends also on the resonance 
between the A atom and the radiation. A curious feature of 
this interaction scheme is the vanishing of the gradient force 
when the detunings a,, and a,, are equal in absolute value. 
This effect is due to the mutual cancellation of the atom 
polarizabilities at adjacent transitions. 

The general behavior of the diffusion-tensor compo- 
nents for the case of opposing waves is the same as that of the 
gradient force (Fig. 4). The asymmetric form of the D, com- 
ponent is due to the nonadiabatic increment (9). 

We note that since there is no coherent population drag- 
ging in the Vconfiguration, no anomalies whatever appear in 
the light-pressure force and in the diffusion tensor. The 
light-pressure force and the momentum-diffusion tensor are 

FIG. 4. Diffusion-tensor component D, vs velocity in the case of oppos- 
ing waves at G = lo3 and R, , /y  = - 270. The numbers on the curves 
correspond respectively to detunings n 3 , / y  = 270, 230, and 130. 

FIG. 5. Longitudinal velocity distribution of an atom beam before (1) and 
after (2) interacting with two opposing light beams. 

smooth functions of the atom velocity at any detuning and 
saturation parameter. In the case of a cascade configuration 
ofthe atomic levels, the effect of the coherent dragging of the 
populations can cause some irregularities of the light pres- 
sure and of the diffusion tensor in accordance with (2). These 
changes, however, are not as radical as for the A s ~ h e m e . ' ~ . ' ~  

5. CONCLUSION 

The foregoing analysis reveals thus the presence of a 
number of irregularities in the radiation pressure exerted on 
multilevel atoms. These irregularities must be taken into ac- 
count in experiments aimed at controlling the motion of 
atoms. It can be noted, in particular, that for A configura- 
tions of atomic levels, under conditions when two waves hav- 
ing the same direction are exactly at resonance with the 
atom, the light pressure vanishes, whereas in the case of a 
two-level atom the light pressure is a maximum at exact reso- 
nance with the atomic transition. Another interesting fea- 
ture is the vanishing of the light-pressure force acting on a A 
atom in two opposing waves. Of interest is also the vanishing 
of the gradient force when the A atom has a resonant velocity 
satisfying the condition (2). The last feature can be used to 
select atoms that have a definite velocity projection u, . Thus, 
if an atomic beam propagating along the z axis is irradiated 
by two opposing light waves, the atoms having a velocity 
other than (2) will be acted upon by a nonzero gradient force. 
Under the condition I a,, I < I a,, 1 this gradient force pushes 
the atoms out of the beam. This means that if the interaction 
time of the A atom with the waves is long enough, there will 
be left in the beam atoms whose velocities are close to the 
resonant value (Fig. 5) u, = (a,, - f13,)/k. An important 
feature of this method of selecting atoms by velocity is the 
possibility of varying the atom velocity. A change of several 
hertz in the difference between frequencies of the two waves 
can change the velocity of the selected atoms by an amount 
equal to the average thermal velocity. The interval in which 
selection by velocity is possible is determined by the homo- 
geneous broadening of the adjacent atomic transitions. For 
example, the width of a single-velocity beam of sodium 
atoms at y = 10 MHz and G -  1 is of the order of Av = y/ 
k-5-10, cm/s. This velocity interval corresponds to an ef- 
fective single-velocity atomic-beam effective temperature of 
order 0.1 K. 
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