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The energy spectrum is found for an electron with arbitrary orbital angular momentum I weakly 
bound by a short-range potential U( l r / )  and a Coulomb potential which is distinct from it. It is 
shown that for I # O  as the result of the centrifugal barrier the spectrum differs radically from the 
case I = 0. In the classically allowed region IE I 5 1/R (A  = m = e = 1, R is the distance between 
centers), depending on the ratio between the width of the ionic energy level (21) and the distance 
between the Coulomb levels, there is either a quasi-intersection of terms with a nonexponential 
splitting or a rearrangement of the spectrum. 

1. INTRODUCTION 

The behavior of an electron in the field of a short-range 
potential U (lrl) and a long-range field Vf(r) has been the sub- 
ject of considerable attention recently. In Refs. 1 and 2 is 
reviewed the work on this problem with respectively an al- 
ternating electric field and a constant magnetic field for Vf. 
This interest is due first of all to the development of experi- 
mental methods and, second, to the fact that the electron- 
impurity interaction itself for I # O  leads to a number of new 
physical effects. 

The two-center problem of an electron in the field of a 
short-range potential well and a Coulomb potential belongs 
to the same class. Finding the energy levels of such a system 
is important also for a number of applications: the theory of 
complexes of the typeH --H + in semiconductors,3 the the- 
ory of collisions of atomic  particle^,^ and so forth. The spec- 
trum of such a system was calculated for the first time1' in 
Ref. 5 and the resulting equations have been analyzed in a 
number of studies (see the reviews in Ref. 6 and Ref. 4). How- 
ever, the treatment in Refs. 4-6 employed the method of a 
zero-range p~ten t ia l ,~  which takes into account only the s 
wave in the electron-impurity interaction. 

In interaction of an electron with I # O  with a short- 
range potential U( l r / )  <O of radius r ,  there is a centrifugal 
barrier, as a result of which quasistationary states can exist 
with energy El > 0 of width2' I?, - E l t  '"e'- On turn- 
ing on an attractive Coulomb potential, the energy reference 
level is reduced by R -' and the quasistationary level goes 
over into a stationary level. Then (in contrast to the case 
I = 0) in the classically allowed region of energies 
R  - ' 5 E < 0 there is an ionic level. Here, depending on the 
ratio between the width of the ionic term 
F I  - (R  - lE I ) ' +  1'2e'- (see Section 4) and the distance 
between the Coulomb levels An -n; (no is the number of 
the Coulomb term corresponding to quasi-intersection with 
the ionic term), the following situations can be realized. a) 
For ?, xn; there are a Coulomb term (the electron is local- 
ized near the Coulomb potential) and an ionic term (the elec- 
tron is localized near the short-range potential), which in the 
case when they do not coincide undergo a slight shift, and if 
they coincide there is a quasi-intersection with a splitting 
which depends nonexponentially on the distance between 

the centers (here the electron is found near the two centers 
with approximately equal probability). b) For T i  )n; the 
levels undergo a rearrangment-for a large number of levels 
it is impossible to introduce the concept of Coulomb and 
ionic terms individually-the electron is found near the two 
centers with equal probability. Here the number of highly 
perturbed terms is close to the number of Coulomb levels 
encompassed by the width of the initial well level and, de- 
pending on the ratio between F, and n, ', the number can be 
both finite and infinite. 

2. EQUATIONS OF THE SPECTRUM 

Let us consider an electron interacting with Coulomb 
and short-range potentials (see Fig. 1). It is assumed that at 
the short-range center in the absence of an external field 
there is a shallow stationary or quasistationary state 
lE I ( r ;  with angular momentum I. The short-range center 
we shall place at the origin, and the Coulomb center at the 
point R  on the z axis. The projection of the angular momen- 
tum m on the z axis will be conserved in view of the axial 
symmetry of the problem. 

A model-independent method of calculation of the 
spectra of weakly bound states of a particle in external fields 
for the condition of isolation of one partial wave was devel- 

FIG. 1. Diagram of energy regions: I--classically forbidden region 
(E  - 1/R 50) ;  11-intermediate region (E  - l/R=O); 111--classically al- 
lowed region (E - 1/R 5 0). 
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oped by Andreev et al.lO*ll According to this method, the 
equations of the spectrum 

are determined by the parameters of the low-energy scatter- 
ing by the short-range potential-the scattering length a,  
and the effective range r, (Ref. 12) (according to Ref. 9 the 
parameter r, is proportional to - r; "+ ') and by the coeffi- 
cients A I, which contain all of the information on the exter- 
nal field.3' The latter are uniquely determined by the solu- 
tions of the Schrodinger equation which are regular at 
infinity in the external field G{,,lO'll which for r 1 4  con- 
tains singular terms of the form rT1'- ' y,., (n,) only with 
I '  =I:  

~ , ~ = r ,  Y l m ( ) + . .  . + A l m ( r 1 Y l ( n ) + .  . , ) (2) 
1 '  

We obtain a spectrum for the case where Vf is a Coulomb 
potential in the most important case I = Im 1 (Ref. The 
solution with a specified singularity of the type (2) can be 
found by proceeding from the known Green function 
G (r,rl,E ) in a Coulomb field13: 

G l l f m  lim r2-' Y ~ ;  (n , )  G ( r ,  r', E )  dn,. 
72-o 

(5) 

The integral representation13 is used here for G (r,rl,E ). The 
integral over qz is obtained from the handbook.14 We then 
utilize the explicit form of the functions Y, and the relation 
between 8 and 81 and between 8 ' and 8, (see Fig. 1). After 
taking the limit rZ+O and expansion in power series in r1 Eq. 
(5) reduces to the form (2). In addition it is evident that Eq. (5) 
is a solution of the Schrodinger equation with a Coulomb 
potential. 

The resulting equation for the spectrum has the form 

Here E = - E, n = (&)-'I2, C f: are binomial coefficients, 
and M and Ware the Whittaker functions.15 In the right- 
hand side of Eq. (6) we have taken into account the shift of 
the energy reference level under the action of the Coulomb 
potential. 

By means of the Whittaker differential equation15 it is 
possible to express the sum in the left-hand side of Eq. (6) in 
terms of Whittaker functions and their first derivatives. In 
particular, for I = 0, m = 0 Eq. (6) coincides with the known 
equation of the ~ ~ e c t r u m , ~ - ~  differing in the term with the 
effective range, which is unimportant for I = 0. For the most 
important case with nonzero angular momentum I = 1, 
Im 1 = 1 in which it is possible to discuss the rearrangement 
of the spectrum without taking into account renormaliza- 
tion of the scattering length by the external field,5' Eq. (6) 
takes the form 

The condition of applicability of Eqs. (6) and (7) is fulfillment 
of the inequalities 

In particular, Eq. (7) gives the proper corrections of first 
order to the energy of the ionic and Coulomb levels respec- 
tively in the charge eZ and the short-range potential. 

3. SPECTRUM IN THE CLASSICALLY FORBIDDEN REGION 

To find the asymptotic behavior of the spectrum equa- 
tion (6) in the classically forbidden region 2R -' 5 n-2 we 
note that the sum over k in the left-hand side of (6) can be 
reduced to the form 

Substituting into Eqs. (6) and (9) the quasiclassical 
asymptotic behavior of the Whittaker  function^,^ we have 

ctg n n ( 2 l + l )  ! !e -2S 1 r ,  
( - 1 )  'p2'+' + 

2 i + 2 ~ ' + 2 R Z " 2  
= - f y p Z ,  

a 
(10) 

where 

are the quasiclassical momentum and action; n)l, S)1, 
R 2 inZ, n)l. 

For the case I = 0 Eq. (10) coincides with the corre- 
sponding result of Ref. 4 with the exception of the term with 
the effective range, which is small in comparison with p'I2: 
rop2-rcp2<p. However, for I> 1 the term with rl is large in 
comparison withp2'+ : rlp2- r; 'I+ 'p2>pZ1+ and, as will 
be shown below, it is just this term which determines the 
spectrum. Indeed, for analysis of the equation (10) we shall 
write it in a form similar to that of Ref. 4: 

tgnn [ ( - I )  ' + l p " + i  + +rl ( s - - ,111 

(Here TI has exponential smallness.) 
As in the case 1 = 0 (see Refs. 4 and 6),  the energy levels 

determined by Eq. (1 1) are broken up into two groups (see 
Figs. 2 and 3). The first group is made up of the ionic terms 
(the electron is localized near the short-range potential), 
which are shifted by R - ' as the result of the long-range in- 
teraction with the positive charge (cf. Eq. (3.21) in Ref. 16)6): 
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FIG. 2. Energy E = AnZ as a function of scattering length for I = 1, 
/mi = 1. Curve a is the shifted ionic level, and the curves b are the true 
level. 

The second group consists of the shifted Coulomb levels (the 
particle is near the positive charge), which undergo an ex- 
ponentially small shift as the result of penetration of the elec- 
tron through the Coulomb potential barrier (see Fig. 1): 

At the point of quasi-intersection of the terms, where 
the particle is found near the two centers with approximately 
equal probability, we have 

the splitting of the terms is determined by the expression 

(An)Z=pnST,ln, 1=0, 

(An)2=-n3T,/nrl, l+O. 
(15) 

The splitting of the levels (1 5) is exponentially small. In addi- 
tion, (An)2 for the case I $0 is proportional to <I-  '. 

In conclusion of this section we shall give the spectrum 

FIG. 3. The energy E = in2 as a function of the scattering length for I = 0, 
m = 0. The curves o are the shifted ionic level, and the curves b are the true 
level. 

equation in the far classically forbidden region (2R / n 2 - + a ,  
n arbitrary): 

Z 2 ( n - l - l )  1+1 

(-1) 'n-2L-1+ne-.z ctg nn 
2 (21+1)!! 

nZ1+l (n-1-1) ! (n - I )  ! 
(16) 

where z = 2R /n, z/n) I; this equation is obtained by means 
of the corresponding asymptotic behaviors of the Whittaker 
functions.15 The term splitting An which is given by Eq. (16) 
for I = 0 coincides with the result of Refs. 5 and 17. 

4. THE SPECTRUM IN THE CLASSICALLY ALLOWED REGION 

In the classically allowed region (I11 in Fig. 1) 
2R -' 2 n -' the spectrum equation (6) with accuracy to qua- 
siclassically small corrections (which oscillate as cos 2S ) has 
the form 

For the case I = 0, Eq. (17) coincides with the corresponding 
result of Ref. 4. 

For I = 0 the spectrum of Ref. 4 is given by Eq. (1 8) see 
Fig. 3). Depending on the value of the quantity a,(2/ 
R - 2e)11', the Coulomb spectrum is either weakly per- 
turbed (An( 1) if ao(2/R - 2&)'12( 1 or undergoes rearrange- 
ment (is strongly shifted, An - 1) if ao(2/R - 2 ~ ) ' ' ~ )  1 (see 
Fig. 3). The ionic term is not present. There is no quasi- 
inter~ection.~ 

The spectrum for I $0 differs radically from the case of 
zero angular momentum in the presence of two clearly ex- 
pressed level systems-ionic and Coulomb--with a quasi- 
intersection between them which depends nonexponentially 
on R. As in Eq. (9), Eq. (16) for I # O  describes two groups of 
levels-shifted Coulomb levels: 

(18) 
and shifted levels in the field of the short-range center: 

With respect to the ionic terms determined by Eq. (19) 
we must note the following. In a purely short-range potential 
there is a shallow I-level with energy E = - E  = 1/ 
a, r, - - <'- '/a,. For a, > 0 we have E < 0: the level is sta- 
tionary. For a, < 0 we have E > 0: as a result of the centrifu- 
gal barrier the level becomes quasistationary with a width9 

On turning on the Coulomb potential, the energy reference 
level at the point of location of the short-range center U (r , )  is 
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shifted down by R - ' and therefore part of the quasistation- 
ary levels due to the well (corresponding to a, < R  /r, - - R<'- ')become strictly stationary. Here, however, it is 
just the width of the shifted level 

which determines the nature of the interaction of the ionic 
and Coulomb terms. 

1f f, (n ;  (where no is the number of the Coulomb level 
corresponding to the quasi-intersection), then the spectrum 
is described by Eqs. (1 8) and (19) with a nonexponential split- 
ting (14) at the quasi-intersection: 

( A n )  2=i',no3/2nKl; (22) 

the ionic level at the quasi-intersection interacts with one 
Coulomb term. 

In the other limiting case F,>n; there is a rearrange- 
ment of the spectrum: near the quasi-intersection point not 
one, but many Coulomb terms are distorted (see Fig. 2). Here 
it is impossible to speak individually of Coulomb and ionic 
terms. Analyzing Eq. (17), we note the agreement of the ex- 
act solution (17) with the ionic term at n = no + 1/2, where 
no is an integer representing the number of the Coulomb 
term. Writing n in the form n = no + 1/2 + An and using 

Eq. (17), we find 

1 1  
n=no + - - - arctg 

2 n (23) 

It follows from Eq. (23) that the Coulomb levels which are 
encompassed by the width of the former level in the short- 
range potential are highly distorted (An - 1). Depending on 
the ratio between f', and n; a finite or infinite number of 
Coulomb levels n, are distorted: 

n2-na3i'i ( n o )  for no-'&F[ ( n o ) ~ n o - z ,  (24) 

co<n2G (f ( n o )  ) -"' for ri (no) >no-'. (25) 

We note that, by replacing the summation over angular 
momenta in Eq. (30) of Ref. 18 by integration, after nontri- 
vial transformations it is possible to show that for An( 1 in 
the quasiclassical limit in the classically allowed region the 
seriesI8 which determines the energy coincides with the 
expression obtained for the energy from the simple formula 
of Eq. (17). In addition, for I = lml, I = n - 1 the series of 
Ref. 18 coincides with Eq. (6) in the limit An ( 1. 

We note also that the spectrum equation for I > Im 1 in 
the classically allowed region also has the form of Eq. (17) 
with accuracy to quasiclassically small corrections. 

The spectrum equation of the type (17) in the classically 

allowed region was obtained by Ivanov,19 who considered an 
electron in a Coulomb field and the field of two zero-range 
potentials. In the corresponding expression from Ref. 19 
there is a width of the two-center resonance, renormalized as 
the result of the Coulomb interaction. 

5. DISCUSSION OF RESULTS 

For the model considered of a short-range potential 
with a hard core, the method used has the following limita- 
tions. The radius of the center r, must be small in compari- 
son with the electron wavelength in the external long-range 
field Vf at the point of occurrence of U(Irl I): 

r,<min {I l/n2-2/RI-"', R ) .  (26) 

It is also required that the probabilities of transitions to 
states with other angular momenta be small: 

In addition, taking account of the field Vf in the region r 5 r, 
must give a small correction to the level shift AE found from 
the spectrum equation: 

Finally, the states investigated must remain in the discrete 
spectrum: 

It can be shown that if (26) and (27) are satisfied, the 
inequality (28) is satisfied for I = 1 (for R > 1). For 1>2 the 
latter inequality, depending on the additional relations 
between the parameters, can in general be violated. How- 
ever, this leads only to renormalization of the scattering 
length: the spectrum equations remain valid if (26) and (27) 
are satisfied, but the scattering length in them will depend 
not only on U, but also on the external field Vf. 

Another limitation on the applicability of the results is 
due to the multielectron structure of the short-range poten- 
tial and the necessity of taking into account the long-range 
polarization interaction. For a polarization potential 
Up - - a/r4 for I = 0 it is possible to determine the scatter- 
inglength.16 For 2 # O  the concept ofscattering length for Up 
cannot be introduced.16 However, the condition of neglect of 
the polarization potential in scattering is that the amplitude 
for scattering by the short-range potential be much greater 
than the amplitude for scattering by Up : 

If the condition l / a>k  2n-/8(1 + 3/2)(1 - 1/4) is satis- 
fied, Eq. (30) is valid for any I near resonance, 
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in a region substantially broader than the level width I?,. 
In conclusion the author thanks S. P. Andreev for nu- 

merous discussions of this work and also B. M. Karnakov 
and V. D. Mur for valuable remarks. 

"In 1959 Zel'dovich7 considered an electron in the field of a Coulomb 
potential distorted at the origin by a well of small radius. 

2'We use units f i  = m = e = 1. 
3'We give the value of the effective range for a rectangular potential well of 
radius r, which has a shallow (stationary or quasistationary) I level9: 

4J0ne partial wave can be isolated if 

wherefi is the partial amplitude for scattering by U. For low-energy 
scattering (kr, (1) in the absence of accidental degeneracy and for 
1 = 1 m 1 Eq. (2) is satisfied for arbitrary values of a,, and for 1 > I m it is 
satisfied only in a narrow energy region E - E, <(krc)2(1- " I '  r; for 
the condition of existence of a quasistationary level with energy El > 0. 

"A renormalization rises as the result of the difference of the field Vffrom 
a constant R -' at r S r, (see Section 5). 

@We note that in Eqs. (10) and (12) we have taken into account only the 
most obvious long-range correction to the energy R - '  corresponding to 
the charge-charge interaction. The next corrections for I = 0 are of the 
order R -4,4-6 and for I $0 they are of the order R -3, which corresponds 
to interaction between the charge and the induced dipole and between 
the charge and the quadrupole. 
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