
Type and structure of timelike singularities in the general theory of relativity: from 
the gamma metric to the general solution 

S. L. Parnovskii 

Ukrainian Center of Standardization and Metrology 
(Submitted 18 January 1985) 
Zh. Eksp. Teor. Fiz. 88, 1921-1937 (June 1985) 

A method is proposed that makesit possible to determine whethera timelike singularity corresponds 
to a point, linear, or other type of gravitational field source. It is shown that in the general theory of 
relativity it is also possible to have sources ofa quitedifferent type with no analogs in a spaceof finite 
curvature. An analysis is made of some well-known solutions containing timelike singularities 
whose typevaries dependingon thesigns ofthe functions that occur in the solutions. The form ofthe 
solution near simple linear sources [W. Israel, Phys. Rev. D15,935 (1977)l and generalized aniso- 
tropic solutions [S. L. Parnovsky, Physica (Utrecht) 104A, 210 (1980); E. M. Lifshitz and I. M. 
Khalatnikov, Sov. Phys. Usp. 6, 359 (1963)l is determined more accurately; the space-time de- 
scribed by they metric (3) is completely investigated; and the form of the metric near the ends and 
singular points of linear Weyl singularities is found. 

1. INTRODUCTION 

In classical Newtonian gravitational theory, one consid- 
ers not only distributed sources of the gravitational field with 
finite volume mass density but also compact sources of zero 
volume, these being divided into surface, linear, and point 
sources. In the general theory of relativity, the former corre- 
spond to a gravitational field with source described by the 
energy-momentum tensor ofthe matter on the righthand side 
of Einstein's equations. If in this case the space-time is every- 
where regular, its study does not contain fundamental diffi- 
culties. To a lesser degree, this applies to gravitational fields 
without sources, for example, to gravitational waves, and to 
sources such as black holes or other spacelike singularities 
such as the initial cosmological singularity, which do not have 
analogs in Newtonian theory. These objects have been fairly 
fully investigated, and we have a reasonable idea of their na- 
ture. 

It seems that the least studied case is that of a source in 
the form of a bare timelike singularity of space-time, corre- 
spondingtozero-volumesourcesinNewtonian theory. Tothis 
case the present paper is devoted. In it we show which of the 
timelike singularities can be identified as point or linear 
sources of the gravitational field and for which the concept of 
a type cannot be introduced. It turns out that in the general 
theory ofrelativity theremay exist a new typeofsource, differ- 
ent from point, linear, and surface sources and without ana- 
logs in a space of finite curvature. All forms of sources can be 
described by the same solutions with different values of the 
functions or parameters that occur in them. In this paper, we 
investigate these solutions, beginning with the special case of 
the y metric (3) and ending with the most general solution 
with sources, which have the type (36). 

We define in more detail the object of our investigations. 
It is a space-time containing singularities. The hypersurfaces 
infinitesimally close to them are timelike, and this means that 
the singularities are timelike. We shall consider only singu- 
larities for which the curvature invariants of the space-time 

divergeasthey areapproached. Thereby weexcludesourcesof 
6-function type such as conical sing~larities,'.~ and also ficti- 
tious and "pathological" singularities. 

A timelike singularity may be present within a black 
hole, as occurs in the Reissner-Nordstrom solution. Then its 
structure does not affect the gravitational field of this hole. 
Therefore, of greater physical interest are the so-called naked 
singularities, i.e., timelike singularities not hidden by an 
event horizon from a distant observer. In this paper, we shall 
mainly be concerned with such singularities, although the 
greater part of our results also apply to timelike singularities 
within black holes. 

It is not yet known whether naked singularities can arise 
by collapse and exist as real astronomical objects. There is the 
"cosmiccensorship"hypothesis, whichdeniesthispossibility. 
However, it is necessary to investigate naked singularities for 
a number of reasons. They arise in many well-known solu- 
tions of Einstein's equations, and without a determination of 
their type and structure it is impossible to analyze these solu- 
tions. Without this, it is also impossible to study correctly dis- 
tributed sources of small size with strong gravitational field. 
Finally, without an investigation of naked singularities it is 
not possible toclarify the question ofthe validity ofthe cosmic 
censorship hypothesis. 

Because the space-time curvature tends to infinity near 
the singularities, we do not in the majority of cases know how 
the system of coordinates in which the form of the space-time 
metric tensor is expressed behaves in this region. Therefore, it 
is often quite difficult to distinguish between the different 
types of naked singularities. 

In order to establish whether we are dealing with a point, 
linear, or some other source, we propose to use diagrams that 
reflect the simplest invariant properties of the space-time near 
the singularities. The method used to construct them is ex- 
plained in Sec. 2. We shall use these diagrams in investigating 
the sources in the solutions considered in the following sec- 
tions. 

We begin with the simplest case of a static and axisym- 
metric space described by the Weyl metric 
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If we consider an auxiliary flat space with cylindrical coordi- 
natesp, p ,  z, which we shall also call the coordinate space, the 
function v( p, z) will satisfy in it the Poisson equation Av = 0, 
naturally, without the angular part. Now the function y( p, z) 
can be determined from known v( p, z) up to an additive con- 
stant, the value of which for an isolated source of finite size 
can be found from the condition of absence of conical singu- 
larities. lg2  Far from such a source v, y + 0, and the coordi- 
nates p, p ,  z become cylindrical coordinates. 

A solution of the equation Av = 0 with such a boundary 
condition must have sources ifit is not the trivial v = 0. Ifthey 
are volume or surface sources in the coordinate space, then the 
space-time (1) will be regular. Singularities arise only if v( p, 
z) has in the coordinate space point or linear sources, which, 
naturally, must be axisymmetric. In the real curved space- 
time, the source of the gravitational field has the same coordi- 
nates but may have an entirely different nature. 

An exampleisa source that isapoint sourcein thecoordi- 
natespace. Going over tosphericalcoordinatesandexpanding 
Y in multipoles, 

91 

v= o,~, (cos 0)r-I-", p-r sin 0, z=r cos 0, (2) 

we see that for 1 ( N  < ~4 the space-time (1) has at r = 0 a so- 
called directional singularity. As the singularity is ap- 
proached along certain directions (in certain ranges of vari- 
ation of B ), its curvature invariants diverge, and, having 
traversed a finite distance, we arrive at the singularity. But if 
we approach r = 0 along different directions, we find that 
these invariants tend to zero, and the distance to the "point" 
r = 0 is infinite, i.e., we move to a point infinitely distant in 
space. For N = 0, a singularity with positive mass has such a 
s t r~c tu re ,~  while for N = co Weierstrass's essential singular- 
ity theorem guarantees the presence of such a singularity. 

Therefore, the point and linear singularities in (1) in 
which we are interested are described by a function v(p, z) 
with a source that is linear in the coordinate space. Suppose it 
is an interval of the straight linep = 0 characterized by its 
length L and distribution along it of a linear mass density p ,  
these quantities being measured in the coordinate space. In 
other words, v( p, z) is the Newtonian gravitational potential 
of an infinitely thin rod of length L with linear mass density 
P(z). 

In the simplest case p(z) = p = const, we obtain the y 
solution (its name is due to the fact that the quantity p is 
frequently denoted by the letter y): 

During the last decade, this solution has been the subject of 
studies by a group of authors that include Witten, Esposito, 
Papadopoulos, Stewart, and others. Among the large number 
of papers they have published, we mention Refs. 4 and 5. 

The analysis of the solution (3) made in Sec. 3 of the 
present paper shows that its naturevaries essentially whenp is 
varied. For 0 < p  < 1, the singularity v = 0 will be linear, 
whileforp = 1 the metric (3) goesover into the Schwarzschild 
solutionwithhorizonv = 0. Forp < 0, thespace-timecontains 
a point singularity with negative mass. This last circumstance 
is not fortuitous, since in the vacuum an uncharged nonrotat- 
ing source of point type with positive mass can be only a black 
hole and not a timelike singularity. Forp > 1, the singularity 
is one of the new type of sources mentioned above. Forp22,  
one further effect arises-at the points v = 0, u = f ~ / 2  
there appear two directional singularities, these correspond- 
ing to two infinitely separated points connected by the singu- 
larity v = 0. With allowance for the v + ~4 region, the space- 
time then contains three different spatial infinities. This 
treatment of directional singularities is quite different from 
the one proposed in Ref. 5. 

In Sec. 4, it is shown that the Weyl singularities obtained 
in the more general casep(z) # const have the same nature as 
for the y metric. In Sec. 4 we also find and investigate all 
possible forms of space-time near the ends of a linear Weyl 
singularity. 

In Sec. 5 ofthe paper simple linear sources are investigat- 
ed. This more general class of singularities was identified by 
Israel in Ref. 1. Such a source is situated in vacuum, does not 
rotate, is asymptotically axisymmetric near the singularity, 
and is not the source of any nongravitational field. According 
to Israel, the metric near it but far from its ends must have the 
approximate form 
ds2x-dp2+A (z, t )  pZPi", ')dt2 

-B (z, t),p2P2('* ')dq2-C (z, t )  p2P3('? t ) d ~ 2 ,  
(4) 

In the present paper, it will be shown that the results of Ref. 1 
must be augmented. This also applies to the expression (4), to 
which it is necessary to add the small nondiagonal term (25), 
and the interpretation of the source of this gravitational field, 
which will indeed be a linear source for p, < 0 and a point 
source with negative mass for p, < 0, will also include the 
same type as they metric forp > 1 whenp, < 0. But the metric 
near the ends of simple linear sources cannot be obtained by 
generalizing the corresponding solutions for Weyl singulari- 
ties. 

An even more general form of singularity is considered in 
Sec. 6. This is the generalized spatially anisotropic solution 
(36), obtained in Ref. 6. It contains in the vacuum three physi- 
cally arbitrary functions of three variables. Since its general- 
ization, which contains four such functions, i.e., a spatially 
oscillatory s ~ l u t i o n , ~  cannot be associated with any of the 
sourcetypes, theconsideredsolutionisevidently themost gen- 
eral form of point and linear sources and singularities of the 
y-metric type for p > 1. In the present paper, we determine 
more precisely the form ofthegeneralizedspatially anisotrop- 
ic solution and the Lifshitz-Khalatnikov solution7 near a 
spacelike singularity and determine the type of the source of 
the gravitational field in the first of them. We also discuss the 
influence of matter and nongravitational fields on the form of 
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this solution. Their presence does not change thenatureofthe 
solution near a nonpoint source. In this case, the only restric- 
tion is the absence of rotation of this source. 

2. DIAGRAMS CHARACTERIZING THE SOURCE TYPE 

Through theinvestigatedspace-time we describe two hy- 
persurfaces (sections). One of them is timelike and near the 
singularity. Except for singular cases to be discussed below, 
we shall consider the hypersurfacex = const in a semigeode- 
sic coordinate system (in Ref. 6, this was called pseudosynch- 
ronous) with interval 

the singularity corresponding to x = 0. The coordinatex or- 
thogonal to the singularity is determined uniquely, while the 
three remaining coordinates xa admit three arbitrary trans- 
formations into each other that do not affect the form of the 
diagrams. 

As thesecondsection through thespace-time, we takethe 
spacelikehypersurfacet = const. Thediagramweconstruct is 
also independent of its choice. The only section through the 
space-time that can be an exception to this is the case of a 
section asymptotically isotropic in the limit x + 0, and this 
case we shall avoid. 

After describing the sections x, t = const, we obtain the 
planeyz, a surface that covers the singularity and tends to it as 
x + 0. The distances on it are determined by the two-dimen- 
sional metric tensor 

Asx + 0, thelengthofany curvejoining twodistinct points in 
theyz plane may tend to zero. Then these points tend to each 
other asx + 0, i.e., correspond to the same singularity point. 
It is on the basis ofthis that weconstruct the diagram. We take 
a square in the yz plane, its sides being along they and z axes, 
and we then join by a continuous line the points of the square 
betweenwhich thedistances tendtozeroasx + 0. In practice, 
to construct the diagram it is sufficient to reduce the metric 
near the investigated singularity point to the form (5 ) ,  at least 
approximately, by means of the procedure described in Ap- 
pendix G of Ref. 7 and then, having constructed lob using (6), 
investigate its limit as x + 0. 

We shall return to the question of the existence of this 
limit and its possible form. Here, we construct some diagrams 
for the simplest case of flat space-time. There being no singu- 
larities in it, we construct the diagrams near the regular plane 
x = 0 in a Cartesian coordinate system, the line p = 0 in a 
cylindrical one, and the point r = 0 in a spherical one (Figs. 
la-lc). In the first case, the square will be white, in the third 
black, and in the second the diagram will be hatched with 
horizontal lines g, = const. But, on the other hand, from the 
form of the diagrams la-1c we can determine whether we are 
dealing with a point, line, or surface. 

What is changed when we construct the diagrams for 
timelike singularities? One can show that in the general the- 
ory of relativity such a singularity cannot be a surface, and a 
diagram of type la corresponds to a fictitious singularity of 

/ 
a b 

FIG. 1. 

the event-horizon type. But diagrams of the form lb  and lc  
are entirely possible, except that the distances between any 
points in Fig. lb that do not lie on one linez = const diverge as 
x + 0. 

The infinite curvature near a singularity allows the exis- 
tence of new types of singularities. One of the possibilities is a 
directional singularity, in which the singularity is glued to an 
infinitely distant point, for example, the solution ( I ) ,  (2). In 
this case, we cannot, when constructing the diagrams, use the 
coordinate system (5); we shall consider the solution in the 
Weyl form. We shall encounter such a singularity in the fol- 
lowing section. 

When the surface surrounding a directional singularity, 
including spatial infinity, is contracted, its area diverges, 
whereas for the remaining forms ofsingularity it tends tozero. 
In the latter case, the determinant oflab in (6) tends to zero as 
x -+ 0, and with it also the product oftheeigenvalues oflab. If 
there exists a limit for the eigenvectors of lab, then if both 
eigenvalues tend to zero we have a point singularity with a 
diagram ofthe type lc. But ifone ofthem tends to zero and the 
other to infinity, then besides the linear source with diagram 
lb one can also have the case of a diagram with vertical hatch- 
ing. This new typeofsource willbe considered in the following 
section. 

But if the eigenvectors oflab do not have a limit asx -+ 0, 
the source cannot be associated with one of the known types. 
Moreover, thevery conceptofatypedoesnot apparently apply 
to it. As an example, wemention the spatially oscillatory solu- 
tion of Ref. 6. 

Finally, we note that the type of the singularity may be 
different at different parts of it or at different times 

3. ANALYSIS OF THE GAMMA SOLUTION 

To investigate the properties of the y metric, it is also 
convenient to use adifferent form ofit, which is obtained from 
( 3 )  by making the transformation r = L cosh2 (v/2): 

The singularity v = 0 corresponds to r = L. Its mass 
M = p L  /2 can be readily found from the form ofg,, at large 
distances from the source. The ratio M /L is halfp, the linear 
density in the coordinate space. 

To study the metric (3),  it is also helpful to use the solu- 
tion that in the coordinate space has a source in the form ofan 
infinite filamentp = 0 with constant linear mass density p .  It 
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FIG. 2 

is given in Weyl form by 

and after the transformation x = PU2 - p +  and changes of 
scale along the t,p, andzaxes goes over into the spatial Kasner 
metric 
d S ~ = - d x ~ + x 2 ~ ~ d t 2 - a 2 ~ x 2 ~ ~ ~ ~ 2 - ~ 2 ~ ~ d ~ 2  

In analyzing the form of the space-time near the ends of 
the singularity (3)-at the points v = 0, u = + a/2-we use 
the fact that its asymptotic form is identical to another exact 
solution whichin thecoordinate space hasasource in the form 
of a semi-infinite filament with p = const: 

After the coordinate transformation 2r = u2 + v2, 
8 = 2 tan-' (v/u), we obtain 

The singularity v = 0 or 8 = 0 is noneliminable forp # 0, 1, 
likep = 0 in (8). 

Wenowinvestigateallthesesolutions.Forp = 0,wehave 
flat space-time in prolate elliptical (3), parabolic (12), spheri- 
cal (13), and cylindrical (8), (9) rotational coordinates, with, 
in the last case for a, = a, # 1 a conical singularity on the 
axisp = 0.2,1 

For 0 < p  < 1, the singularity in (3) will be linear. The 
diagram corresponding to it (Fig. 2a) has the same form as the 
one shown in Fig. lb. In the space (3) we consider the lengths 
of the circles v, u = const, which we denote by L, (v, u), and 
also the length L u  (v)  of the curve v, p = const andS, the area 
of the surface v = const. In the metric (7), L, corresponds to 
the lengths of the "equator" and "parallels," L, to the length 
of the "meridians," andS to the area of the surfacer = const. 
Expressions for these quantities are found in Ref. 4, though 
the v + 0 limit in which we are interested can be readily 
found without knowing them. For O<p < 1, we have S, 
L, + 0, L, -+ cc as v -+ 0, and this ensures a vanishing dis- 
tance between points with equal values of u in diagram 2a and 

an infinite distance between points with different u. This last 
result has the consequence that although the linear, for 
0 <p < 1, singularity in (3) is finite (it can be surrounded by a 
surface of finite size), direct measurement of its length is im- 
possible. From measurements, one can determine only the 
value of the parameter L. 

The solutions (8) and (12) also have linear sources with 
diagrams and properties analogous to the singularity in (3), 
but they are not finite. 

Forp = 1, the solution (7) goes over into the Schwarzs- 
child metric with v = 0 corresponding to the horizon. In this 
case, L, , L, , and S tend as v + 0 to finite limits, and the 
diagram is identical to la. The solutions (8) with a, = 1 and 
(12) then describe part of flat space-time. 

For 1 <p < 2, the space-time (3) hasa source ofnew type, 
neither point, nor linear, nor surface, nor volume. Its proper- 
ties are rather unusual. As v -+ 0, we have L,, S -+ 0, 
L, + CC. This last means that the length of the circle v ,  
u = const divergesasitsradius tends tozero. This aloneshows 
that the sourcecannot belinear. We now consider the rotation 
axis, on which the norm of the rotational Killing vector 

= (0,0, 1,O) vanishes. For 0 < p  < 1, it consists of the two 
half-axes u = + a/2 connected by the singularity v = 0. For 
1 < p  < 2, it consists only of the two half-axes u = + a/2. 
Since L, -+ 0, the distance between the points v = 0, 
u = + a/2 is zero and these half-axes are connected to each 
other. But as the singularity is approached, the normf li first 
decreases as v decreases, reaches a minimum at cosh v = p ,  
and then increases and diverges as v + 0. This also indicates 
that the singularity is not linear. We note that it cannot be a 
torus, as is shown by the value of the Gauss-Bonnet invariant 
for the surface v = const, or a flat disk. 

We shall study the properties ofthe source of the gravita- 
tional field (3) for 1 < p  < 2 by means of its diagram, shown in 
Fig. 2b. It is a square with vertical hatching and two heavy 
horizontal straight lines u = f a/2, which correspond to the 
"ends" of the singularity in (3) or its "poles" in (7). Any two 
pointsA andB in the diagramcan beconnected by two lines of 
zero length, which are shown in Fig. 2b and pass through one 
of the "poles" u = f a/2. In this the source is similar to the 
point source. However, in contrast toit, thelengths ofall other 
paths connecting A and B tend to infinity. This makes the 
properties of the source in the y metric for 1 < p  < 2 different 
from the properties of all the sources with which we are famil- 
iar in a space of finite curvature. 

The source in the solution (8) for p > 1 has the same 
diagram with vertical hatching but without the horizontal 
lines, since it is not finite. In this case, two points with different 
values ofp  cannot be connected by a line of zero length. Since 
this diagram differs from the one shown in Fig. l b  only by the 
substitution z + p,  it is rather natural to regard z in (8) as an 
angular coordinate and p as a linear coordinate, as was pro- 
posed by Khalatnikov and the present author in Ref. 8. Sup- 
port for such an interpretation is also to be seen in the fact that 
the shift transformation by a finite interval with respect to the 
zcoordinate has a family of fixed points on the axisp = 0, as is 
characteristic forrotation, whiletheshift transformation with 
respect to q, does not have fixed points in the entire space. 
Regarding p and z as linear and angular coordinates, respec- 
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tively, we obtain a linear source with diagram lb. 
For the y solution with 1 < p  < 2, the shift transforma- 

tions with respect to u and with respect to p behave near the 
singularity similarly. However, the nature of these coordi- 
nates is determined by their behavior far from it. Thus, the 
shift with respect t op  has fixed points at u = + 7/2, indicat- 
ing that this is a rotation. Therefore, it is impossible to reduce 
the source for they solution with 0 < p  < 2 to an ordinary type 
by changing the interpretation of the coordinates employed. 

But ifp22, we encounter a new phenomenon-the ap- 
pearance at the points v = 0, u = f 7/2 of directional singu- 
larities. Near them, the solution (3) is asymptotically identical 
to (12), (13) at small r. In (13) with p < 2  points with finite 
value of r not lying on the singularity 6 = 0 are at a finite 
distance from the point r = 0 and an infinite one from r = w . 
For p > 2, conversely, they are at a finite distance from the 
point r = co and at an infinite distance from the infinitely 
distant point r = 0. Weintroduce themoreconvenient coordi- 
nate R = r' -p" and obtain from (1 3) 

0 dR2 
x sin-'"-[ sin" p ( , ,-,,,, , +RZd0' )+R' sin2 0drp2] . 

2 

From the form of goo it can be concluded that at the point 
R = 0 there is a source with negative mass. However, we are 
more interested in the region of small r, i.e., R + oz forp > 2. 
Moving away from thesingularitiese = OandR = 0, wemove 
to an asymptotically flat region R = a, 8 #O. But one can 
also choose a path to R = w that approaches the singularity 
6 = 0. Following it, we find that the curvature does not de- 
crease but increases as R + w .  

On the transition to the previous coordinate r, all these 
paths lead to r = 0, where there is a directional singularity. 
The curvature invariants, for example, 

tend to zero as r + 0, 6 # O  and may diverge if as r + 0 we 
also have 6 + 0, for example, 6 cc r. Thelength ofpaths with 
0 # O  is infinite. Proceeding along them, we find that among 
the components of the curvature tensor some are divergent, 
but this is due solely to the unfortunate choice of the coordi- 
nate system. After transition to the coordinates t ,  r, P 6, lap,  
wherea < - 1 - p/2,P < - p/2,allthec0mp0nent~0fR~~,~ 
tend to zero as r + 0. The length of paths with 6 + 0 leading 
to the point r = 0 may be finite. 

Forp = 2, the space (13), like (8), has the Petrov type D, 
although the y solution itselfis not so degenerate and is type I. 
Points with finite rare at finite distance from both r = 0 and 
r = W ,  and the curvature invariants do not depend on r. As 
the singularity is approached along the direction r = 0, the 
space-time forp = 2 does not become asymptotically flat, al- 
though it does include the infinitely distant point r = 0, e # 0. 

The solution (3) forp>2 therefore contains two infinitely 
distant points v = 0, u = & ~ / 2 ,  these being connected by a 
singularity v = 0 ofthe same type as the ymetricfor 1 < p  < 2. 
This means that in the limit v + 0 we have L, L, , S + w , 

although thelengthofthecurveu,p = constjoining the points 
u ,  = - ~ / 2 + ~ a n d u , = 1 ~ / 2 - ~ t e n d s i n t h e l i m i t v + O t o  
zero for any arbitrarly small E.  

The space-time (3) contains three different spatial infini- 
ties-two infinitely distant points v = 0, u = f 7/2 and the 
region v + w . 

The diagram of the source, shown in Fig. 2c, in this case 
also has vertical hatching and differs from Fig. 2b in that the 
two horizontals u = f 7/2 correspond to directional singu- 
larities. We have denoted them nominally by dashed lines. 
Two points with different p cannot be connected by a line of 
zero length when p22 .  

For p < 0, the diagram of the singularity, Fig. 2d, is a 
black square. This is a point source, as is also indicated by the 
fact that in the limit v + 0 we have L, , L, , S + 0. In the 
special casep = - 1, after the transformation r = L sinh2(v/ 
2), the solution (3) goes over into the Schwarzschild metric 
with negative mass M = - L /2. 

4. WEYL SlNGULARlTlES 

We now consider the space-time with Weyl metric (1) in 
which the function v( p,z) is equal to the Newtonian potential 
of an infinitely thin rod with linear mass density p(z) in the 
nominal flat coordinate space. It can be readily expressed in 
the form of an integral, but near the singularity, at smallp, its 
asymptotic expression is v( p, z) = 2p(z)ln p + 0 (p2 In p). 
Constructing the diagram for the source, we find that, as for 
the y, solution, for 0 <p(z) < 1 the singularity is linear, for 
p(z) < 0 point, and forp(z) > 1 of the same type as they metric 
for 1 < p  < 2. Since the function p(z) can pass through p = 0 
andp = 1, different parts of the singularity can have different 
types. 

We investigate the form of the space-time near the end of 
the linear Weyl singularity. Suppose that at the point r = 0 
there is situated the end of the singularity 6 = 0 with linear 
densityp(r) in the coordinate space. Ifp(0) = p  #O, then the 
asymptotic form of the metric for rgr, will be (1 3). Here, r, is 
the characteristic scale of variation ofp(r). But if for r 5 ro we 
havep(r) z Kr A , A > 0, then the required metric for r(rO will 
have the form (1) or 

where the function v(r, 6 )has asingularity at 6 = Ooftheform 
v - 2Kr In 6 as 6 - 0, is regular at 6 = 7 ,  and satisfies, at 
least approximately, the equation Av = 0, while the function 
y(r, 6 ) is determined from v in accordance with (1). 

For A # 1, 2, 3 . . . , all these conditions are satisfied by 
the function 

-PhfZ (-cos 0) sinZ 0-2hPi (-cos 0) PA' (-cos 0) cos 01, 

where PA (g ) and Pi (6 ) are a Legendre function and its deri- 
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vative. 
For integral values ofil, this solution is not suitable. To 

construct the solution for this case, we note that v = Q (r, 
8 ) In (r1''sin(8 /2)), whereQisaregularfunction, hasat 8 = 0 
a linear singularity with p(r) = Q(r, O), and the condition 
Av = 0 gives in the first approximation AQ = 0. Choosing 
Q = 2Kr PA (cos 8 ) ,  we obtain for il = 0 the solution (13), 
and foril = 1,2,3 . . . We find the form ofp(r) that we require. 
By adding to this function a regular term of the form 
Kr NA (cos 8 ), where NA (6 ) is a polynomial of degreeil - 1, 
we can achieve exact fulfillment of the equation Av = 0. As a 
result, for r(r, we obtain the approximate solution 

y K , h  (r, 0) = ~ ' r "  [cos2 $( in( r sin2 %) +c*) 

+b,(cos 0)ln ( r". sin - + ~ A ( C O S  €)))I,  

The terms with a,, 6, , C, d,  in y,, , (r, 8 ) are regular for 
6 = 0. Calculating the curvature invariants for the solutions 
(16)-(18), we find, for example, that 

For 0 <il < 2 andil = 2 we have, respectively, power-law and 

logarithmic divergences of this and the other invariants as 
r -+ 0. Foril > 2, thereisat the point r = 0 adirectional singu- 
larity, but in this case this is not an infinitely distant point. 

It is also easy to find the approximate form of the metric 
near the singular points of the functionp(r)-its discontinui- 
ties or its vanishing in accordance with some law, which may 
be different as the singular point is approached from different 
sides. Thus, if p(r)  z Kz for z > 0 and p(z) z M ( - z)" for 
z < 0, then as v(r, 8 ) it is necessary to take a sum of v ,  , (r, 8 ) 
and v,, (r, 8 + 7) of the form (17), (18) or (13) for r ]  = 0. In 
the case of a jump in the linear density fromp - asz + - 0 to 
p+ as z + + 0, we obtain the solution (16) with 

= (p++p-) In (2r) +2p+ In sin (0/2) +2p- In cos (0/2), 
(20) 

y=211 lu v+2p-' In u- (p+-p-)'ln (u2+vz) + const 

=2p+p- ln r+2y+' ln sin (€112) i - 2 ~ - ~  ln cos (012) +const, 

where u and v are parabolic coordinates. This exact solution 
goes over into (12), (1 3) for p - = 0 and into (8) for p + = p - 
and serves as an approximate solution near any discontinuity 
ofp(z). The curvature invariants 

]=R R i k l m  --+ r~r.+Zr--4r+r--~ 
ik lm (ezo), 

and the others show that forp + + p - - 2p +p - 2 2  at r = 0 
there is a directional singularity, this taking the form of an 
infinitely distant point from which two singularities emanate. 
It is easy to show that their types must be different, each of 
them being either a linear source, or a source of the type of the 
y metric forp > 1, or havingp < 0. In the last case, the singu- 
larity will not be a point singularity but will have infinite 
length. Its diagram will be a black square of the type shown in 
Fig. 2d but bounded on one side by a broken line, which repre- 
sents the infinitely distant point. 

5. SIMPLE LINEAR SOURCES 

Simple linear sources are a natural generalization of 
Weyl singularities. The concept was introduced by Israel in 
Ref. 1. He there also formulated conditions necessary for a 
space-time to contain such a source a t p  = 0, wherep is the 
coordinate orthogonal to thesingularity in asystemofcoordi- 
nates x i  = (t, p, p, z) that in the absence of the singularity 
become cylindrical. In the limitp + 0, the space-time must 
be asymptotically axisymmetric, and the intrinsic curvature 
ofthe hyperspacep = const must not diverge faster thanp-', 
this eliminating Weyl singularities of the type (2) and their 
generalizations. In addition, the source must not rotate or be 
the source of any nongravitational field. 

The simple linear sources being nonstatic, their sizes and 
distributionp(z, t ) can vary in time. We shall determine the 
latter quantity from the form of the metric near the singular- 
ity (4) by analogy with the Weyl case (1 1). The static nature of 
the Weyl linear singularities requires compensation of the 
force of attraction between its different parts by an internal 
"pressure" force, which tends to increase its length. We find a 
similar situation in the Curzon solution, in which the force of 
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attraction of two singularities is compensated by the pressure 
of a conical ~ingularity.~ But in the general case, such com- 
pensation will not occur and the singularity will evolve from 
the initial Weyl form, changing its size andp(z, t ). There is the 
curious possibility that a linear singularity will in this process 
contract untilp = 1 is reached, after which it is transformed 
into a black hole. In such a case, if the principle of cosmic 
censorship were violated, the violation would be temporary. 

The form of the metric of a complete space containing a 
simple linear source cannot be determined, but near the 
source, asp  + 0, it has the form (4), as Israel pointed out.' 
Constructingthediagramforthesingularityp = Ointhissolu- 
tion, we find that its type is the same as for the metric (8), a 
generalization of which it is. Forp, < 0, we are dealing with a 
point singularity of negative mass, forp, < 0 with an actually 
linear source, andforp, < 0 with asingularity ofthesame type 
as in the y metric for p > 1. Thus, (4) by no means always 
describes a linear source, as was assumed in Ref. 1. 

We obtain one further correction to Israel's results by 
noting that in deriving the solution (4) he used only the diag- 
onalcomponentsoftheEinsteinequations, whichthissolution 
satistfies in the leading terms. The conditions 
R,, = R,, = R,, = 0 are satisfied because of the asymptotic 
axial symmetry. In the equations Rol = R 13 = 0, the terms of 
orderp-' lnp cancel automatically, and those oforderp- ' if 

In these conditions, the prime denotes the derivative with re- 
spect to z, the dot the derivative with respect to time, and 
a = lnA,P = lnB, y = 1nC.Complexitiesariseinthestudyof 
the equation 

R B 3 ~ C l  InZ p+Cz In p+C3, Cl=-2PzpZf, 

Here, in the expressions for C, and C, we have eliminated a' 
and j by means of (22). The condition R,, = 0 for the metric 
(4) is equivalent to C, = C, = C, = 0. It is easy to show that 
this can be satisfied only in three cases: Either the metric does 
not depend on the time, i.e., reduces to the Weyl metric, or it 
does not depend on z, which is impossible for finite singulari- 
ties, or (p, ,  p,, p,) depends neither on t norz and the solution 
reduces to 

B=f ( t )  +q(z) ,  A=a ( t )  B(pz-p~)/(p,-pa) 

C=C ( Z )  B(P~-POI(P,-P~, 
(24) 

where f, q, a, c are arbitrary functions. This very particular 
solution can be simplified still further after transition to the 
coordinates T = f (t ), Z = q(z) and, forf = const or q = const 
to T = a(t ) or Z = ~ ( z ) .  

If Israel's metric (4) is nevertheless to satisfy all the Ein- 
stein equations, without losing its generality, it must be aug- 

mented by a small nondiagonal term: 

d ~ ~ = d s , , , ~ + 2 p ~ ( h ,  In2 p+h2 In p+h3) dtdz, (25) 

where ds;, denotes the metric (4), and C,, C,, and C3 are 
given in (23). The functions that occur in this solution must 
also satisfy the conditions (22). 

The solution (25) does not depend on p. Therefore, by 
Cotton's t h e ~ r e m , ~  the three-dimensional metric tensor ob- 
tained from it for dp = 0, and with it the complete solution, 
can be diagonalized. However, the transformations needed 
for this will evidently contain atp = 0 an essential singularity. 
For if we restrict ourselves to transformations that can be ex- 
panded in series in powers ofp, then, as can be shown, the only 
transformations that can affect the form of the nondiagonal 
term in (25) will be 
p=f (t, z) p*"* ", t=T+I$(t, z ) ~ ~ - ~ P , I  z=5+@ (t,  ~ ) p ~ - ~ p 3 ,  

(27) 
which contain four arbitrary functions of t  and z. This is not 
sufficient to annihilate the three functions A,, A,, A, without 
violating the two conditions go, = g,, = 0. In particular, we 
can annihilate A ,  only for q(t, z) =p, '. Further analysis 
shows that the condition of annihilation ofA, determines our 
function f (t,z) up tomultiplication by anarbitrary functionp. 
But the freedom in the choice of this last arbitrary function 
remaining in the transformations (27) (1C, and @ are complete- 
ly determined by the conditions go, = g,, = 0) is not suffi- 
cient for the elimination ofA, as well. Therefore, the metric 
(25) cannot be diagonalized. Note that we obtained this result 
by regardingp(z, t ) ,A (z, t ), B (z, t ), and C (z, t )in (4) and (25) as 
arbitrary functions subject only to the conditions (22), al- 
though in the evolution of the singularity they must vary in an 
interconnected manner because of the conservation laws at 
the least. It is readily seen that the solution (25) is obtained by 
generalizing the exact solution (9) by replacing p by p(z, t ), 
multiplying the diagonal terms by functions of z and t, and 
adding specially chosen nondiagonal terms that ensure fulfill- 
ment of the nondiagonal components of the gravitational 
equations. These terms must be small, i.e., must satisfy near 
the singularity the condition 

(here, no summation over repeated indices). Then they will 
not affect the determinant of the metric tensor, and the diag- 
onal components ofEinsteinYs equations will be satisfied auto- 
matically. 

We attempt in this manner to obtain the approximate 
form of the metric near the end ofa simple linear souce, i.e., at 
small r. We restrict ourselves to the leading term in the expan- 
sion of p(r,  t ) in r, and consider the case p(0, t ) = p( t  ) #O, 
which generalizes (1 3), andp(r, t ) z K (t )r * ( ' I  ,which general- 
izes the solutions (16)-(18). We seek the metric in the form 
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where the diagonal components A,  B, C, D and the small non- 
diagonal terms a, b, care functions of r, e, t. Generalizing the 
metric (13), we set 

0 0 A=.N B=r-"in2'"-" ' - - e Z P ~  

2 2 (30) 

C=rZ-@ sin2 0 sin-"(8/2) e2B2, D=r2-"in2("-" ( 0 / 2 )  eZp3. 

Generalizing the solutions (16)-(18), we set 

A=exp ( v f  2 a ) ,  B=exp (y-Y+ 2P1), 

C=r2 sin2 0 exp (2P,--v), 

D=r2 e x p ( y - v f  2ps),  

where we take the functions Y and y from (17) and (18), set- 
tinginthemK = K (t )andfor(l7)/2 = A (t ).Thefactorsexp 2a 
and exp 2Pi can depend only on t, since if they did depend 
essentially on r or 8 this would lead to nonfulfillment of the 
diagonal components of Einstein's equations. The same 
wouldhappenifp, #P2. Inaddition, it isonly forp, = P, that 
there is no conical singularity at 0 = a. Therefore, in what 
follows we shall denote Dl = P2 = P, by P. 

The metric (29), (30) satisfies all the gravitational equa- 
tions except R,, = R,, = 0 for arbitrary small a, b, c. The 
same conditions give in the first approximation 

Here, the prime denotes the derivative with respect to 8, the 
dot the derivative with respect to t ,  and the index rafter the 
semicolon thederivativewith respect tor. Thedependenceofa 
and b on r has the form 

a=r2-" H ( 0 ,  t )  + W ( 0 ,  t ) l n  r ] ,  (33) 
b=r2-"E (0 ,  t )  + V ( 0 ,  t ) l n  r ]  

and satisfies the condition of smallness (28). At the same time 

As 0 -+ 0, we obtain from here 

wm 10 1 2fi2-2* , vU3 10 1 ZP2-211-l 

This contradicts the conditioil(28). We obtain the same viola- 
tion of this condition as 8 + 0 for the solution (29), (31), 
where the conditions R,, = R,, = 0 give us 

[ (a'-b,l-~)sin'B]'=-2r2 sin 0e'-'v,,, 

8 
v +Kr"n sin - (0-+0),  

2 

b,,,-a,,'-EST-2Er-'=- (v ctg 0+2ii') e7-'. (35) 

Sincenearthesingularitye = Othesmallnessconditionis 
violated, we cannot generalize the solutions (1 3), (1 6)-(18). If 
the nondiagonal components in (29) are not small, Einstein's 
equations become so complicated that they cannot be solved. 
If at the same time we take the functions A,  B, C, D from (30) 
or (3 I), they do not, as can be shown, have solutions. In the 
general case we not only cannot find solutions but we do not 
even know whether it is even possible for there to be a nonstatic 
generalization of the metrics near the end of a Weyl singular- 
ity or not. The latter possibility would mean that near the ends 
of the singularity p(r)  does not change and the possibility of 
transforming a linear naked singularity by evolution into a 
black hole is not realized. 

6. MOST GENERAL FORM OF LINEAR, POINT, AND OTHER 
SOURCES 

The most general solution of the gravitational equations 
near timelike singularities containing in vacuum four physi- 
cally arbitrary functions of three variables and keeping the 
same form in the presence ofmatter is the spatially oscillatory 
solution of Ref. 6. However, as was pointed out at the end of 
the second section of this paper, it cannot be classified by one 
of the source types. The most general solution near singulari- 
ties ofthe types we haveconsidered will evidently be ageneral- 
ized spatially anisotropic solution, containing in vacuum 
three physically arbitrary functionsofthree variablesxa = (t, 
y, z ) . ~  Near the singularity x = 0 it has the form (5) with 

The exponents in it and the nine quantities I,, ma, na , com- 
bined into the components ofthe three three-dimensional vec- 
tors 1, m, n, are arbitrary functions ofxa connected by a num- 
ber of relations needed for the solution (36) to satisfy in the 
leading terms as x -+ 0 the Einstein equations. The Kasner 
exponents ( p,,p, ,p, ) are related in the same way as (pl ,p2,  
p,) in (10). This ensures fulfillment of the condition R,, = 0. 
From R ,, = 0 we obtain the three relations 

[mn],dpl/dxa= (pi-p,) m rot n+ (p,,-pi) n rot m ,  

[nl],dp,/dxa= (p,-pi)n rot I+ (pa-p,)l rot n, (37) 

[lm],ap,/dxa= (p,-p,) 1 rot m+ ( P L - P , ) ~  rot 1, 
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in flat Euclidean space. We write the remaining components 
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Here, PaB is the three-dimensional curvature tensor con- 
structed from y ,~ .  Since all terms in the expression for QaD 
cancel each other, for approximate fulfillment of the gravita- 
tional equations it is necessary that among the terms in Pap 
there be none with higher order inx- ' than in QaB. This leads 
to one further equation, 

k rot k=O, (39) 

wherek is that one ofthe vectors 1, m, n that corresponds to the 
negative exponentp, < 0. If the condition (39) is not satisfied, 
thesolution (36) goes over into amoregeneraloscillatory solu- 
t i ~ n . ~  

The coordinate system (5) admits three arbitrary trans- 
formations of the coordinatesxa into each other. They can be 
used to annihilate three of the nine functions la,  ma, na . In 
order to annihilate simultaneously two of the three compo- 
nents of the vector k, it must have the form 
k = $(xa) Vx(xa); then, choosingx(xa) as coordinates, we 
obtain ka = (0, 0, $). But a necessary and sufficient condition 
for this is (39). Similarly, for the simultaneous annihilation of 
the same components oftwo vectors, say I, and m,, we require 
fulfillment of the condition (39) for the vector k = 1 x m. 
Therefore, for an oscillatory solution, in which this condition 
is not satisfied by any of the vectors 1, m, n, 1 X m, m X n, n x 1, 
it is possible to annihilate, for example, I,, m,, n, or any other 
set of nonidentical components, one in each of 1, m, n. 

In our case, the condition (39) is satisfied by one of the 
vectors, for example, n, and together with it 1 X n and m x n 
also. Directing along them the axes xa , we can achieve that 
no = n, = I, = m, = 0. But at the same time we also annihi- 
late the component Q,, in (38), and it becomes necessary to 
ensure fulfillment ofthe equation R,, = 0. For the oscillatory 
solution, all the components of QaD are nonzero and no addi- 
tional problems arise. 

If in accordance with (38) we require vanishing of 

+ ( p ,  In x f l n  lo)  ,,(p, In x+ In ns) 

+ ( p ,  In x+ln n3) , , (p ,  In x+ln m,) ' 

- ( p n  In x+ln nr) ' ( p ,  In x+ln n3) ,, 

then thisleads to very strong restrictions on the functions that 
occur in (36). We have a situation analogous to that which we 
encountered in the case of simple linear sources; moreover, 
(40) and (23) are almost identical. Therefore, here too we add 
a small nondiagonal term in order to satisfy the condition 
R,, = 0. The solution (36) takes the form 

ds2=-dx2+ x2pl (lodt+lsdz) 2-x2pm(m,dy+m3dz) 2-x2Pnn32dz2 

+2x2(h, In2 x+ 1, In ~ + ? ~ a )  dtdy, p,CO, (41) 

where ill can be expressed in terms of Ci from (40) in accor- 
dance with (26) withp, replaced byp,. At the same time, the 
conditions (37) go over into 

$,= ( p n - p l )  (In n3) '+ (p,-p,) (In mz)', 

The first two ofthem are analogous to (22). Note that if 1, = 0, 
then to the solution (41) it is necessary to add a small nondia- 
gonal term go, to satisfy the condition R,, = 0, and for 
m, = 0 to satisfy R2, = 0 it is necessary to add a small term 
g2,. The form of these terms is analogous to that ofg,, in (41). 
Thus, in the special case ofsimple linear sources we obtain the 
solution (25) directly with the additional term. A small non- 
diagonal term must also be added to the generalized aniso- 
tropic solution of Lifshitz and Khalatnikov,' which is related 
to (5), (36) by the transforma'tion t e x and a change of the 
signature. 

We consider the nature of the source for the field (41). Its 
diagram will be hatched parallel to they axis. Since the space 
possesesno symmetry, we cannot distinguish the diagrams for 
a linear singularity and a source of the type of the y metric for 
p > 1, it being unclear which of the coordinates y orz  will be 
the generalization ofthe rotational coordinatep for the Weyl 
and simple linear sources. We can determine this only if we 
know the metric of the complete space which goes over in the 
limit of small x into (41). The generalization o f p  will then be 
the coordinate y or z with respect to which the shift transfor- 
mation has fixed points outside the singularity on a line that 
either joins the two ends of the singularity or consists of two 
lines joining these ends to the spatial infinity. In the case of 
axial symmetry, these lines go over into the rotation axis. If 
the generalization o f p  isy, then the solution (41) has a linear 
source; but ifit isz, then the source is of the typeofthe y metric 
forp  > 1. 

Ifanegative exponentp, corresponds to the timecoordi- 
nate and k coincides with 1, we obtain a solution from (41), 
(42) by the transformation t e z and a change of the signa- 
ture. This casecorresponds to apoint sourceofnegative mass. 

We now investigate the effect on the investigated solu- 
tions of matter and nongravitational fields. It is shown in Ref. 
6 that hydrodynamically moving matter does not change the 
form of the solution (36). The influence of fields on it was 
considered in Ref. 10. If the singularity is the source of a 
scalar field, then the form of the relations (10) is changed. At 
thesame time, all theexponentsp, ,p, ,p, can be positive, this 
corresponding to a point source with positive mass. The elec- 
tromagnetic field does not affect the metric near the singular- 
ity for p, > 0,'' i.e., in the case of a linear singularity or a 
source of the type of the y solution for p > 1. But near a 
charged point singularity the form of the solution is strongly 
changed. 

7. CONCLUSIONS 

We have considered a number of solutions with timelike 
singularities, beginning with they metric and ending with the 
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generalized spatially anisotropic solution (36). Strictly speak- 
ing, they are all particular cases of the last solution. And 
whereas in them the functionp, which is related to the expo- 
nents by (1 I), depends on three variables, for the simple linear 
sources it depends on t andz, for the Weyl singularities on the 
single coordinate z, and for the y metric it is constant. 

However, wecan learn moreabout the properties ofthese 
particular solutions than about the general case (36). For the 
y metric (3)  we know the form of the entire space-time and 
can investigate it in detail. Weyl singularities also admit in- 
vestigation not only near the singularity but also near its ends. 
But for simple linear sources this last is no longer possible. We 
do not even know whether at their ends there can be direction- 
al singularities, either containing an infinitely distant point 
(of the type (13) forp>2) or without it (of the type (16)-(18) 
for R > 2). However, the asymptotic axial symmetry of such 
sources makes it possible to determine the rotational coordi- 
nate z, and for the analysis of their diagrams there is no need 
to know the form of the space-time far from the singularity. 

As was already pointed out in Sec. 2, all sources of the 
gravitational field of zero volume, besides those not having a 
type or containing an infinitely distant point, can be either 
point sources, or linear sources, or have the same type as they 
metric for p > 1. We see that all these source types are de- 
scribed by the same solutions, differing only in the signs of the 
exponents. We consider them in order, beginning with the 
point sources, which in the absence of nongravitational fields 
always have negative mass. This rules out the possibility of 
their being formed by collapse. But if a point singularity is the 
source of a scalar field, the total mass of it and of this field can 
be positive. Point singularities have internal structure. This 
can be seen from the fact that their gravitational field does not 

possess symmetry and depends on three physically arbitrary 
functions of the time and two nonradial coordinates. 

Linear sources also possess internal structurein the plane 
orthogonal to them. In the process oftheir evolution, not only 
this structure but also the mutual disposition of the different 
parts of the singularity change. Their mass is always positive. 

The third type of source is described by the diagram 
shown in Fig. 2b. Its properties differ from those of the point 
and linear sources. Their investigation has shown that we are 
here dealing with a new type of source, one impossible in a 
space with finite curvature. Since it must have a large mass, its 
formation by collapse is impossible, as in the case of direction- 
al singularities including an infinitely distant point. There- 
fore, to investigate the validity of the cosmic censorship hy- 
pothesisitisnecessary toclarify thepossibility orimpossibility 
of the formation by collapse of linear naked singularities and 
sources that donot have a type. Noneofthe other naked singu- 
larities can be formed in such a way. 
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