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The quantum corrections to the kinetic coefficients of conductors are discussed. The case of a 
pure conductor, when the quantum corrections are necessitated by interference produced in 
quasielastic electron scattering by phonons, is investigated in detail. An explicit expression is 
obtained for the cooperon with allowance for the phase relaxation due to the inelasticity. If only 
one quasielastic mechanism is effective, quantum corrections can be obtained only if 57-4 1, where 
Z is the characteristic energy transferred to the electron by a cc>llision and r is the relaxation time. 
If the scattering is due to the simultaneous action of elastic and quasielastic mechanisms, this 
condition is not necessary for interference to set in. Calculation shows, however, that the phase- 
relaxation time depends on the ratio of ZJ to the inelastic-relaxation time T ,  . 

1. INTRODUCTION 

Our purpose here is to develop a theory of the quantum 
corrections that must be introduced in the kinetic coeffi- 
cients of pure conductors to allow for interference between 
an electronic state and a time-reversed state. We have in 
mind conductors in which there is no structural disorder, 
and the interference of interest to us is due to quasielastic 
electron-phonon interaction. 

The conductors heretofore considered from this view- 
point have been dirty ones in which the principal momen- 
tum-relaxation mechanism is elastic scattering by defects, 
and it is the latter which determine the mean free path I. In 
the lowest order in the parameter (pb )-I, wherep is the mo- 
mentum ( f i  = 1) and is assumed to be small, the quantum 
corrections are determined by the sum of the so-called "fan 
diagrams" (by the cooperon)-see the papers by Gor'kov, 
Larkin, and Khmel'nitskiil and of Abrahams and Ramak- 
rishnan.* 

In the present paper we investigate the case of relatively 
low densities and high temperatures, when the electron gas 
can be either degenerate or nondegenerate, i.e., it obeys 
Boltzmann statistics. We consider the investigation of the 
quantum corrections in the latter situation as the most inter- 
esting, for in this case it is possible to achieve an electron 
density such that the electron-electron interaction plays no 
role. As shown by Al'tshuler and A r ~ n o v , ~  single-particle 
interference corrections and corrections for the electron- 
electron interaction coexist in a degenerate electron gas and 
it becomes necessary to separate them in the experiment. 
Under Boltzmann statistics, on the other hand, conditions 
can be created for the study of the interference phenomena in 
pure form. 

The necessary (but, as we shall show, far from sufficient) 
condition for the existence of quantum interference phenom- 
ena in pure conductors is quasielasticity of the electron- 
phonon collisions. For electron scattering by acoustic phon- 
ons this condition is known to be satisfied in semiconductors 
(in the case of Boltzmann statistics) at practically any tem- 
perature, in semimetals at sufficiently low temperatures, and 
in metals below the Debye temperature. It is satisfied for 

scattering by optical phonons at temperatures higher than 
the maximum phonon frequency. 

The random field produced by the phonons is in this 
case practically static. An electron can move in such a field 
without relaxation of the wave-function phase for a relative- 
ly long time, so that interference is also possible. If the con- 
ductor is pure enough, this interference-formation process 
should predominate at relatively high temperatures. 

Our task is to develop an analytic theory of quantum 
corrections, i.e., to calculate the cooperon in this situation. 
To this end, we sum the "fan" diagrams that describe quasi- 
elastic scattering of electrons by phonons. The result is an 
integral equation for the cooperon. Its solution is analyzed 
for the case 

which is the requirement that the characteristic frequency 
transfer be small compared with the temperature T. The 
analysis result depends substantially on the relation between 
- 
w and the relaxation time r .  It turns out that the fan dia- 
grams are pronounced only if 

An explicit expression for the cooperon [Eq. (7)] is obtained 
for this case and differs from that obtained when pure elastic 
scattering dominates [Eq. ( 5 ) ] .  This difference can play a ma- 
jor role, for example, in the analysis of the kinetic coeffi- 
cients as functions of the magnetic field. 

Under the inverse condition 

however, the phase relaxes completely during the time r 
between two collisions. As a result the "fan" diagrams are 
not distinguished from other cross diagrams and the quan- 
tum corrections of interest to us do not occur. 

These corrections can, however, appear also at Zrg 1 if, 
for example, two scattering mechanisms act simultaneously. 
One of them, elastic, is mainly the one that determines the 
relaxation time, while the other, quasielastic, is character- 
ized by a time r, gr between collisions. This situation is also 
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analyzed in this article. 
Let us examine how the inelasticity of the scattering can 

influence a cooperon. In the case of elastic scattering the sum 
of the fan diagrams is of the form' 

C = J ( d q )  (Dg2--iR) -', (4) 
where R is the frequency of the external field, D is the elec- 
tron diffusion coefficient, (dq) = d" q/(2n)", u = 2 or 3 is the 
dimensionality of the space that characterizes the electron 
problem. In the case of greatest interest, that of a two-dimen- 
sional electron gas (u = 2) this expression diverges in the 
static limit as R -+ 0. Therefore the magnitude of the quan- 
tum correction is determined in fact by the mechanism that 
eliminates the divergence in (4). Such a mechanism can be, 
for example, scattering by magnetic impurities, combined 
with spin-orbit scattering; this scattering was investigated 
for this problem by Larkin, Hikami, and Nagaoka4 and by 
Lee.5 Such a mechanism may turn out to be the most impor- 
tant in "dirty" conductors. (In "pure" semiconductors, 
transitions with spin flip can occur also in quasielastic scat- 
tering by phonons.) The divergence is cut off also by the 
inelasticity of the electron-phonon scattering, and this 
mechanism can prevail in the case of interest to us, of rela- 
tively high temperatures and pure materials. The influence 
of inelastic scattering is usually taken into account phenom- 
enologically, by adding to the denominator of (4) a term 
r; , where r, is the so-called phase-relaxation time of the 
electron wave function, i.e., by writing Cin the form 

C = 5 ( d q )  (Dq2-iR+r;i)-'. ( 5 )  

In the case of essentially inelastic scattering by phonons 
(Z k T)  T, equals the departure time rin for the inelastic pro- 
ces~es . '~~  

If, however, the electron-phonon scattering is quasi- 
elastic, i.e., if the inequality (1) holds, it may turn out that 
one scattering act changes the electron phase little and the 
phase-memory loss is produced by many such acts. 

A situation in which the phase relaxation is due to 
quasielastic scattering while the quantum interference is 
produced in scattering from elastic impurities was discussed 
by Al'tshuler, Aronov, and Khmel'nitskiL9 They presented 
for rq an estimate that they interpreted in the following 
manner. 

Let an energy Z be imparted to the electron in one scat- 
tering act. The energy change SE during the time r, of inter- 
est to us is then of order 

( 6 ~ )  2=(~Z/ t ,n )  Tq 

(it is assumed that the energy changes diffusely). On the oth- 
er hand, the electron state can interfere with time-reversed 
states if the condition SET, 5 1 is satisfied. This leads to the 
estimate 

The foregoing arguments invoke neither a specific cooperon- 
formation mechanism nor a quasielastic scattering mecha- 
nism. 

The present calculation of the quantum corrections for 

the case of quasielastic scattering of electrons by phonons 
leads to the following results. When condition (2) is satisfied, 
the cooperon is described by the expression 

and it is found here that r, agrees with the estimate (6). If, 
however, the interference is due to pure elastic scattering by 
impurities and the phase relaxation is determined by quasi- 
elastic electron-phonon scattering, the cooperon takes the 
form (7) if the condition (2), in which r is replaced by rin , is 
met and the expression for the time r, also agrees with the 
estimate (6). This result coincides with the estimate formu- 
lated in Refs. 8 and 9. We wish, however, to discuss the 
foregoing physical arguments in somewhat greater detail, 
since the condition for their validity remain unclear to us. 
This uncertainty was one of the stimuli for a consistent cal- 
culation of the cooperon C. 

If arguments of the type advanced above are to be valid 
in the inelastic-scattering case of interest to us, the electron 
energies before and after the collision should, in our opinion, 
to be determined with accurately, namely, condition (3) and 
the ensuing inequality w7, ) 1 must be satisfied. On the other 
hand, the estimate (6) can be rewritten in the form 

Since, however, the onset of interference requires satisfac- 
tion of the condition r(r,, the inequality (2), the inverse of 
(3), is automatically satisfied. This is precisely why the phys- 
ical interpretation given in Ref. (8) for the estimate (6) is not 
quite clear. 

If, however, the inequality (3) holds, no interference 
takes place at all, owing to the substantial phase relaxation 
during each inelastic collision, provided only that the quasi- 
elastic mechanism plays the principal role in the formation 
of the Cooper channel. If, on the other hand, the principal 
interference-formation mechanism is scattering by elastic 
impurities, which determines the time r against the back- 
ground of which a weak phonon increment appears, then a 
logarithmic correction to the kinetic coefficient appears in 
the caseZrin ) 1, as indicated in Ref. 9. But the characteristic 
time under the logarithm sign is in this case not equal to (6) 
even in quasielastic scattering of electrons by phonons, and it 
is simply of the order of the time T~~ between two electron- 
phonon scattering events. Thus, the estimates of r, is found 
in this case to be the same as in essentially inelastic scatter- 
ing. This means that when. the difference between the elec- 
tron energies before and after the collision is well defined 
(Grin ) 1) the interaction with the phonons only disrupts the 
interference.'' We point out that the concept of electron dif- 
fusion in energy is certainly applicable in precisely this situa- 
tion. The degree of its applicability in the case of the inverse 
inequality, as already noted above, remains unclear to us. 

By way of illustration we present here the specific form 
of the inequality (1) for the case of a Boltzmann gas having an 
isotropic quadratic spectrum E, =p2/2m and interacting 
with acoustic phonons. For a sample of thickness d much 
larger than the electron de Broglie wavelengthp-', we have 
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- 
w ~ ( T r n w ~ ) ' / ~ ,  where w is the speed of sound. Inequality (1) 
can therefore be rewritten in the form B m w 2 .  If, however, 
the electrons are concentrated in a thin surface layer of a 
thick sample, so that the thickness d Q - I ,  we haveZ=: w/d. 
We obtain then w/d(T in place of (1). 

2. ANALYTIC CONTINUATION OF THE EXPRESSION FOR 
THE COOPERON 

We begin for the sake of argument with the case of elec- 
tron scattering by acoustic phonons and use the Matsubara 
technique. The kinetic coefficients of interest to us are ex- 
pressed in terms of Matsubara loop diagrams having two 
vector vertices and continued analytically into the half- 
plane ImR > 0. In the expressions for the quantum correc- 
tions these loops have each an insert comprising the sum of 
fan diagrams'.' of the type shown in Fig. la. We shall repre- 
sent this insert graphically as shown in Fig. Ib. If the elec- 
tron-scattering amplitude depends on the scattering angle, 
contributions to the calculation of the response of the cur- 
rent are made also by the diagrams of the type shown in Fig. 
Ic. All these diagrams contain a block P, (Fig. lb) which we 
now proceed to analyze. 

In the case of inelastic scattering the object P, of inter- 
est to us depends on three Matsubara frequencies: E, of the 
electron, R, of the external field, and w of the energy trans- 
fer; the sequence of the variables is clear from Fig. Ib. To 
calculate the kinetic coefficient in the case of isotropic scat- 
tering we need only the sum at p = - p,. 

The quantity P,, as a function of the three complex 
variables E, R, and w, has seven cuts determined by the van- 
ishing of the imaginary parts of &(I), w(II), R(III), as well as of 
the sums E + o(IV), E + R(V), E + o + R(V1) and 
2E + R + w(VI1) (see Ref. 10). Figure 2 shows the pattern of 
the cuts on the I ~ E  s Imw plane at ImR > 0 (this is precisely 
the object we need in order to calculate the retarded response 
of the current). 

The regions corresponding to different analytic 
branches of P,, marked by Arabic numerals, and the 
branches themselves, will be designated P; , where p is the 
number of the region and R means that the continuation was 
made into the region ImR>O. The unnumbered regions 
make no contribution in the principal approximation, since 
they contain only products of R- or A-electron Green's func- 
tions. (As usual, in our problem we calculate the response of 
the current to a vector potential that depends only on the 
frequency R.) 

Let us ascertain which combinations PF enter in the 
cooperon corrections to the kinetic coefficients. Their calcu- 
lation gives rise to a sum of the form 

FIG. 1 

FIG. 2. 

where the subscripts M label Matsubara functions; for bre- 
vity we omitted the discrete-frequency subscripts and the 
momentum arguments. It is convenient to sum in (8) by 
transforming to contour integrals in the complex w plane. 
We use here the method described by Maleev." The ensuing 
configuration of the cuts on the complex w plane depends on 
the relation between E and R, i.e., on which branch Pf 
makes the contribution; in all, four cut configurations are 
possible. 

By way of example, Fig. 2b shows the integration con- 
tour for one of the configurations corresponding to the inter- 
section of Fig. 2a and the dash-dot line 1. We denote the 
contribution of this configuration by K ;(E 0); the subscripts 
ofK are the numbers of the dash-dot intersection on Fig. 2a. 
Thus K 5 consists of four branches K , each determined by 
its own configuration of cuts on the plane. We now sum the 
quantities TK&(E, R)G,(E)G,(E + R) over E. This is like- 
wise best done by changing from summation to contour inte- 
gration. The complex w plane has three cuts passing through 
the points E = - R/2, - R, 0. Let us illustrate briefly the 
summation procedure. 

The cut configuration shown in Fig. 2b is possible only 
if - 0, < E, < - Q, /2. This means that in this complex E 

plane the function K 5 (E, , R, ) coincides with the function 
K ; (E, R) defined for all E and R. In this case the sum over 
the discrete frequencies can be expressed in the usual man- 
ner in terms of an integral along the edges of the cuts passing 
through E = - R, , - R, /2. The summation in all the re- 
maining regions is similar. This reduces the entire integra- 
tion to integrals along the real axis, after which the continu- 
ation in the variable R is standard. The expression obtained 
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for KR (a) is valid in any inelasticity approximation. We, 
however, are interested in the first approximation: we shall 
retain the inelasticity only to the extent that it leads to cutoff 
of the C divergence. We therefore leave out of the expression 
for the loop the terms that obviously tend to zero as w -0. In 
consequence, 

Here n ( ~ )  is the Fermi function, N (w) the Planck function; 

We have again left out of (9) the momentum arguments 
of the Green's function. The function KR (a) contains all the 
singularities of the interference contribution to the kinetic 
coefficients. Their calculation reduces to substitution of (9) 
in the corresponding expression, to multiplication by the 
vertices, and to integration over the momenta. We shall not 
perform this calculation here, and focus our attention on the 
calculation of r P .  To this end we must first determine the 
functions P f  contained in (9). 

3. EQUATION FOR THE FUNCTIONS P,R 

The integral equation for the Matsubara function PM is 
shown in Fig. 3. 

Analytic continuation transforms this equation into a 
set of equations that connect the functions Pf with the func- 
tions Pfj  and P: (this connection is due to the cut 
(III)Im(n + w - w') = 0). The fact that the R-  and A-func- 
tions do not separate in the equations complicates consider- 
ably the task of analytically continuing the equation for P; . 
Besides the picture of the cuts for the functions P f  (Fig. 2a) 
we must consider the analogous picture for the functions 
PC . This picture can be obtained from Fig. 2a by reversing 
the signs of all the energies. We shall also number the regions 
Pz correspondingly. Our next task is to transfer the grid of 
analytic branches for PR (,, to the integral term of the equa- 
tion, since summation over w' entangles partially these 
branches. We shall carry out this summation using contour 
integration in thew' plane. The system of cuts for PM in the 
Im E e Im w' plane is shown in Fig. 4 (for the case 
Imfl,=Im(S1 + w) > 0); the cuts are numbered as in Fig. 2a. 
As for the numbering of the regions (branches), it must be 
recognized that to the left of cut I11 we have here the R 

FIG. 4. 

functions (the numbering is as in Fig. 2a), and to the right the 
A functions, and in this region the numbering corresponds to 
that for the PG branches (see above). 

To obtain an equation for, say, Pf we must thus cut Fig. 
4 by a horizontal line that passes through the region num- 
b e r e d ~  on the left of the cut 111. All the points of intersection 
of this line with cuts I to VII will determine cuts in the com- 
plex w' plane and those branches P: (on the left of cut 111) or 
PG (on the right of this cut) which must be substituted in the 
integral term. The corresponding branches of the Green's 
functions are determined directly. Figure 4 shows as an ex- 
ample the dash-dot line that corresponds to the equation for 
the functions P f ,  P t ,  P p, and P f . The equations for the A- 
functions are derived similarly. 

We begin with the equation for the difference 
P - P f . The right-hand side of the equation (Fig. 3) con- 
tains besides GM (E + wf)GM(& + Q + w - wf)PM(w') also 
the phonon function g M ( w  - a ' ) .  On going from summa- 
tion over the discrete points w' to a contour integral it is 
important to take into account (besides the cuts that deter- 
mine the interchange of the PM branches) the cut produced 
at w' = w and due to the function. Taking all the forego- 
ing into account, it is easy to determine the analytic branches 
of the Matsubara functions in different regions of the w' 
plane complex. The analytic structures of the right-hand 
sides of the equations for P f and P f respectively are shown 
in Figs. 5a and 5b. It can be seen that these figures differ only 
in the location of the cut w = w'. Therefore only the cuts 
with w' = 0 and w' = w contribute to the equation for the 
difference P t  - P f ;  the contributions of the remaining cuts 
cancel out. Ultimately the difference of interest to us in the 
integral term does not become linked with other combina- 

FIG. 3. 
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tions of the branches P,R(A). This equation is analytically 
continued in standard fashion. The situation is the same for 
the difference P f - P f . 

In the upshot, the combination P satisfies the equation 

P ( P ,  Pi, o ) = Z ( m ,  p-PI) 

J d a ' ( d p t )  
P ( p ' ,  p,, o ' ) Z ( a - ~ ' ,  P' -P)  

( 2 n i )  

x [ N ( w ' ) - N ( o f - a )  1, (12) 

where 

I ( @ ,  k )  =aR (0 ,  k )  -aA ( a ,  k )  , (13) 

and gR (, , are the phonon Green's functions. We have not 
written out in (12) the arguments E, 0 ,  and q on which P 
depends as on parameters. It is similarly possible to derive a 
system of equations for terms 1 and 3 of Eq. (9). Analysis has 
shown that the first and third terms of (9) can be neglected in 
the principal approximation in the inelasticity. 

4. SOLUTION OF INTEGRAL EQUATION FOR P IN DIFFERENT 
CASES. CALCULATION OF T, 

To be specific, we consider in detail the case of electron 
interaction with longitudinal acoustic phonons via a defor- 
mation potential, when 

where wk = kw is the frequency of a phonon with wave vec- 
tor k. 

It is convenient to integrate in (12) first with respect to 
E ~ .  =pt2/2m. It suffices then to take into account only the 
dependence of the product of the Green's functions on Ip'J; 
everywhere else we can put Jp / = / p'/ . At low values of the 
parameters nr and qur this integration yields the factor 

2nv t 
v 5 d., GRGA - ( I - i Q t - i q v t  cos 0') - I ,  (15) 

I - i t  ( a - 2 o ' )  

where Y(E) is the density of the electronic states, 8 '  is the 
angle between the vectors q and p', u = p/m is the electron 
velocity, and r is the relaxation departure time: 

Im BA (a ,  k )  Im GA ( E - o ,  p-k)  N ( a )  

=nvg2T. (16) 
We note next that expression (9) for KR (a) contains not the 
function o ,  but the combinationN (o)Pz TP /w. It is conven- 
ient therefore to analyze the equation not for P but for a new 
function 

( i - i ~ ~ - - i q u r  oos o)- ' ,  $(@)=- 
a 

(17) 

where 0 is the angle between p and q. In the principal approx- 
imation in the small parameters 07, qur, and w/T Eq. (12) is 
transformed into 

( I - iQ t - iqu tcos  0 ) 9 ( a ,  p, p i )  =@ ( a ,  p-pl)  
d o '  

-vT 1 
a - 2 a r + i / t  ( F ( ~ ' , P ' ,  p i )  @ ( 0 - o f ,  p-P') ), 

where Q = I / o ,  and the angle brackets denote averaging 
over the directions of the vector p'. 

It is now necessary to integrate over the directions of the 
vector p'. To this end we note that 9 ( p ,  p,, q) depends on the 
angle between p and q, but not on the angle between p - p, 
and q. This can be easily verified by examining the perturba- 
tion-theory series for ( F ( o ) )  . 

In the lowest-order approximation in the indicated 
small parameters we need retain only the first two terms in 
the expansion of F(w,B ) in Legendre polynomials, and can 
neglect the integral term in the equation for the term propor- 
tional to cos 8 (this term vanishes in the elastic approxima- 
tion, and introduces a correction to the diffusion coefficient 
in the next higher orders). We ultimately arrive at the follow- 
ing expression for ( 9 ( w ) )  : 

do'  
-vT 1 ( F ( 0 ' ,  pl-pi)  ) (@ (a -mt ,p -p ' )  >, 

0--2o'+i/.t 
(19) 

where D (E) = u2r/u is the diffusion coefficient of an electron 
with energy E .  We note that in the quasi-elastic limit the time 
r coincides with the transport time. 

To solve this equation it is convenient to transform to 
the time domain with respect to the variable o. The trans- 
formed equation is 

t 

LP- ( i + ~ ) ~ ( t )  - j z e - v - t , ) ' ~ ( t ~ )  v ( 2 t - t r )  
- rn 

T 

=-igZ cos ( ~ ~ - ~ , t ) .  (20) 

Here F ( t )  is the Fourier transform of (Y(w)) ;  
A = D (&)q2r - i0 r ,  I A I g 1, \Il(t ) = (cos(op - p. t )). TO deter- 
mine \Il(t ) we must thus average over the directions of p' with 
p given ( / p /  = (p'( to the accuracy of interest to us). If dsp- ' ,  
the electrons and phonons can be regarded in this averaging 
as three-dimensional, and op -,. = w, sin(p, fi1/2). (Note 
that ifit turns out here that d < (Dr, ) ' I 2 ,  the integration with 
respect to q in (7) is effectively two-dimensional and the cor- 
rection is proportional to In (r,/r).) In addition, it will be 
seen that an important role is played in the problem by val- 
ues of 2t - t ' such that the product w, (2t - t ')g 1. We can 
therefore put 

om2t2 P. ?t' 
Y ( t ) = I - - -  (sin2 (p, ~ ' 1 2 ) )  = l - L 

4 " (211 

The situation is somewhat different when the electrons 
are two-dimensional but the phonons are three-dimensional 
(a film making good acoustic contact with a substrate). At 
dgp-' the transferred phonon frequency is practically inde- 
pendent of the angle between p and p,, but is determined by 
the value q, of the phonon wave vector perpendicular to the 
surface. In this case oP-,. zw,, , a.nd in lieu of (Q(w - w', 
p - p,)) we get in the right-hand side of (19) 
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where M (9,)  is a diagonal matrix element of the operator 
exp(iq,z) in the electronic state q, (z). For q ( t  ) we obtain in 
this case 

The important values in this integral are z z d .  We are inter- 
ested in small enough values t -7, , much smaller than d / 
w = wc- ' (otherwise the condition rP ST cannot be satis- 
fied). We therefore obtain for Y(t ) an expression similar to 
(21), but with bw: in place of w;/4 , where 

Thus, in all cases Y(t ) can be represented in the form 

Y ( t )  = l - c L ( t / ~ ) ~ ,  (24) 

where the dimensionless parameter a is equal to (om ~ / 2 ) ~  or 
b (ac T ) ~ .  The condition T(T, forces us to regard it as small. 

Equation (20) is easily solved by Evans's method."*'2 
This method is based on a relation between the kernel of the 
integral equation (20): 

K -,- =- ( l - A ) e - ( t - t ' ) l c  --- ( 4  I:) r (:t :)?I 
and its resolvent R (t, t ') 
t ' / r  

Noting that the kernel K satisfies the differential equation 

we differentiate (25) one, two, and three times, multiply by 
the coefficients contained in (26), and add up all these expres- 
sions. The result is a differential equation for the resolvent 
with respect to the first variable, while the second is fixed. 
We have thus in lieu of three integration constants three 
unknown functions of the variable t '. This functional leeway 
is eliminated by using Eq. (25) and the required number of its 
derivatives with respect to the first argument at an arbitrary 
point t = t '. Retaining for each derivative only the terms of 
highest order in the large parameter t /T, we have 

Since we are interested only in t ) ~ ,  we seek a quasiclassical 
solution R = exp[q, (t )/TI. In the lowest approximation in T 

the equation for q, (t ) can be written in the form 

and its unique quasiclassical solution is2' 

The answer of interest to us contains the integral of 
3 ( w )  over all the frequencies w, i.e., F(0). The principal (dif- 
fusion) contribution to this quantity 

cannot be reduced to the form - ig2(A + T/T,)-'. The ki- 
netic coefficients contain the integral ofF(0) with respect to 
q. In the two dimensional case we have dq = dA/4nD (E) ,  

whence 

where A, - 1. If the argument of the logarithm is presented 
in the form rP/Arn T, then T, ZT"~W; 2'3 , which coincides 
with the estimate (4). The temperature dependence of r, is 
determined by the dependences of the relaxation time T and 
of the characteristic frequency transfer. In the case of Boltz- 
mann statistics we have for two-dimensional electrons and 
two-dimensional phonons w, a T 'I2 and T a T - ', therefore 
T, a T-312; in the case of three-dimensional phonons, wc 
does not depend on T, and T, a T - 'I2. For three-dimension- 
al electrons and phonons T- T -312 and w, a T 'I2, so that 
r, a T - ~ ' ~ .  

Let us recall the validity limits of the approximation 
employed, when account is taken of one "fan" diagram (at 
P - ' 4 d g ( ~ ~ , ) 1 1 2 ) :  

where T, is defined by 2nv(Tc)g2 = 1, and To = mw2/2. As 
the temperature is raised this parameter ceases to be small 
and we find it necessary to sum all the multi-cooperon dia- 
grams. 

We call attention to the following curious circum- 
stance, which is typical of the present case. Namely, the 
quantum corrections become more and more important with 
rising temperature. At sufficiently high temperatures the 
contribution of the "fan" diagram to the kinetic coefficients 
becomes formally of the order of their classical values. This 
means in fact that the one-cooperon approximation is no 
longer valid. Since the sign of this contribution is the oppo- 
site of that of the classical value, this should lead, say, for 
mobility, to a faster decrease with rise of temperature (com- 
pared with the T -512 law). The interesting problem of deter- 
mining the law that governs this decrease has not yet been 
solved. 

The results of calculations for scattering by acoustic 
phonons may create the impression that T, always includes 
the departure relaxation time. To look into this question, we 
consider the case of piezoelectric scattering of electrons by 
acoustic phonons, when the transport and departure times 
differ parametrically. In piezoelectric scattering the interac- 
tion constant depends substantially on the magnitude and 
direction of the phonon wave vector: g2 -+ g; (p, p')(pI2/ 
x / p  - p'I2 (in the quasielastic approximation we can put 
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JpJ  = Jp ' / )  and go depends only on s = sin(p, p'/2). 
The calculation is similar to that in the case of strain- 

phonon scattering. The difference are the following: 
1) The constant g2 in the expression for l / r  is replaced 

in the three-dimensional case this quantity is equal to 

and in the two-dimensional case 
i 

1 dsg? ( s )  i s 2  (L-s2) I,=. 

The lower limit of integration so in this expression is deter- 
mined by the mechanism that screens the piezoelectric 
fields, and can be quite small. 

2) The integral term in Eq. (18) for the first spherical 
harmonic F,  does not vanish in the elastic approximation. 
Allowance for this term causes the departure time in the 
expression for the diffusion coefficient D to be replaced by 
the transport time T, that is proportional to 

In the three-dimensional case we have the ratio 

and in the two-dimensional case the integrals in the numera- 
tors and denominators acquire additional factors 
s c l ( l  - s2)-'I2. We note that a can be much smaller than 1. 

3) The function Y(t ) in the kernel of the integral equa- 
tion takes the form 

(go2 cos (a,- , , t) ls2> tZ  ( 0 p 2 - ~ ' ~ ~ ~ / ~ ~ >  
Y ( t )  = = I - - -  

<g,Z/sZ> 2 (g,2/sZ> . (34) 

The value of the parameter a is thus changed. If the electrons 
and phonons are of the same dimensionality, then the coeffi- 
cient o f t  2/2 becomes om 2 ~ / 2 ~ , ,  . The parameter a is thus 
given by 

The results are modified in a very interesting manner in 
the case of quasielastic scattering by optical phonons 
(wo(T). This case can be important in a real experimental 
situation, since the contribution of the quantum-mechanical 
corrections in scattering by acoustic phonons increases with 
increasing T. Scattering by optical phonons therefore be- 
comes very important at high temperatures. In this case 
TT, a TI'' and the scattering of electrons by optical phon- 
ons causes condition (32) to be satisfied. 

If optical-phonon dispersion is neglected, the function 
Y(t ) = cos oot becomes equal to unity not only as t -+ 0 but 

also at the instants mot = 27rk (k are integers). Equation (20) 
can nonetheless be solved only by Evans's method. It is 
found that the corrections to F(0)  for the instants 2n-k /oo 
(k $0) are exponentially small and should be discarded. 

5. CASE OF TWO QUASIELASTIC SCATTERING 
MECHANISMS 

We analyze now the case when there are two quasielas- 
tic scattering mechanisms characterized by energy transfers 
, - ,, and of lp ,  and by departure relaxation times 7, and 

T2. This analysis will enable us to describe both the case of 
simultaneous scattering by acoustic and optical phonons 
(which occurs at high temperatures) and the case, important 
at low temperatures, of simultaneous action of impurity and 
phonon scattering. Of greatest theoretical importance here 
is the fact that the parameters TIT, and 75.r are independent, 
so that the case $r)l can be stidied when the co-ncept of 
electron diffusion in energy might not be applicable. 

In this case the phonon propagator 9 in the initial and 
integral terms is replaced by the propagator sum 
9"' + a'". The end result is Eq. (20), in which T is replaced 
by (I/T, + 1/r2)-', and the function Y(t ) takes the form 

T (1) 'x ( 2 )  

Y ( t )  = - ( ~ o s ( a ~ - , ' t )  )+ - ( c o s ( a p - * ' t )  ). 
Ti t z  

(36) 

To simplify the final expressions we assume that r,<r,. 
In addition, we neglect the inelasticity of the first scattering 
mechanism. Then 

Ti ( 2 )  
Y ( t )  = I  - - < l - cos (a,- ,-t)  >. 

T2 

(37) 

The simplest to analyze is the limiting case o"'T( 1. We 
demonstrate it for a situation in which the second mecha- 
nism is scattering by optical phonons and (cos(of'_ ,. t )) 
= cos wot . The calculation here is completed analogous to 
the one above and yields 

This leads for oOr2g 1 an answer that coincides with the 
estimate (4). If, however, oOr2) 1, then T, - T, = r in .  The 
case war) 1 can also be analyzed by Evans's method and as a 
result sin x in the argument of the exponential acquires a 
factor 3/4. The estimate T, -T, = rin thus remains valid. It 
can be directly verified that this conclusion in fact does not 
alter the actual form of the quasielastic scattering. 

It can be deduced from our results that the phase-relax- 
ation mechanism depends on the dimensionless parameter 
75.rin, and not on the quasielasticity parameter G/E. In parti- 
cular, inelastic interaction in which the electron acts as a 
classical particle with a well defined energy (Zr, ) 1) can 
only disrupt the quantum interference between the elec- 
tronic state and the time-reversed state. 

We are grateful to B. L. Al'tshuler, A. G. Aronov, A. I. 
Larkin, S. V. Maleev, D. A. Parshin, and D. E. Khme1'- 
nitskir for a discussion of the work, and to V. I. Kozub for 
reviewing the manuscript. 
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"Only diagrams with inelastic increments to the self-energy parts "work" 
in this case. 

2'Obviously, the solutions that decrease at t-T cannot become diffusive 
and must therefore be discarded. This can be verified formally by using 
the initial conditions from (25) or by taking the limit as w, -+ 0 in the 
final expression for F ( t  ). 
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