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A symmetric tunnel junction in a transverse magnetic field is analyzed for the case in which the 
characteristic electron energy at which the tunnel transmission of the barrier changes is low in 
comparison with the Fermi energy. The tunnel current oscillates as a function of the magnetic 
field and of the applied voltage. The period of the oscillations in the voltage is twice the ordinary 
period, while the period of the oscillations in the inverse magnetic field has the usual value. As the 
voltage is increased, these oscillations broaden and eventually disappear. 

1. INTRODUCTION 

The tunneling of electrons in metal-insulator-semicon- 
ductor structures in a quantizing magnetic field has been 
studied in several experiments (e.g., Refs. 1-3). These experi- 
ments have been carried out to determine how the magnetic 
field or the applied voltage influences the quantum oscilla- 
tions of the tunnel current which stem from the particular 
features of the state density in the Landau levels of the semi- 
conductor. Oscillations have been observed in both longitu- 
dinal (with respect to the current) and transverse magnetic 
fields. Under the conditions of these experiments the tunnel 
transmission of the barrier was apparently identical for all 
electrons whose tunneling was allowed by the conservation 
laws. In other words, the inequality Eo > EF held, where EF 
is the Fermi energy of the semiconductor, and Eo is a charac- 
teristic value of the electron energy at which the tunnel 
transmission of the barrier changes. If this inequality does 
not hold, the picture of tunneling in a quantizing magnetic 
field changes substantially, as we will show below. 

We will analyze tunneling in a quantizing magnetic 
field in the case of a symmetric junction (Fig. la). We assume 
fingEogEF, where fin is the distance between Landau lev- 
els. A decisive factor here is the strong dependence of the 
barrier transmission coefficient on the electron energy. Be- 
cause of this strong dependence, the tunnel current is domi- 
nated by those electrons which are incident along the normal 
to the plane of the barrier at velocities near the Fermi veloc- 
ity. 

It is easy to see that under these conditions there should 
be no quantum oscillations in a longitudinal field. In fact, the 
oscillations are usually the result of a crossing of Landau 
levels by the Fermi level. The normal projections of the mo- 
menta of the electrons in these Landau levels are small, so 
that these electrons undergo essentially no tunneling. Most 
of the tunnel current is carried out by electrons from low- 
lying Landau levels (NfiR-E,), which lie well below the 
Fermi level. ' 

In contrast, in a transverse field (i.e., if the magnetic 
field vector lies in the plane of the barrier), most of the elec- 
trons which undergo tunneling are electrons which are mov- 

boundary-layer electrons, the optimum trajectories are evi- 
dently those on which an electron traces out a semicircle 
between two successive collisions with the barrier. Such elec- 
trons are incident normally on the barrier. It is also clear that 
the tunneling transmission is maximized when the energy of 
these electrons associated with the motion across the field is 
a maximum, i.e., is equal to the Fermi energy EF. 

We will show that in a transverse field and under the 
condition fifl<Eo(EF there are oscillations in the tunnel 
current. What makes these oscillations unusual is that their 
period in the voltage is twice the ordinary period, i.e., is 
given by Ae V = 2fiO. The reason for this relation is that for 
the electrons which are effectively in a boundary layer the 
distance between the magnetic levels is twice the distance 
between Landau levels. The period of the oscillations in the 
inverse magnetic field, in contrast, has its usual value: A/ 
fin = l/EF. 

2. DERIVATION OF AN EQUATION FOR THE TUNNEL 
CURRENT 

The tunnel current which flows across the magnetic 
field, like the ordinary conduction current, differs from zero 
only because of collisions, since there exist no quantum-me- 
chanical states with a nonzero expectation value of the cur- 
rent across the field. For the problem of the present paper, 

ing in a "boundary layer" and which, as they move through 
FIG. 1. a-Symmetric tunnel junction in the absence of an applied vol- 

the magnetic are reflected the plane tage; &trajectories of boundary-layer electrons in a transverse magnetic 
the barrier (Fig. lb). Of all possible trajectories of these field. The tunnel current is dominated by the trajectories of type 1. 
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FIG. 2. Resultant potential energy for the transverse motion of an elec- 
tron. Here x, is the center of the Landau oscillator. 

this circumstance has the following implications. The trans- 
verse motion of an electron can be described as a 1D motion 
with a potential energy equal to the sum of the "magnetic 
potential" 

u ( x )  =rrlQd (x-5,)) 2/2, 
where x, is the center of the Landau oscillator, and the bar- 
rier potential (Fig. 2). Because of the finite transmission of 
the barrier, the electron wave function is a coherent superpo- 
sition of states in the wells at the left and the right. An elec- 
tron goes periodically from the well at the left to that at the 
right and back, so that no current flows in the absence of 
collisions. If, however, collisions occur at a rate far higher 
than the transition frequency (and we assume below that this 
condition holds, in accordance with the actual situation), a 
complete loss of coherence will result (the frequency of the 
transitions between the wells is determined by the transmis- 
sion of the barrier). Under these conditions, collisions re- 
move an electron from the vicinity of the barrier before it has 
time to tunnel back through the barrier. The tunnel current 
from one well to the other can then be expressed in the usual 
way in terms of the barrier transmission. 

We assume that the barrier is in the yz plane (Fig. 2) and 
that the magnetic field is directed along the z axis. We char- 
acterize the states of an electron in the two half-spaces x > 0 
and x < 0 by the quantum numbers k, ,x, = il 2ky, and N, 
where k, and ky are the projections of the wave vector onto 
the plane of the barrier, A is the magnetic length, and N is the 
index of the magnetic energy level. The values of k, and x, 
are evidently conserved during the tunneling, so we can 
write the following expression for the tunnel current: 

a. rn 

The constant C will be defined below; D, (x,) is the transmis- 
sion coefficient of the barrier; E, +(x0) and E~ ' - (x , )  are the 
magnetic energy levels of an electron in the right and left 
half-spaces, respectively; Vis the applied voltage; and f is the 
Fermi function (we are assuming a zero temperature). 

Let us examine the expression D, (x,). This coefficient 
obviously depends on only the difference between the barrier 
height W + AU and the transverse electron energy E$ (x,), 

where W is the barrier height in the absence of a field, and 
AU= mn2xi/2 is the extent to which the barrier rises in a 
magnetic field (Fig. 2). Within the coefficient of the expo- 
nent2' function we can thus write 

where the functionF depends on the shape of the barrier. As 
we mentioned in the Introduction, we are considering the 
case in which the tunnel current is determined by electrons 
with transverse energies close to the Fermi energy E,. For 
such energies we can write 

where 
~ , = e x p  ( - F ( W - E F ) ) ,  Eo-[Ft(C.V-Ea) I-', 

and the parameter E, determines the energy dependence of 
the transmission coefficient. In particular, for a square bar- 
rier of thickness d we would have 

Eo= ( (W-EF)  A2/2md2) 'Ii. 

We assume that the following conditions hold: 

In (2) and (3) we are ignoring the change caused in the trans- 
mission coefficient by the change in the shape of the barrier 
when the voltage Vis applied, under the assumption that this 
change is quite small. 

The energy levels E$ (x,) in (1) should be calculated for 
an infinitely high barrier, i.e., under the assumption that the 
wave function vanish at the barrier (at x = 0). It is clear that 
the relation E$ (x,) = EN ( - x,) holds. As x,- cc , the energy 
levels E$(x,) become the Landau volume levels 
E$ ( co ) = (N + 1/2) fin. At xo = 0, the values of 
E$ (0) and EN (0) are the same, and the distances between ad- 
jacent levels are known to be equal to twice the distance 
between Landau levels. E$ (0) = ~ ~ ~ ( 0 )  = (2N + 3/2)fiSZ. 
Electron states with small values of x, [small in comparison 
with the Larmor radius (2N ) ' I 2 i l  ] correspond to the classical 
trajectories of the boundary-layer electrons, consisting of 
arcs which are approximately semicircles. These are the 
states which dominate the tunnel current, by virtue of condi- 
tion (4). We also see from this condition that the values of N 
which are importent are large values, N- E,/fiQ) 1, so that 
we can use the semiclassical approximation to calculate 
EN+ ( ~ 0 ) .  

To transform expression (1) for the tunnel current we 
substitute (3) into it and integrate over k, and x,, finding 

For given values of N and N ', the value of x, in this expres- 
sion can be found from the condition 

which corresponds to the vanishing of the argument of the 6- 
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function in expression (1). Since the value of x, which are 
important are small values, the derivatives d&/dxO can be 
evaluated at x, = 0. This calculation, in the semiclassical 
approximation, yields 

Our next step is to calculate the energies 
EN+ (x,) and EN. (x,) at the value of x, which satisfies condi- 
tion (6). We take the following approach. We write 
N+N1=nandN-Nf=k ,whe renandka re in t ege r so f  
identical parity. We also introduce 

In terms of this new notation, the semiclassical quantization 
conditions in the right and left wells take the following 
forms, respectively: 

eV 3 s o d x P ( x . ~ ~ , ~ - - )  2 =(%+-) 4 nil, 

where a and b are the turning points in the right and left well, 
respectively, and the semiclassical momentum is 

p ( x ,  E )  = [2m ( ~ - ' / ~ m 8 ~  ( 2 - x O )  ') ] Ih. (I1) 

Relations (9) and (10) constitute a system of equations deter- 
mining En,, and x,. For our purpose below it is sufficient to 
find En,, and x, to within terms of respectively first and 
zeroth order in V. Adding and subtracting Eqs. (9) and (lo), 
and expanding their left sides in series in x, and V, we find 

At the accuracy specified above we then find 

Expressions (13) hold under the conditions k<n,n) 1 and 
eV<kfiR. As we will see below, the values of n and k which 
are important are those which satisfy 

Consequently, the applicability of expressions (1 3) is guaran- 
teed by inequality (4) and the condition eV<(E, E,)"~. 

We can now derive an explicit expression for the tunnel 
current from (5). Using (7), (8), and (13), and switching to a 
summation over n and k, we find 

where C, is a new constant. In (14) we replaced n + 3/2 by n 
by virtue of the condition n) 1, and we discarded a term of 
order eV/Eo in the argument of the exponential function. 
The constant C, can be determined by examining the weak- 
field limit, n 4 .  In this limit we have J = V/R, where R is 
the resistance of the tunnel junction. To relate the constant 
C, to this resistance, we switch from a summation over n and 
k to an integration (bearing in mind that n and k are of identi- 
cal parity). We then find 

We can see from (14) that the derivative of the tunnel 
current with respect to the voltage in a transverse magnetic 
field has singularities corresponding to different values of n 
and k. At each value of n there are components in the tunnel 
current from a large number of terms corresponding to dif- 
ferent values of k. The actual number is on the order of 
(E, EF)'12/fifl, 1. The singularities associated with differ- 
ent values of k (at a fixed n) are packed very closely together. 
Along the voltage scale, for example, the distance between 
adjacent structural features, eA V, is on the order of (fiCl)eV/ 
EF <fin, while along the scale of the inverse magnetic field 
this distance is A/fia -eV/E :< l/EF. Actually these sin- 
gularities will be smeared out by the customary broadening 
factors which we are not discussing here. We can therefore 
switch from a summation over k in (14) to an integration. We 
then find the following expression for the differential con- 
ductance G = d J / d E  

The function @ is 
m 

In the limity-+a we have @( y ) ~ y - 1 1 2 ,  and as y- - co we 
have @( y)-e - J/(21y/)112. It can be seen from (16)-(18) that 
the broadening of a singularity is proportional to V. With 
V = 0 we find from (16) 

DISCUSSION OF RESULTS 

According to (16), the differential conductance of a tun- 
nel junction in a transverse magnetic field undergoes quan- 
tum oscillations. There are two series of such oscillations, for 
which the positions of the maxima are determined by the 
conditions EF + e V/2 = nfin, where n is an integer. The 
period of oscillations along the voltage scale is thus 
Ae V = 2fiR, while that along the scale of inverse magnetic 
field has its usual value, A/fin = l/EF. With V = 0, as we 
see from (19), G has square-root singularities at EF = nfin 
(we recall that we are ignoring the usual broadening factors: 
the thermal broadening and the collisional broadening). At 
nonzero values of V, the singularities are spread out, and the 
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FIG. 3. Differential conductance as a function of (a,b) the inverse magnet- 
ic field and (c) the applied voltage. EF/Eo = 10,EdfiR = 10. a-V= 0; 
b--eV/fm = 0.2; c-EF is a multiple of fin. 

widths of the peaks are determined by the quantity T, given 
by (17). At sufficiently high voltages eVktifl(E,/~,)"~, 
with r k fin, the widths of the peaks become comparable to 
the distance between peaks, so that the oscillations fade 
away. 

Figure 3 shows the differential conductance Gas a func- 
tion of the inverse magnetic field and the voltage according 
to calculations from (16) and (19). Figure 3b demonstrates 
the splitting of the peaks at a nonzero value of V, while Fig. 
3c demonstrates the broadening of these peaks and the disap- 
pearance of the oscillations with increasing voltage. 

What is the physical meaning of these results? The sin- 

gularities in the tunnel current stem from singularities in the 
state density in a magnetic field. These features arise when 
the Fermi level coincides with some magnetic level of an 
electron to the right or left of the barrier; the value of x, 
corresponding to this level is such that energy conservation 
law (6) is satisfied. 

We first consider the simplest case, V = 0. Figure 4a 
shows some schematic curves of&; (x,) and E; (x,) Accord- 
ing to the discussion above, the singularities in the tunnel 
current correspond to coincidences of the Fermi level with 
intersections of the E,+ (x,) and E; (x,) curves. Remarkably, 
at a fixed energy n = N + N ' these intersections occur at the 
same value of the energy, fiR(n + 3/2), as can be seen from 
(13). This explains why the singularities in the differential 
conductance are not smeared at V = 0. 

At V # 0 we have a different situation: Now the magnet- 
ic levels in the right and left half-spaces (Fig. 4b) are separat- 
ed by a distance greater by an amount e V than in Fig. 4a. The 
curve intersection points &$ (x,) + eV/2 and 
EN. (x,) - e V/2, where energy conservation law (6) holds at a 
fixed n = N + N ', now do not correspond to the same ener- 
gy. At value ofx small in comparison with the Larmor radius 
(these are the most important values for the tunneling) these 
points lie on a straight line whose slope is proportional to V 
[see (13)l. At V # O  the Fermi level thus cannot pass through 
different intersection points simultaneously. Consequently, 
instead of the singularity which we formerly had with V = 0 
for some value of n, we now find a system of closely spaced 
singularities, whose envelope is a rounded maximum. The 
reason for the two series of oscillations is that the Fermi in 
the right and left half-spaces differ by an amount eV. 

As we mentioned in the Introduction, quantum oscilla- 
tions do not occur in a longitudinal magnetic field for the 
conditions assumed here. We are thus led to ask what devi- 
ation of the magnetic-field direction from the plane of the 
barrier discussed here disappear. Let us assume that the 
magnetic field makes a small angle p with the plane of the 
barrier. If an electron is then initially incident on the barrier 
along the normal, then during thge next collision it is easy to 

FIG. 4. The magnetic energies E,+ (curves 1 4 )  and E;. (curves 
1 '4 ' )  as functions of the position of the center of the Landau 

 oscillator, x,. a-V = 0; b--V #O. At x, = 0, the values of 
E,+ and E; are the same: E,+ = E; = (2N + 3/2)fifl. 
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see that the velocity vector of the electron will make an angle 
of 2p with the normal. On the other hand, the only electrons 
which contribute to the tunnel current are those for which 
the angle ofincidence does not exceed a value on the order of 
(Eo/EF)112< 1 .  We would thus expect that the quantum oscil- 
lations would disappear at p 2 (EO/EF)'l2. 

Finally, let us examine the conditions required for ob- 
serving these oscillations of the tunnel in a transverse mag- 
netic field. The conditions EF)Eo)fifl  can be satisfied easi- 
ly for a tunnel junction between two metals. However, the 
condition for specular reflection of electrons with energies 
on the order of the Fermi energy from the plane of the bar- 
rier-an important condition for the effect under considera- 
tion here-would apparently be impossible to satisfy with 
typical metals, since the de Broglie wavelength is compara- 
ble to the interatomic distance. More favorable in this regard 
would be a tunnel junction between two heavily doped semi- 
conductors. As an example we consider heterostructure in 

which two n-type GaAs layers with electron densities of 
1019 cm3 are separated by a thin layer of a wide-gap 
Al, Ga, - , As solid solution, which forms a barrier with a 
height W = 300 meV. We assume that the thickness of this 
barrier is d = 100 A. We then have EF -230 meV and 
Eo-20 meV. In the magnetic field H = 10 kOe we would 
have fin - 2 meV. Consequently, at liquid-helium tempera- 
tures the conditions required for the onset of the quantum 
oscillations would be satisfied. 

"We will be ignoring the small effects which stem from oscillations of the 
Fermi level in a magnetic field and for which we would have AE, -fin. 
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