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The time dependence of resonant y radiation traversing an absorber of arbitrary thickness has 
been investigated for stepwise modulation of the source. Modulation of the 57Co(Pd) y source was 
achieved by exciting rectangular voltage pulses in a piezoelectric quartz transducer (x  cut). Co- 
herent transient effects were found in the 14.4 keV Mossbauer y radiation from 57Fe manifested in 
the formation of short ( < 80 ns) pulses of the intensity transmitted through the absorber. The 
maximum intensity of the transient pulses exceeds the magnitude of the stationary resonance 
effect. Expressions describing the transient pulse shape were derived within the framework of 
classical theory by taking into account the finite duration of the amplitude distribution of the 
mechanical displacements in the y source. The shapes of the pulses and the dependence of the 
intensity on pulse excitation amplitudes and on isomer shift observed experimentally are in good 
agreement with the theoretical calculations. 

Coherent high-frequency modulation of Mossbauer y 
radiation is a very effective method for studying time and 
frequency relations in the resonant interaction between radi- 
ation and solids. A doppler shift of the y source (resonant 
absorber) at frequencies exceeding the width of the Moss- 
bauer level ro leads to significant changes in the temporal 
and spectral composition of the radiation intensity travers- 
ing the resonant absorber. Splitting of a single line into a 
series of satellites,' dispersion of lines in time-resolved spec- 
tra223 and quantum beat type oscillations2v3 are examples of 
such changes arising from sinusoidal modulation. 

There is considerable interest in elucidating interfer- 
ence effects which result from rapid (compared with the 
Mossbauer level lifetime 7,) stepwise destruction of the con- 
ditions for resonance of the y source with the absorber. The 
theory of coherent transient effects in Mossbauer spectros- 
copy has recently been developed and its main conclusions 
have been confirmed by experiments on the 93.3 keV y reso- 
nance of the 67Zn isotope (7, = 13.2ps).4-6 We have demon- 
strated7 the possibility of observing coherent transient ef- 
fects in the 14.4 keV 57Fe y radiation. The high 
Debye-Waller factor (f ~0.7-0.8)  and the short lifetime 
r0 = 14 ns) determine the advantage of the isotope 57Fe for 
these studies. We note that similar phenomena are known in 
NMR (Ref. 8) and in laser ~pectroscopy.~ 

a = Ax/* and 2mE is the y-radiation wavelength which 
arises on an instantaneous mechanical displacement of the 
source by a distance Ax at the instant of time t = T. We 
consider that the conditions for resonance Aw = w, - w, 
(isomeric shift of the lines S-  Aw) before and after the step- 
wise phase shift are maintained (Aw = const.). 

The amplitude of the electric field of the resonant y- 
radiation source is expressed in the form5 

E,  ( t )  -E ( t- to)  exp[ ia0 ( t -T )  I ,  
(1) 

E (t- to)  =exp [-io, ( t- to)  -r, (t-t0)/210 (t-to), 

where to is the formation time of the Mossbauer level. 
The field of Eq. (1) can be represented in the form of a 

sum: 

where the components E, (t - to) and Ei (t - T )  are the wave 
trains emitted respectively at an arbitrary instant to and at 
the time of the phase step t = T: 

E, ( t- to)  =h' (t-to) exp [ ia0 ( to-T) I ,  (34  

Results of experimental investigations of coherent tran- 
sient effects on stepwise modulation of 57Fe Mossbauer radi- Ei( t -T)  = (e'"-1) E (t-T) E (T- to) .  (3'3) 
ation are given in the present work, and a theoretical analysis 
of the phenomenon is presented. There is then no discontinuity in field intensity E, (t ) at the 

STEPWISE PHASE MODULATION 
moment t = T as a result of the interference of the compo- 
nents E, (t - t,) and E, (t - T).  

v ,  . ~ 

We will consider the following simplified model of the ~ h k  situation changes when the radiation traverses a 
experiment: the y source and the absorber with single reso- resonant absorber. The field E, (t ) is now modified and the 
nance lines of Lorentzian shape are characterized by the tor- amplitude of the absorber response in the frequency repre- 
responding central frequencies w, and w,, line half-widths sentation has the form'' 
r, and r, and Debye-Waller factorsf, and fa. The value of 
the stationary resonance effect is given by E,. The stepwise 
phase shift is a6 (t - T),  where 0 (t - T) is the step function, (4) 
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where the Mossbauer thickness of the absorber is 
TM =fa uon (oo is the cross section of the resonant absorber 
and n is the surface density of resonant nuclei). As a result, 
the phase relations between the components E, (t - to) and 
E, (t - T )  are destroyed and a transient pulse of the following 
form arises in the intensity traversing the absorber: 

N ( t - T )  -N(t<T) 
I ( t -T ,  Am) = 

N ,  

x exp [ i  (a'-@) t ]  {E ( a ,  T )  E' (a', T )  

where N ,  , N (t < T )  and N (t - T )  are the counting rates of y- 
quanta outside the resonance Aw + m, up to and after the 
stepwise shift, respectively; ( . ) , indicates averaging 
over arbitrary times to and the asterisks denote the complex 
conjugate. 

Integrating over frequencies in Eq. (5) leads to the fol- 
lowing dependence of intensity on time t and the isomeric 
shift of the lines, Aw: 

I ( t ,  Am) =2f,e-r0t [(I-cos a ) R e ( A B )  -sin a I m ( A B ) ]  8 ( t ) ,  

Jn is the Bessel function of the first kind of order n, T = 0. 
For exact resonance, i.e., if the isomeric shifts of the 

lines are absent (Ao = 0) and the widths are equal, 
r, = ra = r ,  Eq. (6) simplifies: 

I ( t )  =0 ( t )  2f, (I-cos a )  e-"J, ((T,I't)'12) 

and for short times t < (r/2)- '  this expression can be trans- 
formed to a form more convenient for calculations: 

Analysis of Eqs. (6)-(8) shows that a stepwise phase shift is 
accompanied by an appreciable jump in the y-radiation in- 
tensity traversing the absorber. In fact, we obtain from Eq. 
(6), under the conditions t = 0 and r, = r, = r ,  for the 
peak intensity 

X cos TMAa/4r I I+ ( A o / r ) 2  

T d 4  + sin a erp  (- ) sin 
I+ ( A a / T ) '  

For zero isomeric shift Ao = 0, and for a thick absorber, 
TM -+ cc and a = (2n + 1)n-, it follows from Eq. (9) that 
I(0,O) -+ 4f,. The maximum intensity is thus four times 
greater than the stationary effect So. Still larger intensities 
should be observed if the shifts differ from zero, Aw > 0 or 
Aw < o, when I (0,Aw) can in the limit reach 8f,. For exam- 
ple, for a = n-, TM = 200, we have I(0,15,85r) = 7.28f,. The 
approximately exponential fall which follows the jump in 
intensity, can be characterized by an attenuation constant rn 
according to the empirical formula obtained by calculating 
the time dependences of Eqs. (7) and (8): 

w h e r e k = 2 . 5 f o r O < T M < 8 a n d k = 2 f o r T M > 8 . A s T M  
increases, the peak intensity of the jump consequently in- 
creases and the duration of the fall r, is strongly reduced 
(r, =:4 ns for TM = 40). The exponential fall ends in oscilla- 
tions with amplitudes which also grow as TM increases, and 
their maxima shift in the direction of t  + 0. It also emerges 
from Eq. (9) that for a = 2nn- the intensity satisfies 
I (0,O) = 0, i.e., a transient pulse is not observed. 

The intensities of the transient pulses depend on the 
magnitude and sign of the phase step and on the isomeric 
shift of the lines. The relations I+(O,Aw) = I(O,Ao,a) and 
I-(0,Aw) = I (0,Aw - a )  corresponding to the phase (me- 
chanical) shifts of the source in the direction of the absorber, 
a, and away from the absorber, - a, are symmetrical rela- 
tive to the resonance Aw + O  and pass through a maximum in 
the regions Aw < 0 and Aw > 0 respectively. The sensitivity 
ofI+(O,Aw) to the isomer shift is larger for smaller values of 
a. The ratio of I+ to I-  can be used for accurate measure- 
ments of the shift of the lines within relatively narrow limits 
/Am 1 <(I-2)r (Ref. 7). 

Equations (5) to (9) were obtained on the assumption of 
an ideal stepwise phase shift, which is not strictly achieved. 
The analysis of an actual experimental situation therefore 
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requires the following factors to be taken into account: 1) the 
phase jump takes place over a finite time At according to 
some law 

t 

where v ( r )  is the velocity of relative motion of source and 
absorber: 2) a spread of phase shifts exists within the body of 
they source; 3) the recording apparatus has a finite resolving 
time. 

The finite duration of the phase jump indicates, essen- 
tially, the occurrence of frequency modulation. This type of 
modulation leads to substitution in Eq. (1) ofthe phase factor 
exp[ia8 (t - T)]  by 

t 

The intensity of the transient pulse is then 
t r  

where @(r) = d@(r)/dr. 
In the case of a stepwise mechanical shift of the source 

at the instant t = 0 with a jump of duration At((T,r)-', 
Eq. (10) simplifies appreciably and takes the following form: 

I ( t ,  ~ o )  = 2 f , ~ - ~ a ' R e  [ ( I - @  ( 1 )  ) A  ( t ,  A o ) B ( t ,  A o )  1. (1 1) 

It follows from Eqs. (10) and (1 1) that taking account of the 
finite duration At (compared with the case At = 0) causes a 
reduction in peak intensities, to an increase in the duration of 
the transient pulses and of their fronts, and under certain 
conditions also to the appearance of additional oscillations. 

A spread in the mechanical shifts Ax(r) within the vol- 
ume of the y source caused by modulation amplifies these 
tendencies even further. We have shown3 that in the case of 
in-phase modulation in the modulators we used with a thin 
source (absorber), the real shifts are satisfactorily described 
by a cosine radial distribution 

n r 
Ax ( r )  =Ax, cos - - 

2 ro 

over the source surface (r, is the substrate radius, Ax, is the 
shift at the center r = 0). The spread indicated was calculat- 
ed by averaging the phase factor @(r,r) over the area of the 
active spot of the y source within the limits of the radius r, . 

In the present work we have neglected the resolving 
time of the apparatus ((5 ns for 14.4 keV 57Fe), since it is 
appreciably (three times) less than the rise time of the pulses 
excited. 

EXPERIMENTAL INVESTIGATION OF TRANSIENT PULSES 
AND ANALYSIS OF THE RESULTS 

Experiments on stepwise modulation of 57Fe y radi- 
ation were carried out with a 57Co(Pd) source (10 mC) and a 
K,57Fe(CN), 3H,O absorber (T, = 8 + 2). The stationary 
value of the resonance effect was E,  = 0.37 f 0.02; the y 
source (diameter 8 x 0.02 mm, r, /r, = 0.67), stuck to a disk 
of x-cut quartz (diameter 25 X 0.25 mm), served as one of the 
electrodes of a piezoelectric transducer. The other electrode 
was a large aluminum plate. Stepwise modulation was 
acheived by feeding rectangular wave voltage pulses to the 
transducer (duration - 3000 ns) with a steep front and decay 
( -  15 ns). The repetition frequency was 123.5 kHz and the 
amplitude U was varied from 0 to 40 V. 

The amplitudes of the pulses in U were maintained con- 
stant during the course of the experiment (5-6 h) to an accu- 
racy of f 0.2 V. Different values of the isomer shift were 

FIG. 1. Transient pulses of 14.4 keV 57Fe resonance y radiation (y source 
57Co(Pd), absorber K27Fe(CN), . 3H,O, T, -- 8) for different pulse ampli- 
tudes U exciting the piezoelectric transducer and s - Aw = 0. The intensi- 
ties I + ( U )  are expressed in units of E,. 
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given by a slow (10 Hz) doppler shift of the source, to an 
accuracy of + 0.01 mm s-', and were checked with the 
help of a laser velocity calibrator. 

The time dependence of the intensity of the collimated 
y-quanta beam traversing the absorber relative to the front 
of the excited voltage pulses was recorded with a time-differ- 
ential Mossbauer spectrometer with a time-amplitude con- 
verter. " The resolving time of the apparatus was determined 
by the "transitory" curves of the 12-14 keV gamma-x-ray 
coincidences of the 88Y isotope and was 4.8 + 0.2 ns. A con- 
trol experiment with sinusoidal excitation of the modulator 
at a frequency of 11 MHz showed that almost complete 
(>95%) in-phase modulation was achieved. Since the sym- 
metry of the transient pulses relative to the sign of the phase 
jump, which comes out of the theory, really occurs, we only 
show the curves corresponding to positive phase shift ( + a), 
a shift Ax of the source in the direction of the absorber. 

A series of transient pulses of 14.4 keV "Fe y-radiation 
is shown in Fig. 1, measured at several values of the ampli- 

FIG. 2. Transient pulses for different isomer shifts of the lines S and 
constant U = 15 V. 

tudes U in the case of zero shift of the lines S- Aw = 0. A 
stepwise phase shift produces a jump in intensity which 
grows with increasing amplitude up to U = 25 V and then 
stays practically constant (relative to the background): 
I + ( O )  = 2.08. Relative to the stationary effect this value be- 
comes 1.84 &,. An increase in U is also accompanied by a 
change in the temporal characteristics; the transient pulse 
becomes shorter and its maximum is shifted towards shorter 
times. The rise time decreases from 40 + 2 ns for U = 10 V 
to 27.5 IfI 2 ns for 40 V and the time to the half height from 
78 + 4 n s ( U =  15V)to48 +4ns(U=40V).Thereduction 
in the duration of transient pulses below T, and the increase 
of intensity above E, found experimentally indicate that co- 
herent transient effects are realized for the 57Fe isotope. 

The change in magnitude and sign of the isomer shift S 
of the lines has a strong influence on the shape and intensity 
of the transient pulses. The basic rules for such shifts for 
U = 15 V are shown in Fig. 2. In the regions < 0, the intensi- 
ty has a maximum value I+ = 1.38 E, at S=  - 0.1 
mm . s-', exceeding the corresponding value of 107 E,  for 
S = 0. In the case of S >  0 and increase in S leads to an ap- 
proximately linear reduction in intensity; the transient pulse 
becomes negative relative to the intensity before the phase 
jump. Oscillations are observed with a contribution to the 
intensity which grows for large values of IS 1 .  

In order to study the shape in more detail, transient 
pulses were plotted with improved reolution time (Fig. 3). It 
follows from the experimental results that the pulses ob- 

FIG. 3. Comparison between the calculated (full lines) and experimental 
(circles) shapes of the transient pulses for U = 10, 15 and 40 V and S = 0 
(see text). 
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FIG. 4. The dependence of the intensity of the transient pulses a) 
on the amplitude of the exciting pulses U - a ,  (7t = 0.137 A) for 
S = 0; b) on the isomer shift of the lines S-Am for U =  15 V. 
The full lines correspond to the curves calculated according to 
Eq. (10) (see text). 

tained and their characteristics cannot be explained quanti- 
tatively within the framework of pure phase modulation 
(At = 0). It is essential to take account of the finite time for 
the mechanical shift of the source and the spread in it. The 
absence of independent data on the real y-source shift forces 
us to use the following simplified model of the stepwise mo- 
dulation. A voltage pulse with a steep front produces a me- 
chanical shift Ax = d l ,  U (d,, = 0.021 A/v is the piezoelec- 
tric modulus of the x-cut quartz). Due to the inertia of the 
y-source and the loading of the modulator, the displacement 
of the source up to Ax, takes place at constant velocity dur- 
ing an interval At = const. for any values of U. In this case 
the phase discontinuity for the center of the y source takes 
the form 

I 07 

t<O, 
a,(t) = diiUtlX4t, OGtGht, 

diiUIx, t>At. 

The sinusoidal radial distributiona(t,R ) over the limits of the 
active spot of the thin y source is evaluated by averaging 

Rn 

a,(t) cos - R R dR, " 2 I 
n 

~s in[o . ( t )cos-R]R~R,  (sin a( t )  )= 

R, 0 
2 

where R = r / r ,  and R, = r ,  / r ,  = 0.67 for the source which 
we used. In such a model, At remains the only parameter and 
to choose it we started from a calculation of the minimum 
build-up time At 2 44 ns of the modulator used under ideal 
conditions. 

Good agreement between the shapes of the transient 
pulses calculated form Eq. (10) and experimental shapes was 
obtained for At = 80 ns (Fig. 3, solid lines). Overall agrement 
of the measured and calculated values was also observed for 
the dependence of the intensity of the transient pulses on the 
voltage U-a, (Fig. 4a) and on the isomeric shifts of the lines 
S-Aw (Fig. 4b). In this way it can be concluded that the 
relatively crude model proposed for the modulator is ade- 
quate to describe the main relationships of the coherent tran- 
sient effects and at the same time confirms the correctness of 
the theoretical discussion given. 

As follows from Fig. 4, the I+(U,S = const.) relation 
can be used for an accurate measurement of the amplitude of 
short-lived (10-9-10-7 s) periodical mechanical shifts with- 

in the limits 0-1 A, while the I+ ( U = const, S ) relation con- 
tains the information on low-frequency shifts (or on slow 
relative velocities) within the limits of _f 150 m s- '. A cer- 
tain inconvenience in the calibration, consisting in the non- 
linearity of the relations mentioned, is compensated by the 
possibility of their theoretical derivation. 

Periodic transient pulsing of the 14.4 keV 57Fe reso- 
nance y radiation, obtained from stepwise modulation, has 
appreciable advantages (high intensity and small duration) 
over y choppers of the m e ~ h a n i c a l ' ~ ~ ' ~  and magnetic14 types. 
At the same time, the characteristics of the transient vulses 
can be improved appreciably by refining the modulator de- 
sign. It is convenient to apply coherent transient effects of 
57Fe resonance y radiation for temporal studies of Moss- 
bauer emission, scattering, diffraction, etc., where the use of 
the delayed y-y coincidence technique is made difficult by 
its characteristic limitations by the source activity. 

The authors are extremely grateful to K. Rebane for his 
constant interest in and support of this work, to Kh. Raud- 
seppo for much technical assistance and to R. Koch for help 
in carrying out the experiments. 
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A theory is derived for the temperature dependence of the rate of self-trapping in the exponential 
approximation. This rate is determined by the process in which the composite system consisting 
of the lattice and the exciton (or electron) passes over a self-trapping barrier in configuration 
space. There are two distinct mechanisms for getting over the self-trapping barrier. At T >  Tc the 
process is purely one of activation, and its rate is described by w a exp( - W/T), where Wis the 
height of the self-trapping barrier, and the critical temperature Tc is on the order of phonon 
frequencies. At T <  Tc , in contrast, an instanton mechanism operates and describes thermally 
activated tunneling. At T=: Tc we should observe a slope change on the w = w(T) curve, becoming 
more abrupt with increasing W/Tc . Solutions are constructed for three models: a small-radius 
exciton (or charge carrier) interacting with acoustic phonons, the same, interacting with optical 
phonons, and a Wannier-Mott exciton interacting with polar phonons. At low temperatures 
( T <  Tc ) we have In w a (6 ,  + b2T 4, for acoustic phonons and In w a (c, + c, exp( - wo/T) for 
optical phonons of frequency a,. The low-temperature behavior of the exponential factor in w is 
thus determined by acoustic phonons, regardless of which phonons are responsible for most of the 
self-trapping. At the lowest temperatures T the functional dependence w(T) is determined by the 
coefficient of the exponential function. After passage over the barrier, the system collapses, and 
the energy which is released goes into the kinetic energy of several atoms. This process may 
terminate in defect formation. 

1. STATEMENT OF THE PROBLEM AND BASIC RESULTS 

In crystals exhibiting a strong interaction between 
quasiparticles (holes, electrons, or excitons) and phonons, 
self-trapping is possible. If the coupling with the phonons is a 
short-range phenomenon, a free state persists as a metastable 
state, in addition to the self-trapping state (the lowest-lying 
state). These two states are separated by a self-trapping bar- 
rier (see the review by Rashba'). Since excitons are electrical- 
ly neutral, their coupling with phonons is always of short 
range, even for polar phonons. Since essentially all experi- 
ments on the coexistence of free and self-trapping states (sep- 
arated by a barrier) have been carried out with excitons, we 
will for definiteness speak exclusively in terms of excitons 
below, but all the results apply equally well to holes and 
electrons which are interacting with nonpolar phonons. 

Self-trapping occurs in two steps: passing over the bar- 
rier and subsequent relaxation of the highly nonequilibrium 
exciton-phonon system to the lowest-lying self-trapping 
state. In principle, either of these steps may be the "bottle- 
neck," but we will assume everywhere below that the rate of 
the overall process is controlled by the first step. 

The probability for tunneling through a barrier at a 
temperature T = 0 was calculated by Iordanskii and 
Rashba2 in the exponential approximation. In the present 
paper we determine the changes produced in the passage 
over the barrier by a nonzero temperature. For this purpose 
we use the mathematical apparatus developed by Iosele- 
vich3s4 in a theory for the long-wave fundamental absorption 
edge. The results of this analysis have been summarized else- 
where.5 In the present paper we restrict the analysis to the 
exponential approximation in the calculation of the self- 
trapping rate w; we will analyze the coefficient of the expo- 
nential factor in a separate paper. 

The self-trapping barrier is a potential barrier not only 
for excitons but also for the lattice, i.e., for a system having a 
large number of degrees of freedom. Such a system can cross 
a barrier either by tunneling or by an activation process. As 
it climbs over a barrier, an exciton adiabatically follows the 
lattice deformation, and the adiabatic potential of the lattice 
determines the dynamics of the exciton. A barrier can sub- 
stantially limit the rate of the process only if its height W 
exceeds the characteristic frequency of the phonons, Z. In 
this case the motion of the lattice near the barrier can be 
described semiclassically, and the optimum path is deter- 
mined from the condition for a steady state action functional 
S. 

We can summarize the results of this study as follows: 
There exist three types of extremals of the functional S and, 
correspondingly, three competing paths in phase space. 
These paths can be sketched as in Fig. 1. In this figure, we 
have retained only two of the infinite number of degrees of 
freedom: R ,  the scale size of the deformation region, and 
X = QR 3'2, where Q is a characteristic displacement of the 
nuclei in a region - R  3. The total potential energy of the 
lattice, U, including the exciton-phonon interaction, is plot- 
ted as a function of R and X. This particular normalization of 
the coordinate X is convenient because it allows us to write 
an expression in the usual form for the truncated action of 
the entire system: 

The line X = 0 corresponds to the undeformed lattice (on 
which we have U = 0). The self-trapping state lies in the "ra- 
vine" separated from the free states by a potential barrier. 
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FIG. 1. Passage over the self-trapping barrier. U-Potential energy; X- 
deformation; R-size of the deformed region. Paths 0, 0') The tempera- 
ture T = 0; 1, l'), T,; 2,2') T, > TI; *) the path corresponding to T *. PathA 
exists at all T. Dashed lines: Regions of the paths which lie in the classical- 
ly accessible region; solid lines-regions of tunneling; light lines-free 
tunneling of the lattice; heavy lines-tunneling with a trapped exciton. 

At the saddle point Y ,  the height of the potential bar- 
rier is at its minimum value W, which we will call the "height 
of the self-trapping barrier." The extremal path A, which 
corresponds to getting over the barrier by activation, passes 
through this point. This path does not depend on T. At 
T = 0, the tunneling occurs along path 0, which maximizes 
the tunneling transmission of the barrier, 9, when the total 
energy of the system is E = 0. Because of the multidimen- 
sional nature of the configuration space, path 0 may lie at 
values of R quite different from the value (R, ) which corre- 
sponds to the point Y.  For example, for acoustic phonons 
the barrier contracts markedly with decreasing R, so that the 
tunneling occurs at R < R, (see Ref. 2 and $6 of the present 
paper), despite the fact that the barrier is higher in this re- 
gion. For optical phonons ($4), in contrast, the barrier 
broadens with decreasing R, and the tunneling occurs at 
R-R,. 

It is clear from the equations of Ref. 2 that there is no 
direct relationship between the barrier height Wand the self- 
trapping rate w. This has apparently been established experi- 
mentally. According to results reported by Unuma et al.' for 
the two iodides KI and RbI, the barrier height Wis lower in 
RbI, but the value of w at T z O  is nevertheless lower. 

At T # O  tunneling occurs at energies E > 0. With in- 
creasing E, the transmission of the barrier increases exponen- 
tially, 9 = exp( - ~S,(E)) ,  but there is a simultaneous de- 
crease in the Gibbs factor e-P&, where P = T - I .  We thus 
have 

w a e x p ( - S ) ,  S=2S0 ( E ) +  B E .  (2) 

The optimum value of E is determined from the condition 

equation from analytic dynamics). We thus have T = /3 /2, 
and S has the meaning of the total action Hamiltonian for a 
back-and-forth crossing of the barrier in a time P. We will 
call S = S ( P ) the "action." 

In addition to path A, there are two other paths which 
are extremals of S ( f l  ); in contrast with A, these two other 
paths are displaced in configuration space when P changes. 
On paths 1, 2, . . . , the action is lower than on the corre- 
sponding paths l', 2', . . . . Curve 0' is the limiting path of 
this latter family as T + 0 (Fig. 1). The action on 0', like that 
on A, is infinite at T = 0. With increasing T, the two station- 
ary paths move closer together. At T * -5 they merge and 
disappear. At T> T *, we are left with the unique extremal 
path A. 

Each path consists of two regions. In the first region, a 
freely moving lattice undergoes tunneling; the exciton re- 
mains in a free state and has essentially no effect on the mo- 
tion of the lattice. In the second region, the exciton is in a 
local level and interacts strongly with the lattice. The time r0 
of the motion in this second region is short for paths 0, 1, 
. . . : r0 < W -' (a short instanton). On paths 0', l', 2', . . . we 
have rO z P  /2 at TdW; i.e., this time is essentially the same as 
the tunneling time (a long instanton). 

Figure 2 shows the temperature dependence S ( P ) for 
the three extremal paths. The overall temperature depen- 
dence seems to be generally the same, although the curves 
plotted here have been calculated for a specific problem, the 
interaction with nonpolar optical phononsl' ($4). At tem- 
peratures T >  T,, path A wins the competition; on this path, 
the action reaches an absolute minimum W/T. According to 
(2), therefore, an Arrhenius activation law holds at T> T, : 

w a  exp ( -WIT).  (3) 

In the continuum approximation we have W z  1 I /  
m3u2w;y4, for the nonpolar optical phonons and 
Wz44p 's4/m3C4 for acoustic phonons (Ref. 7). Here m is 
the effective mass of the exciton, v is the volume per atom, wo 
is the frequency of the optical phonons, y is the dimension- 
less coupling constant with these phonons,p is the density, s 
is the sound velocity, and C is the strain energy. 

as/& = 0 or dS0/d& = - P /2. The derivative as,/ 
aE = - is the imaginary time spent by the system below FIG. 2. Temperature dependence of the action for various solutions. I ,  

1'-Short and long instantons; A-activation solution. ,8* = 1/T*, 
the barrier (because of the transformation to an imaginary 4- = I/T?, T*  > T,. The heavy lines correspond to the absolute mini- 
time, this equation differs by a sign from the well-known mum of the action. 
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At T <  T, , the short instanton I, which describes ther- 
mally activated tunneling, wins the competition. In the low- 
temperature limit we have 

for the nonpolar optical phonons or 

for the acoustic phonons. Here b is a dimensionless combina- 
tion of parameters [see Eq. (68)l. 

Without reference to these models, under some ex- 
tremely general assumptions, law (3) holds at high tempera- 
tures, while at low temperatures we have a T4 law for S, since 
the low-temperature behavior is always determined by 
acoustic phonons. The only restriction on the applicability 
of expression (5) on the low-temperature side stems from the 
condition S,(O)b ( T / c ~ ) ~ >  1; at  lower temperatures T, the 
temperature dependence of the coefficient of the exponential 
function should dominate. 

Expressions (3)-(5) for S, ( T )  hold for thermalized exci- 
tons, which have the temperature of the lattice. In contrast, 
in many experiments the excitons are produced with large 
initial energies, and in such a case the self-trapping rate may 
exceed the energy relaxation rate of the free excitons, and w 
will increase rapidly with the energy of the exciton. Evidence 
for this conclusion comes from, for example, the data of 
Roick et a1.' on Xe and the data of Lushchik et on CsBr. 
For hot excitons the self-trapping rate is not described by 
expressions (3)-(5); we will examine the case separately. 

The problem ofgetting over the barrier is closely related 
to several other problems, primarily problems in quantum 
nucleation in phase-transition t h e ~ r y ' ~ ~ "  and problems of 
the decay of a false vacuum in quantum field theory.I2 For 
this reason, the successful methods of the self-trapping the- 
ory based on a generalization of Refs. 2-4 to some extent 
border on the methods used by LangerIo and Coleman.12 In 
the self-trapping problem, however, there is a distinctive fea- 
ture: The exciton remains free in the first stage of the tunnel- 
ing of the lattice and is then trapped in the second state 
(thereby changing the adiabatic potential). This distinctive 
feature has several qualitative consequences. 

Nasu and Toyozawa13 describe the self-trapping rate on 
the basis of the theory of many-phonon  transition^'^-'^ ori- 
ginally worked out for radiationless transitions at impurity 
centers. That theory ignores the dependence of the electron 
wave function $ on the lattice configuration, i.e., a depen- 
dence which plays a decisive role in the theory and which 
forms the main exponential factor in 53. In the absence of a 
correct procedure for determining the exponential factor, 
the expression derived in Ref. 13 for the coefficient of the 
exponential factor is obviously even less likely to inspire 
much confidence. In addition, the general approach of Ref. 
13-an effort to derive a universal quantitative description 
of the processes which occur at  the scale of the lattice con- 
stant-is clearly unrealistic. That such efforts are illusory is 

demonstrated by, for example, the analysis in Ref. 6 of the 
experimental data. 

2. GENERAL EXPRESSION FOR THE SELF-TRAPPING RATE 

The number of transitions from the free state with mo- 
mentum k to the self-trapping state (ST)  during the short 
time interval t2 - t, is equal to the square modulus of the 
transition amplitude averaged over the phonons; 

w(k)  (&-t i )  =( (d ( ( S T )  tz, k t , )  ( 2 > , ,  

= .! dri drz dril drz 'YJr'  (r , t , )  

X Y s ~ ( r z f t 2 ) F  ( r2 t2 .  rzft2; r i t i ,  r i f t i )  Y k ( r l t i )  Y k *    PI'^^). (6) 

Here $, and are the exciton wave functions of the free 
and self-trapping states, and 

State i and f correspond to purely phonon excitations. I t  is 
assumed that the phonons in the initial state;i, are in equilib- 
rium; gP is a normalization factor; and the $are the exciton 
annihilation operators. 

The function Fcan  be expressed in terms of the exciton- 
phonon Green's functions G and the free phonon propaga- 
tors K: 

The functions involved here can be written as functional in- 
tegrals as follows3: 

Here L ,,, and L ,,, are the Lagrangian of the free lattice and 
the total Lagrangian of the exciton-phonon system, given by 

11 12 Sov. Phys. JETP 61 (S ) ,  May 1985 A. S. loselevich and E. I. Rashba 11 12 



y q Q q i q  Y ( r )  } (13) -Jm 
w, and y, are the phonon frequencies and the exciton- 
phonon coupling coefficients; m is the effective mass of an 
exciton; and we are setting fi = 1. A field integration over $ 
is carried out in (9) and (10). The absence of a nontrivial (i.e., 
Q-dependent) normalization factor is a consequence of the 
circumstance that this is a one-particle problem with respect 
to the exciton, so that there is no contribution from vacuum 
loops. This assertion is proved in Ref. 17. An ordinary path 
integral is carried out over Q (Ref. 18). This mixed path-field 
representation of the functional integral in this problem is 
advantageous because the motion of the lattice differs in na- 
ture from that of the exciton. Specifically, the motion of the 
lattice is semiclassical, so that we can speak in terms of defi- 
nite values of the displacements Q at each time. The motion 
of the exciton, in contrast, is quantized, and it is described by 
an adiabatic wave function; it is thus convenient to speak in 
terms of the values of $ at each instant. Since we will be using 
the method of steepest descent below, these quantities are 
natural choices as the variables for the functional integra- 
tion. We have omitted Q from the arguments of all the func- 
tions in (8); we take a convolution of the Green's functions 
with respect to this displacement, and we calculate the trace. 
Substituting (9)-(11) into (a), we find 

F(r2t2, rZ1t2; rltt,  r t l t i )  

The contour r is shown in Fig. 3a. The direction of the inte- 
gration along r ,  which is the same as the time-ordering di- 
rection, is indicated by the arrows. The shape of the contour 
is the same as that used by Konstantinov and Perel'.I9 As the 
Lagrangian L we should use L ,,, on the parts of the contour 
shown in solid line, while on the dashed parts we should use 
L . The contour and the analogous expression for the four- 
time correlator describing the shape of the secondary-emis- 
sion bands are given in Ref. 5. 

The function F is a two-particle Green's function aver- 
aged over the phonons. This is to be expected, since this 
function arises when an average is taken of the square ampli- 
tude for the transition from one fixed state (a state of a free 
exciton with a momentum k) to another fixed state of an 
exciton (a self-trapping state). As usual, the single-particle 
Green's function incorporates information only on the total 
probability for the decay of state k, i.e., on the sum of the 
probabilities for transitions to all final states. As an excep- 
tion, the single-particle Green's function can be used to cal- 
culate w at T = 0, since in this case the only possible final 
state is a self-trapping state. In particular, with respect to 
exciton spectroscopy the single-particle exciton Green's 

FIG. 3. Integration contours. a-Original contour r; b--deformed con- 
tour T'. The self-trapping time to can be at an arbitrary point in the inter- 
val (t,, t2i. 

function gives a complete description of the absorption of 
light but does not describe the secondary emission (e.g., the 
luminescence spectrum). For this reason, w could not be de- 
rived at T # 0 by the approach of Ref. 4 in a calculation of the 
shape of the long-wave tail on the exciton absorption in a 
system with self-trapping. 

Since the exciton-phonon interaction is linear in the dis- 
placements, we can carry out a Gaussian integration" over 
Q. For this purpose we must make a small displacement in 
(14) by the function defined by 

1 
Q (q t )  = y q  1 dt r  j drD (q ,  t-tf ) 1 Y (rt') 1 '  erp (-iqr) (15) 

r 

Here 0 = (e, ] and q = { 9, ) are two-component vectors; 
we have a = R on r, and a = A  on rA (Fig. 3a). On the 
vertical part of c%ntour rA we have q, = 0. The matrix 
Green's function D is defined by the equation 

eqs ( q ,  t-t') =6 ( t - t ' ) ,  (17) 

where 

L ~ = - ~ / ~ ( ~ ~ ~ + o ~ ~ )  0,. (18) 

Equation (17) is solved under boundary conditions which 
ensure a continuous joining of D and d, D at the ends of con- 
tour r at an arbitrary t ': 

Dm ( t i ,  t ' )  =DAa (tl-iP, t ' ) ,  

The function D is 
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D,B (q. t,, to') =- ( i / o q )  { ( ! lTq+l)exp ( - toq  [t,-to'] ,) 

+ lvq exp ( i o ,  [ta-tp'] r )  ) , (20) 

where [t, - t ] is the difference between late and early 
times in the sense of the order on contour I?, and the N, are 
the phonon filling numbers. The function Da8 is analogous 
to that which figures in the Keldysh diagram te~hnique.~'  

After the %mall displacement and the Gaussian integra- 
tion over Q - Q, expression (14) becomes 

F(rzt2, rZrtZ; rlti,  r j l t , )  

= 5 BYAaYn ~ ~ ( r ~ t , ) ' P , ' ( r ~ t ~ )  y a ( r t t t i ) ,  

XY (r2'tZ) exp (is), (21) 

where 

xexp [ iq (r-r') 1. (22) 

This expression is exact [for the model Lagrangian (12), 
(1 3)]. To derive physical results we need to evaluate the func- 
tional integral (21) approximately, making explicit use of the 
adiabatic parameter. Although the physical picture of self- 
trapping drawn in § 1 was expressed in terms of the configu- 
ration coordinates Q, it is more convenient to eliminate Q 
from the calculations, as we did above, and to work with the 
action (221, which depends exclusively on \I/. In this case the 
self-consistent displacements e are determined in terms of \I/ 
from (15). 

3. METHOD OF STEEPEST DESCENT 

Since self-trapping involves getting over a high poten- 
tial barrier, its probability is exponentially small. It is thus 
natural to turn to the method of steepest descent to evaluate 
integral (21). 

Variation of the action S [given by (22)] with respect to 
q* leads to the nonlinear Schrodinger equation 

where 

Since Vvaries adiabatically slowly with t, the solution of the 
time-dependent equation (23) is 

t 

v (r t )  =+(rt) exp {- i  J E ( t l )  dtf }. (25) 

where $ is the solution of the nonlinear equation 

E (t ) and $(rt ), which we will choose below to be real, repre- 
sent an adiabatic energy and an adiabatic wave function of 
an exciton in the displacement field g (rt ). It was shown in 
Ref. 3 that the extremals of $(rt ) are normalized (to unity). 
Equations (16) and (26) make the displacements e and the 
wave function $ self-consistent. The motion as a function of - 
Q is semiclassical (as is usual in an adiabatic theory). 

To determine the extremal action, we must deform the 
contour I? as shown in Fig. 3b. The physical meaning of the 
various elements of this contour is as follows: The vertical 
section at the right, 11, which runs along the imaginary-time 
axis, corresponds to tunneling of the system. In Fig. 1, this 
section corresponds to the solid-line sections of the paths. 
Horizontal sections I and I11 correspond to motion in the 
classically accessible region from the sides of the free and 
self-trapping states, respectively. 

The deformed contour r' is symmetric with respect to 
the t axis. We can therefore write $, (t ) = I/, ( t  *) and 
VR (t ) = V, ( t  *), which are natural from the physical stand- 
point. Furthermore, at all points on this contour Band Vare 
real. Finally, the entire imaginary contribution to the action 
comes from the integration over the vertical portion of con- 
tour r' at the right, where the system is undergoing tunnel- 
ing. That the horizontal sections do not contribute to 1m{3  ) 
follows from the reality of V, while the contributions of the 
symmetric portions to Re (3 ) cancel out in pairs. The contri- 
bution to 3 from the (solid-line) vertical portion of the con- 
tour at the left is zero, since at early times t ;, the exciton 
remains free, so that we have $ = 0. 

We now use (20) to transform expression (16) for into 
forms appropriate for the various parts of contour T': 

0 

+ cos ( o q u )  j dr' ch ( a q < )  p2 (rr ' )  } , (271 
2 sh(oqP/2) 

xexp(- -oq I r-r' I ) 

SN, exp (a, I T-r'1 ) ) p 2  (rr ' )  , (28) 
t 

In region I the time is t = to + iP /2 + u (u < 0), while in re- 
gion I1 it is t = to + ir.. It can be seen from (27)-(29) that the 
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displacements in region I1 are determined entirely in terms 
of $* in the same region, while the displacements in each of 
regions I and I11 are determined in terms of g2 in the same 
region and also in region 11. When the system goes below the 
barrier, and also when it emerges from below the barrier, its 
kinetic energy must vanish. In complete agreement with this 
requirement we easily find from (27)-(29) 

Transforming (22), in strict analogy with (27)-(29), we 
find that the "imaginary" action 

is given by 

r " x L e x p { i q ( r - r ' ) )  { ( N q + i ) e x p ( - w q I ~ - ~ '  1 )  
a q 

+iV, exp (o, ( z-z' 1 ) ) $ ' ( r ~ )  $' ( r r z r ) .  (31) 

The second term in (30) results from the substitution into Eq. 
(21 ) of expression (25) for the four 9 functions, which form 
the coefficient of the exponential function, and from the in- 
corporation in the action of the exponential time factors in 
those functions. 

The function $(rr) in (31) is found from the condition 
that the action S [$] be stationary with the usual normaliza- 
tion condition. At T = 0, expression (3 1) converts into the 
corresponding expressions of Ref. 2. We will now classify the 
solutions of Eq. (26), following Ref. 4. 

A .  Static solution. We can show that we have 4 = $(r), 
i.e., that a function which is independent o f t  is a solution of 
Eq. (26). Substituting $(r) into (27)-(29), and evaluating the 
integrals over the time, we find 

?' drq2 ( r )  eap (-iqr) . (32) QI ( q )  =QIr  ( q )  = Q I ~  ( q )  =-- 
WI2 

Substitution into (24) yields 

The potential is thus independent of the time, and Eq. (26) 
does in fact have a static solution. Substituting $(rr) = $(r) 
into (3 I), we find 

S*[$l =PW, 

The expression in braces in (3 1) is in fact equal to the height 
of the self-trapping barrier. To demonstrate this point, we 
construct a Hamiltonian corresponding to Lagrangian (121, 
(1 3). The generalized momenta are 

p,=aL,,,/a (d,Q,) =d,Q-,, p,=dLt,t/a (sty (r t )  ) = i y ' ,  

(35) 
so that we have 

H = p,d,Qq + 1 driY (r t )  8 , B  (r t )  -LtOt 
(an)  

The first term in (36) is the energy of the lattice, and the 
second is the energy of the exciton which is interacting with 
the lattice, as can be seen from (24) and (26). The sum of all 
the terms except the kinetic energy is the adiabatic potential 
U. The stationary values of the energy of the lattice at rest 
can be determined, as in polaron theory," by setting P, = 0, 
6H/SQ, = 0, and alsoSH/S$* = Ounder thenormalization 
condition. As a result, we find expression (34) for H at the 
stationary saddle point (i.e., for the barrier height W[l]). 

For the static solution (which describes path A in 81) we 
thus have S = p W, and the self-trapping rate is determined 
by (3). 

B. Instanton solutions. The qualitative analysis in Ref. 4 
showed that under the condition T(Z there exist two instan- 
ton solutions. These solutions describe processes in which an 
exciton is trapped by a deformation well (i.e., 9 #O, E < 0) 
only over a certain region T, < 8 / 2  of tunneling region I1 of 
contour r'. The lattice begins to tunnel while it is still free 
(Fig. 1). 

For a short instanton we have T~ 5 W  -+. This result 
means that over nearly the entire tunneling time ( /2 - r,) 
the lattice remains free, and it traps an exciton only on the 
short final section of the tunneling motion. The total energy 
6 of the tunneling system tends toward zero at T + 0. This 
solution remains meaningful and leads to a finite action at 
T = 0, and in this limit it agrees with the solution derived in 
Ref. 2. For a short instanton we have S- W/Z. 

For a long instanton we have ( 0 /2 - T,) -23 - ', so that 
the region of free tunneling is short. As T --+ 0, the total 
energy E tends toward the barrier height W from below, so 
that the system emerging from under the barrier at the time 
to (Fig. 3b) is in the immediate vicinity of the point Y.  Its 
velocity is low here, so that the system spends nearly the 
entire tunneling time near P. For a long instanton we have 
(S - BW) - W/Z, so that S is larger than for a short instan- 
ton, and a long instanton never contributes to the self-trap- 
ping rate. 

At high temperatures, TsZ ,  there are no instanton so- 
l u t i o n ~ . ~  It seems natural that these two solutions would dis- 
appear, merging with each other. This picture is confirmed 
by the variational calculations in $4 and by the asymptotic 
solutions in $6. 

In the three following sections we examine the charac- 
teristic features of self-trapping and the functional depen- 
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dence w(T) for the basic models of the exciton-phonon inter- 
action. We find confirmation that the picture drawn above is 
of general applicability. In these following sections we make 
explicit use of the continuum approximation for the lattice 
and of the effective-mass method for the exciton. These ap- 
proaches are not suitable for the self-trapping state itself, but 
they may prove legitimate for describing the passage over the 
barrier if the scale size of the barrier satisfies r, - Aa,)a,, 
wherea, is the lattice constant. The condition A) 1 may hold 
if the exciton-phonon coupling is strong.',' I t  is not neces- 
sary to use the macroscopic approximation, since a math- 
ematical apparatus can be developed for more general mod- 
els. However, the continuum approximation makes it 
possible, by examining specific models, to trace the specific 
features of self-trapping which stem from specific types of 
exciton-phonon interactions, and in most cases it is possible 
to completely resolve the problem. We will return to this 
question in $7. 

4. NONPOLAR OPTICAL PHONONS 

In this section we assume w, = w, and y, = yo; the 
constant yo is related to the analogous constant y in Ref. 2 by 
yo = 1/Wo(2~ov)1'2. Since an exciton is electrically neutral, 
this model describes small-radius excitons which are inter- 
acting with polar or nonpolar optical phonons (it is assumed 
that the exciton has no constant dipole moment). This model 
also describes the interaction with nonpolar phonons of 
charge carriers and excitons of large radius ifRex ) W, where 
Rex is the exciton rydberg. In this section we will express the 
time in units of w; '. 

Transforming (3 1) with y, = yo and w, = w,; carrying 
out the scale transformation 

and introducing S = (wi/m3y4,).Y, we find 
6on'z 

According to (34), the height of the barrier is 

This numerical value of the functional Wo at its lower saddle 
point is well known. 

For instanton solutions pwJ2, we can replace the inte- 
gration limits in (37) by the length of an instanton, r,, be- 
cause of the condition r, <pw0/2. 

At low temperatures the self-trapping rate determines a 
short instanton. For it, at T = 0 (i.e., N = 0), expression (37) 
does not contain any parameters, and the condtion SS = 0 
determines the universal function $,(r7). We can express the 
instanton action S I ( T )  in the low-temperature region in 

terms of this function. For this purpose, treating YI as a 
function of $ and N, we calculate 

From (37) and (26) we have 

6 9 , [ 1 p N ] / f i $  ( P T )  = 2 E ( t )  $ ( r ~ )  . (40) 
It follows from (40) and the normalization condition for $ 
that the second term in (39) is zero. Accordingly, the expan- 
sion of 9, at N< 1 is 

(41) 
The last term in (41) gives us an explicit expression for the 
coefficient b in (4). The integral in (41) cannot be evaluated 
exactly, since 11, is not known, but an accurate estimate can 
be found for 6. From the virial theorem2'.' written for the 
functional (37) at T = 0 we find 

Comparing with (4) and (41), we find the inequality b > 4. 
Since we are calculating only the exponential factor in 

w, the low-temperature correction to S, determines the tem- 
perature dependence of w only if S, (0) - SI ( T ) ) l .  For 
S, (0) - S, ( T )  5 1, i.e., at the lowest temperatures, the depen- 
dent w(T)  is determined by a competition between the tem- 
perature dependence of SI and the coefficient of the expo- 
nential function. The latter contribution may dominate. A 
similar restriction applies to the results of §§6 and 5. 

After the system emerges from below the barrier (region 
111), the self-trapping goes into a stage in which the $ func- 
tion contracts rapidly, with a deepening of the deformation 
well. We now show that after the contraction stage has been 
established it can be described by a self-similar solution. The 
system collapses over a finite time of order w; '. 

In this stage the deformation is pronounced, so that we 
need retain only the growing first term in (29); we ignore the 
(oscillatory) second term. The potential in the Schrodinger 
equation (26) then becomes 

L 

V,,, ( r t )  x 3 dt l  sin ( t - t ' )  ( r t f  ) . 
to 

(43) 

We seek a solution of Eq. (26) for (t, - t )< 1 in the form 

$ ( r t )  =a-"(t)  $, (rla ( t )  ) , a ( t )  = (t ,- t)  a, (44) 
where t, is the time of the collapse. Introducing the new 
variables p = r/a(t) and 6 = t - t' and expanding the sine in 
(43), we can rewrite (26) as 

11 16 Sov. Phys. JETP 61 (5), May 1985 A. S. loselevich and E. I. Rashba 11 16 



The integral converges at 6- (t, - t )(t, - to, so that the in- 
tegration in (45) can be extended to infinity. Using the substi- 
t u t i o n ~  = 6 / ( t ,  - t ), and imposing the condition that all the 
terms in (45) grow the same way in time, we find a = 2 and 
the following equation for $, ( p): 

0) 

1 xdx P 
( E .  + v i  + I-qc2 [--.?I) q.(p) =0. (461 

( l + ~ ) ~  ( i+x)  

The basic quantities increase in accordance with 

Nearly all the lattice energy is kinetic energy, indicating that 
defect formation may occur in the course of self-trapping.*' 
An energy of the order of an electron volt which is liberated 
as a result of self-trapping is concentrated in the form of 
kinetic energy of the lattice in a small number of degrees of 
freedom, the nearest neighbors of the self-trapped exciton. 
In this sense, the self-trapping of an exciton is analogous to 
inelastic collisions in a gas. The excess energy of the elec- 
tronic excitation is initially converted into the kinetic energy 
of several atoms, and it is not transferred to the lattice in 
small portions in the form of separate phonons. The energy 
relaxation of the fast atoms in the lattice can take various 
paths. The energy may be expended on the formation of lat- 
tice defects and/or dissipated among phonons. This picture 
of the degradation of electronic-excitation energy is consid- 
erably more reminiscent of inelastic collisions than was ori- 
ginally proposed by FrenkelZ3 and P e i e r l ~ . ~ ~  The collapse in 
region I11 is completely unrelated to the tunneling in region 
11, so that it should occur even if Wis small (W 5 Z) and also 
during barrier-free self-trapping in 2D systems (at a surface, 
for example). In these cases in which self-trapping does not 
occur in a defect-free sample, but is made possible by impuri- 
ties, it may lead to the formation of defects near impurity 
centers. 

Figure 4 sketches the time evolution of the displace- 
ments, Q (t ), and of the exciton binding energy E (t ). In the 
classically accessible region, Q (t ) oscillates, while the lattice 
energy has the behavior E -  We-'*'. After the stopping 

FIG. 4. Time evolution Q (t ) and E ( r  ) for a short instanton (a nonpolar 
interaction with optical phonons). The upper half of contour T' is unfold- 
ed along the abscissa. The arrows show the direction in which the time (u,  
T, or t ) is measured in the corresponding region. 

point (the boundary between regions I and 11) is crossed, the 
system undergoes tunneling, and in the region of free motion 
we have Q (7) a ch( pwo/2 - 7). An exciton is trapped at the 
time r = ro, and after the second stopping point (r = 0) is 
crossed the system emerges from below the barrier and col- 
lapses in a time t, - t ,  - I. 

The results above exhaust the possibilities of an analytic 
study of this problem. Quantitative results require a numeri- 
cal determination of the saddle extremal of functional (37). 
We use a variational method, choosing $(rr) in the square- 
wave approximation, 

$ ( r t )  =$ (r) 0 (TO-- I I )  , (47) 
and then determining $ and ro from the condition SS = 0. 
Substituting (47) into (37), we find 

where 
(48) 

f (TO) =2~ ,+Ne~"+  (N+ 1) e-ZTo- (2Nl-1). (49) 
We have used (38) in deriving the second equation in 

(48). The time 7, is found from the condition for an extre- 
mum of the right side of (48). A direct check shows that the 
values of the total energy at the points r = ro and r = 0 are 
indeed equal (generally speaking, this equality is nontrivial 
in a variational calculation). The presence of stopping at 
r = 0 follows from the symmetry of the solutions with re- 
spect to the sign of 7. 

With $,(rr) chosen in the form in (47), we evaluate the 
integral in (41), and for the coefficient b we find b -- 10.3 from 
(4). 

Figure 5 shows Y/ Wo = S w d  Was a function of 7, for 

V I I I I I 
1 Z J 4 wozb 

FIG. 5. The action as a function of the duration of an instanton (nonpolar 
interaction with optical phonons). The parameter of the curves is w,/T: 
&m; 1-10; 2-7.5; 3-6; 4-5; 5 - 4 ;  6 2 . 5 ;  7-1.5. LineA shows the 
static solution; I and I' correspond to short and long instantons. 
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various values ofpa,. On the low-temperature curves there 
is a minimum corresponding to short instantons, and there is 
a maximum corresponding to long instantons. The end ex- 
trema, which lie on the diagonal 7 ,  = 0a0/2, correspond to 
the static s o l ~ t i o n . ~ '  The instanton extrema are connected by 
the dashed line. At the minimum on this line (the asterisk), 
the instantons merge and disappear. In Fig. 2, plotted on the 
basis of Fig. 5, this point corresponds to the "beak." The 
point at which curvesA and I i n  Fig. 2 intersect, and at which 
the nature of the temperature dependence of w changes, cor- 
responds to curve 3 in Fig. 5, for which the values of S at the 
instanton minimum and at the edge minimum agree. For 
numerical reasons, the switch in regime occurs early, at 
T, -w0/6, and the asymptotic behavior in (4) holds over the 
entire region T < T, . The variational calculation thus con- 
firms the general model described in $3 and illustrated in 
Fig. 2. 

Although a short instanton gives rise to a minimum of 
the action in Fig. 5, and a long instanton gives rise to a maxi- 
mum, in an infinite-dimensional path space these solutions 
correspond to more complicated stationary points; e.g., the 
point I is a saddle point. 

5. WANNIER-MOTT EXCITON; POLAR OPTICAL PHONONS 

The problem of a Wannier-Mott exciton is not de- 
scribed in the general Lagrangian (131, since an exciton of 
this sort consists of two particles and therefore has an inter- 
nal degree of freedom. Kusmartsev and M e ~ h k o v ~ ~  have 
shown, however, that the internal motion can be eliminated 
if the exciton binding energy satisfies E,, ) W, as it does 
when the masses of the electron and the hole are very differ- 
ent, m, /me ) 1. Kusmartsev and M e ~ h k o v ~ ~  solved the 
problem at T = 0; here we generalize the solution to T #O. 
After the change of variables 

where re, = E ,  /m,e2 is the exciton radius, and E~ and E ,  

are the static and high-frequency dielectric permeabilities, 
we find expression (31) for the dimensionless action P with 

As Kusmartsev and Meshkov showed,25 an exciton in a po- 
larization well is in a shallow level ( (E  I ( 1  V ( is a characteris- 
tic value of the potential energy). This is true both for the 
static solution, which determines the barrier height, 

w=Wo (E , -E , ) /E~~ ,~ , ,Z&I~ ,  Wo-1.07, 
and for an instanton. Introducing x ( r )  = (2M I E  (7) l)'I2, and 
following the arguments of Ref. 25, we find the following 
result for an instanton: 

where Eo =: 3.1. The solution of (5.1) for M ,  1 is 

The action corresponding to this solution is 

S , ( T )  =2W t h ( P o o / 2 ) .  (53) 
At T = 0, this action is the same as that derived in Ref. 25 
(aside from a factor of 2 resulting from a misprint in Ref. 25). 
For the static solution we have 

s,=wg. (54) 

We see that at all temperatures we have S, < S , ,  and the 
curves o fS  ( p ) are tangent a t 8  = 0. This case corresponds to 
the limiting case in Fig. 2 with T, = T * = w . We thus find a 
degenerate situation. At all values of T, the short instanton 
wins the competition with the Arrhenius solution, but at 
high values of T the two solutions are essentially indistin- 
guishable. This degeneracy prevails only as M --+ ; at finite 
values o f M  we would naturally expect that the usual picture 
in Fig. 2 would be restored. The low-temperature behavior is 
described by (4), as it is for nonpolar phonons. We show in $7 
that this result is a general result for all optical phonons. 

There is another upper limit on M because of the condi- 
tion for the exciton state to be adiabatic. This condition, 
Er,) 1, can be written in the form 1 ( M  1 ' 2 ( ~ ,  ( T )  with the 
help of (52) and (53). Since S, ( T  )) 1, there must exist a region 
in which this inequality holds; this region will contract 
slightly as the temperature is raised. 

6. ACOUSTIC PHONONS 

In this section we assume wq = sq and yq = yq. The 
latter dependence corresponds to the model of a strain ener- 
gy. This model applies equally well to excitons and charge 
carriers. Using the change of variables 

in (3 1) we find 
0/2 

x [ (N,+I) e - g ~ ~ - ~ r ~ + ~ q e ~ ! ~ - ~ r ~  ( r t )  q2 ( r ' t ' )  exp [ iq (r-r ')  I. 
(56) 

The barrier height found from (34) leads to the functional 
(38), as in $4. We thus have 

The spatial scale of the barrier, r, = m y  * / s 2 ~ A a 0 ,  is of 
macroscopic size if A) 1. The satisfaction of this criterion 
justifies the use of the continuum approximation in (57). As 
was shown in Ref. 2, however, the spatial and temporal 
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scales of the instanton (a and T,) found from (56) at T = 0 are 
zero. This result follows from the virial theorem. At small 
values ofa, however, deviations from the continuum approx- 
imation become important. When they are taken into ac- 
count, a and T ,  become nonzero, with a<r,. Depending on 
the magnitude and sign of the various corrections, we can 
have two cases: a z a ,  or a,<a<r,. In this section of the 
paper we will consider only the second of these cases. In this 
second case, we can retain the continuum form of the expres- 
sion for Y in (56) in a first approximation, assuming that a in 
this expression is given. In this approximation, the shape of 
the instanton and its length T ,  are expressed in terms of a .  In 
particular, we will show that the relation T,- w ,  '(a/r,)3'2 
holds. Since the characteristic momenta of the phonons 
which form the instanton are of order a-  ', their frequencies 
satisfy w ,  -w,  r, / a .  We thus have w,  ~ ~ - ( a / r , ) ~ ' ~ 4  1 ,  or, in 
dimensionless units, 

qt,-a'i2<I. (58) 
This inequality shows that the potential well varies only 
slightly over the lifetime of an instanton. Consequently, the 
local level which arises is shallow over the entire time4' T,. 

The wave function of the shallow level is 

Here X ( T )  = ( 2 / E  ( ~ ) l ) " ' ,  and we have alr(r)<l for all T .  

Using (58) in (56),  we can make the replacement 

For T = 0 ,  substituting (59) and (60) into (56), we find, in the 
zeroth approximation in q ~ , ,  

where 

In (62) we have made use of the circumstance that the inte- 
grals converge at p - 1 ,  so that we can omit e - "' z 1 from 
(59). Varying (61) with respect toy, we find 

The function X (  p)  is found from the condition that expres- 
sion (63)  for Y be stationary in the class of functionsx with 
the asymptotic behavior in (59). 

In order to derive an equation for X ( T )  analogous to (5 I ) ,  
we need to retain in (60) the term linear in q.  Using Eq. (26), 
multiplying it by $, and integrating with the help of (62),  we 
find, by analogy with (5 I ) ,  

1 
=E (T) =- - X 2  (7). 

2 

Its solution is 

where 

It follows that the inequalities x a - ~ " ~ <  1 and ~ T ~ - T , /  

a  -all2< 1 hold, confirming the assumptions made earlier. 
Incorporating the last term in (60),  in the substitution into 
(56),  we find a correction ~ a " '  to the action Y , ,  where 
Z = ( n / 8 ) ( 2 ~ , ) " ~ ~  i / B  %. 

We turn now to the calculation of AS,(T)-the low- 
temperature contribution to s,. By analogy with $4 we write 

r o  

where $ is given by (59). Although the values of N, are not 
small for q 5 Tin the limit T + 0 ,  in contrast with the case of 
optical phonons, the temperature contribution is, on the 
whole, small because the corresponding phase volume is 
small, so that expansion (67) is valid. In the integral (67), the 
characteristic values of q are -0-'. Consequently, the 
Fourier component of the density q2 in (67) takes different 
forms for p > x - '  and a < 0 < x P ' .  Its behavior at P < a  is 
irrelevant, since there are no instantons in this region, as we 
will see below. In the first case [T < w,  ( r ,  /a )"2] ,  the integral 
over r reduces to a normalization integral, and we can write 

Since r, >a,  and the transition to the Arrhenius limit occurs 
at Tc -w, [as follows from a comparison of (57) and (63)],  
expression (68) is valid everywhere at T< Tc (in the limit 
1 1 ~ 1 ) .  Because of the large numerical factor of 44 in (57),  
however, we actually have Tc > w,, and we will therefore 
also consider the second case: w , ( r , / ~ ) " ~  < T < w,r,/a. Un- 
der these conditions the Fourier component of is ~ l r ( ~ ) / q  
and we have 

This case can occur only at extremely large values 2 lo5 of 
A.  

All the numerical coefficients were determined with the 
trial functionx( p)  = 2 4 1  + p 2 ) ] - 1 ' 2 ,  We then have 
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and 

According to (2), the value of Y!!'' determines the self- 
trapping rate at T = 0. Its value here, 2.8, is half the value of 
5.6 which follows from expression (48) in Ref. 2. The reason 
for the difference is the better choice of the form of the in- 
stanton and of the tail function ~ ( p ) ,  which has the correct 
asymptotic behavior a s p  -t a, as described in (59). 

We have been working in the continuum approxima- 
tion, expressing all quantities in terms of a .  In order to deter- 
mine a we need to consider the corrections to the action (56). 
These corrections arise because of the nonparabolic exciton 
dispersion law and also becuase of the spatial dispersion of 
the strain energy and of the velocity of sound: 

As a result, a correction ( ~ d a ) ~ Y  is made to (56), where 
Y=2AoAih, /Bo-Ao2B2(2~i-h~)  lBo2. (72) 

In most cases we apparently have A,, A,, A, <0, and since 
these quantities appear in Y with opposite signs, the sign of Y 
is not determined. Collecting all the corrections to the ac- 
tion, we find 

Here Y(P) does not depend on a,  we determine a from the 
condition for AY,  to have an extremum. In the first region 
( P%al'*), the quantity A Y ,  has a unique extremum, a mini- 
mum if Y > 0: 

a,=a, (4E'/Z)' / j  ( rb /ao)  '15-A'15a0. (74) 

For A>1, we can use the continuum approximation, i.e., 
a, )a,. If Y < 0, then AY,  falls off monotonically with de- 
creasing a .  In this case we cannot carry out an expansion in 
a,q as in (71), and we have a, =a,; i.e., the continuum ap- 
proximation is clearly incorrect. In the second region 
(a&<al") the quantity AY,  has, for Y >  0, a minimum at 
a = a, ( p ), which corresponds to a short instanton, and it has 
a maximum at a = a,, (/? ) corresponding to a long instanton. 
If a:/4@<a:/2, then 

nI( /3)  =a,, a,, ( P )  =rb (Z/4U2)" '  ( o ~ / T ) ' / ~ .  
For 0- a:'4, the instantons merge and disappear. At Y < 0, 
there is no minimum, and we have a, -a,. Consequently, for 
acoustic phonons with A, 1 and Y> 0 it is possible to ana- 
lytically follow the picture of the coalescence and disappear- 
ance of instantons which was predicted qualitatively in Ref. 

4 and which is confirmed by the variational calculations in 
94 of the present paper (see Fig. 5). 

As in 95, the small depth of the exciton level, E (r) ,  and 
the short duration of the instanton, T,, make it difficult to 
satisfy the adiabatic condition T& (7)s 1, and they impose an 
upper limit on A. From (66), (63), and (74) we find 

( r b / a I )  ''z - dY15 x s:". (75) 
If the opposite condition holds, the scheme outlined above 
for determining a is incorrect. The finite value of a [which is 
greater than the value given for a, by (74)] results not from 
corrections to the continuum model (71), but from correc- 
tions to the adiabatic approximation (i.e., the coefficient of 
the exponential function). In this case the continuum model 
is logically closed, and we have a, -r, (S:0')-2. We will not 
treat this situation in detail in the present paper, since it 
requires an analysis of the coefficient of the exponential 
function. Furthermore, condition (75) apparently does hold 
in the experiments of which we are aware. 

Returning to Fig. 1, we note that there is a difference in 
the spatial scales for a short instanton and for the A path 
according to (75): a,/r, - nP4l5< 1. For optical phonons, 
this ratio is of order unit ($4). 

We have yet to discuss the spatial behavior of the poten- 
tials V(rt ) [see (26)l. For optical phonons, V  is a monotonic 
function of r, and the width of the well retains a scale size r, 
all the way to the point to (Fig. 3b), while the depth of the well 
increases monotonically. For acoustic phonons the pattern 
is considerably more complicated. The potential is nonmon- 
otonic, and this behavior is capable in principle of causing 
qualitative changes in the self-trapping picture. Using (27) 
and (28) in region I (Fig. 3b; i.e., in the classically accessible 
region), we find 

s h [ n  ( r - u ) / p ]  s h [ n ( r + u ) / p ]  
VI ( r u )  = - - +- 

c h 3 [ n  ( r -u ) / /3]  c h 3 [ n ( r + u ) / / 3 ]  

u<O, (76) 

while in the region of free tunneling, at T > a''* > T,, we find 

cos2 ( 2 n z l f 1 )  -2+cos (2nz//3) ch (2nrlP)  
[ c h  (2nr lP)  - cos ( 2 n ~ l p )  ] 

Figure 6 shows r profiles of V ,  and V , ,  for various values of u 
and T. In contrast with the optical phonons, in addition to 
the potential well there is a potential barrier here: a barrier 
for an exciton (not for the lattice, as the self-trapping barrier 
is). At large negative values of u (region I), i.e., long before 
the lattice goes under the barrier, the oscillating potential V ,  
corresponds to a spherical wave converging on a center. By 
the time u = 0, the potential V, has become a potential of 
constant sign (attractive; Fig. 6a). In region I1,the potential 
barrier for the exciton reappears, but now surrounded by a 
potential well near r = 0, whose depth (like the barrier 
height) increases with decreasing r ,  while its width decreases 
(Fig. 6b). In the later stage of the tunneling, at T <a1'*, the 
barrier stabilizes, while the well continues to become deeper. 
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At r - a  the depth reaches -a-2, and the further changes in 
the depth are slower. At  r = r,, a local level appears in the 
well. In the continuum model, the transmission of the exci- 
ton barrier is -exp( - const.ali4) and approximately empty 
since a <  1. For realistic values of a,  however, the barrier can 
dominate in the trapping of an exciton. 

In region 111, the level ceases to be shallow, and the 
system collapses, by analogy with the case of optical phon- 
ons ($4). 

Strictly speaking, all the results found here are valid in 
the limit A) 1 and for Y >  0. In particular, equating S, and 
Sf" from (57) and (70), we find 

where w, is the Debye frequency. For all of the results to be 
quantitatively correct, we would actually need unrealistical- 
ly high values A k 10'. From the experimental standpoint, 
an important parameter is the ratio Tc/wD, which deter- 
mines the point of the change in regime. For optical phonons 
the corresponding ratio is Tc /w, = 1/6 (§4), while for the 
acoustic phonons it depends strongly on A. At  the boundary 
of the region within which the continuum approximation is 
applicable, to a short instanton (A= lo2), expression (78) 
gives us T,/w, ~ 0 . 2 .  In the opposite limit, A z 1 ,  with 
a, =a,, we should not expect any significant difference 

FIG. 6. Spatial distribution of the potentials V ,  (ru)  and V , ,  (rr) 
(acoustic phonons) for various times u and r: a: Curve 1-( - ?ru/ 
p )  = 3; 2-1.6; 3-1.2; 4 -4 .6 ;  5 4 . 4 ;  6-41, b: Curve 1-nrp = n /  
2; 2-n/4; 3-n/5; & ~ / 8 ;  5-n/16; 6--n/20. 

between Tc /w, and Tc /w,, since at short wavelengths there 
is no significant difference at all between acoustic and opti- 
cal phonons. We should thus not place much importance on 
the fact that at the actual values A - 3-5 expression (78) pre- 
dicts a value of Tc /aD significantly greater than 1. Appar- 
ently, Tc/wD remains on the order of a few tenths over the 
entire realistic range of A for both acoustic and optical phon- 
ons. 

To conclude this section, we summarize the conditions 
for the applicability of the continuum approximation for the 
interaction of an exciton with acoustic phonons. At  the mod- 
erate values A - 5 we can expect satisfactory results for W 
and also for p , ( T  = 0)  (if Y >  0). The expressions for the 
short instanton, however, especially the analytic expression 
for the coefficient b in (5) and expression (78) for the ratio 
T, /wD, are valid only at the unrealistically large values 
A 2 lo2 (since fractional powers of A up to A''' figure in the 
criteria). 

7. DISCUSSION OF RESULTS AND OF EXPERIMENTAL DATA 

The basic results derived in §§3-6 hold under extremely 
general assumptions. The most important point we wish to 
make is that these results are unrelated to the continuum 
approximation. The continuum approximation used here 
has made it possible to pursue the solution of the problem 
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essentially to its end. As a result (first), we find the picture of 
the sequence of temperature regimes shown in Fig. 2. There 
is no reason to doubt that this picture is quite general, but to 
derive it outside the continuum approximation would re- 
quire laborious numerical calculations. Second, the contin- 
uum approximation has made it possible to derive some sim- 
ple analytic expressions for W and w(T),  describing 
self-trapping in terms of the macroscopic parameters (the 
effective mass, the stain energy, the velocity of sound, etc.). 
Even if these expressions do not give us the accuracy we need 
(this situation is not surprising, since A is not very large), 
they do give a correct description of the qualitative behavior. 
Third, the continuum approximation clearly reveals the 
characteristic features which stem from the interaction with 
the various branches of the phonon spectrum. 

Foremost among the general results is the Arrhenius 
law (3), with an activation energy equal to the barrier height. 
I t  can be shown that this law is valid for an arbitrary struc- 
ture of the exciton band, for an arbitrary phonon spectrum, 
and for an arbitrary exciton-phonon interaction. The exis- 
tence of this dependence, with the barrier height as an activa- 
tion energy, is not a trivial result. For example, SumiZ6 as- 
serts that law (3), being "classical," should not apply in the 
quantum region, T<G.  Actually, the classical behavior is a 
consequence of the adiabatic nature of the situation, i.e., the 
criterion W/Z, 1, not a consequence of the condition T> i3. 
For this reason, passage over the barrier through an activat- 
ed process is described by the classical Arrhenius law re- 
gardless of the value of T, and the region in which this law 
describes self-trapping is determined exclusively by the com- 
petition between the purely activation process and tunnel- 
ing. In particular, for nonpolar optical phonons the Arrhen- 
ius law describes self-trapping for all T down to T, = a,/ 
6<G.  

Furthermore, the functional dependences ( T  ) is general 
in nature at low temperatures. I t  is determined exclusively 
by the type of phonons and by the particular type of exciton- 
phonon interaction. This fact becomes particularly clear 
when we calculate the truncated action So through the direct 
use of the Maupertuis principle. Since the arguments for op- 
tical and acoustic phonons are slightly different, we will dis- 
cuss these two cases separately. 

We begin with dispersion-free optical phonons. In  this 
case the temperature dependence of S is determined by the 
region of free tunneling, in which we have, according to (36), 

1 
L - [ Q ( r r ) ] = -  mO2S d r Q Z ( r i ) .  

2 
(79) 

Since there is no dispersion, phonons with all q oscillate in 
synchronism, and since they have a common stopping point 
at  the time r = p /2 their phases are also the same. We can 
thus factorize Q ( r r )  as Q ( r r )  = @(r)O (7) and we find that the 
free tunneling occurs as it does in a single-mode system with 
the coordinate Q (T). If we choose @(r) to be normalized, we 
find from (79) 

L' ( Q )  = (002Q2/2, SO ( E )  = (UO'Q' - 2~)'" dQ.  (80) 
( ze) ' f r /w,  

Although Q, refers to the time of the emergence from under 
the barrier (T = 0), where expression (79) has become appli- 
cable, and the motion is no longer a single-mode motion, 
there is no effect on the results, since at small values of a the 
behavior So(&) is determined by the region QgQ,: 

Calculating the tunneling time ( - dS,/aa) and equating it to 
p /2, we find 

Substituting (82) into (8 1) and (2), we find 

This expression leads to the exponential behavior (4) forS ( T  ). 
The second term in (41), derived previously, is also equal to 
a( fi )/ao, as can be seen with the help of (28). Since the tem- 
perature dependence in (83) is determined exclusively by the 
region of free motion, the exciton-phonon interaction does 
not appear explicitly in (83), and this expression is equally 
valid for excitons, charge carriers, and polar and nonpolar 
phonons. 

For acoustic phonons, the problem is essentially a mul- 
timode problem, but the low-temperature behavior of S can 
nevertheless be found since it is determined by long-wave 
phonons. Such phonons have essentially no effect on the 
shape of the exciton wave function $, so that the potential 
energy associated with the mode q is 

f r 
U q  = -* u , ' Q , Q - ~ + ~ . Q ~  J dr I$' ( r )  exp ( i q r )  . (84) 

In the long-wave approximation, the latter integral reduces 
to a normalization integral at r < r, and vanishes at r > 7,. 

Since r o e  /2, the quantity Q, manages to change very little 
in the region r < r,, and we have 

g ( 0 )  

( 0 )  - 80 ( ~ q r  Qcx ) - dQCl (aq2Qq' - ? E ( ] ) .  ' - T O ~ ~ ~ ~ Q : P ) .  (85) 
( ? E ~ ) " z / w ~  

The two parameters here, Q r' and a, , must be found from a 
condition on the duration of the tunneling, aS,/aa, = - p / 
2, and from the presence of a stopping point at r = 0: 

P ,  = d S / d Q ,  =0, 

~ r e h [ o , Q : O '  / ( 2 ~ , ) " ' ]  =pmq /2 ,  (86) 

The first term in (87) is the momentum P, at  the exit from the 
region of free tunneling, and the second term is the momen- 
tum of the "impact" of the exciton on the mode q during the 
brief existence of a local level. Solving (86) and (87), and sub- 
stituting into (85) and (2), we find 

s, ( P )  =- ( t o Z y q 2 / m q )  (1+2*Vq). (88) 
Integration of the temperature contribution to q finally 
yields 
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For the deformation interaction the second term in (89) 
agrees with (68) and gives us a T law. 

Only a single parameter of the instanton-its duration 
7,-figures in expression (89). Consequently, regardless of 
which phonons form the instanton, the temperature contri- 
bution to the acoustic phonons is always described by 
expression (89). In particular, in those piezoelectric materi- 
als in which the self-trapping of charge carriers results from 
interaction with other groups of phonons, the low-tempera- 
ture behavior of S is determined by the interaction with pie- 
zoelectric-effect acoustic phonons. Since yq remains finite as 
q -+ 0, the latter phonons give rise to a T law. 

It follows in particular that calculations based on the 
introduction of an "interaction m ~ d e " ~ ' . ' ~  are incapable in 
principle of describing the functional dependence w = w(T ). 
The dependence S, ( T )  is determined by phonons with ther- 
mal wavelengths and is totally independent of those (shorter- 
wave) phonons which are responsible for the self-trapping at 
T = 0. The process is thus essentially a multimode process, 
and even if we do speak in terms of an "interaction mode" 
this mode must have at least two spatial scales, which must 
be redetermined at each temperature. In contrast, it is not 
possible to introduce a universal interaction mode, indepen- 
dent of the temperature. An analogous situation arises in a 
description of long-wave absorption. As was pointed out in 
Ref. 4, the description of the many-phonon absorption of 
light by means of a universal interaction mode which was 
proposed by Sumi and T o y ~ z a w a ~ ~  leads to an incorrect ex- 
ponential dependence of the absorption coefficient on the 
frequency of the light. It can thus be concluded that the ap- 
parent simplification which results from the introduction of 
an interaction mode is actually illusory, since in order to 
obtain correct results it is necessary to assume that the struc- 
ture of this mode is unknown at the outset and to determine 
it in a self-consistent way. 

Since we still lack a complete theory for the tempera- 
ture dependence of the coefficient of the exponential func- 
tion, we will simply discuss the experimental data, and this 
only very briefly. T o y ~ z a w a ~ ~  lists the crystals in which self- 
trapping has been observed and classifies them. In all the 
experimental studies the region in which w grow rapidly 
with the temperature is described by an exponential function 
w(T) a exp( - AE/T). According to recent data, for exam- 
ple, AE is 30 and 18 meV in KI and RbI, r e~pec t i ve l~ .~  If we 
assume that the interaction with acoustic phonons is domi- 
nant near the maximum of their density ( -  7.5 meV), and if 
we identify AE with W, we find W/G z 3, so that the adiaba- 
tic approximation is near the limit of its applicability. The 
temperature at which the exponential region begins corre- 
sponds to ~ 3 0  K z 2 . 5  meV~i;,/3.  The estimate Tc/i;, 
zz 1/3 does not contradict the results of 444 and 6. In these 
crystals the half-width of the exciton band is E, ~0.3-0.35 
eV, so that we have W/E, < 0.1. The small value of this ratio 
may be taken as an indication that the continuum approxi- 
mation is valid in the barrier region, since W/E, =: AP2. We 
then find A z 3-4. Analysis of data on inert gas crystals leads 
to similar conclusions. For Xe the activation energy is3' 
W=: 60 meV, so that for i;, ~ 0 . 5 0 ,  z 10 meV we would have 

W/G ,- 6. On the other hand, we have Tc -5 50 K and thus 
Tc /o, ~ 0 . 2 5 ,  while we have W/E, z 60/500 ~ 0 . 1 .  Fugol' 
and Tarasova's estimate3' of the parameters on the basis of 
experimental data showed that A increases progressively 
(from about 2 to 7)  as we go from Xe to Ne. We can therefore 
expect the continuum approximation to yield reasonable es- 
timates for Wand Y I ( T  = 0). A systematic calculation of W 
and S,, however, in the continuum appproximation, would 
require a significantly more comprehensive set of crystal pa- 
rameters than is presently available. The reason is the degen- 
eracy of the bands, which causes an increase in the total 
number of parameters (effective masses, strain energies, etc.) 
and a spontaneous lowering of the symmetry of the barrier.32 
The same effect results from the dependence of the coupling 
constants yq on the exciton momentum k (Ref. 26). The exis- 
tence of self-trapping quasimolecule states is testimony in 
favor of this dependence. 

Roick et ~ 1 . ~  have studied the low-temperature ( T <  40 
K )  behavior w(T) for Xe. They found that at these tempera- 
tures the behavior w(T) is not exponential. What evidence is 
available at this point suggests that this behavior is deter- 
mined by the coefficient of the exponential function. 

We conclude with a look at data on defect formation. 
That defect formation is possible during the self-trapping 
stage was first pointed out in Ref. 22, where a specific mecha- 
nism for the defect formation was considered: the formation 
and growth of an exciton cavity under the influence of the 
quantum pressure of the electron wave function $ on the 
lattice. The appearance of fast atoms in the course of the self- 
trapping ($4) suggests a mechanism in addition to the con- 
ventional mechanisms for defect formation33 and the mecha- 
nism of Ref. 22. This other mechanism would operate in an 
early stage of the relaxation of the self-trapped exciton, spe- 
cifically, at times on the order of w -I. This mechanism may 
be seen both in substances in which cavities do not form and 
in the initial stage of the formation of a "large" exciton cav- 
ity,22,34 i.e., a cavity from which several atoms have been 
removed. Defect formation in the course of exciton self-trap- 
ping in Ar has recently been detected from measurements of 
exciton-stimulated desorption by Coletti et 

"Other extremal paths may also exist, but path A or I would apparently 
always correspond to the least action. 

''This possibility was established in Ref. 22 on the basis of completely 
different considerations. 

3'The finite slope of the curves at the end extrema in Fig. 5 would seem at 
first glance to contradict the assertion, proved in Subsection 3A, that the 
action is stationary for the static solution. The contradiction is removed 
by a suitable change in the parametrization near T, = bw,/2. 
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