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It is shown that, in the case of a superconducting film deposited on a substrate in which thermal 
conduction is due to phonons (a dielectric or a superconductor with T, )T), the contribution of 
phonon drag to the thermoelectric current of normal excitations may exceed the diffusion contri- 
bution by several orders of magnitude. Specific surface thermoelectric effects in a superconductor 
with T, )Tin a magnetic field, which are due to the presence of quasiparticles localized near the 
surface, are discussed. In particular, a description is given of a surface analog of an effect investi- 
gated previously for the spatially homogeneous situation in thin films. The effect consists of the 
appearance of an imbalance in the population of the excitation spectrum branches and of a gauge- 
invariant potential proportional to us V T. Thermoelectric effects near thermal contacts between 
the superconductor and a medium, whose thermal conductivity is due to phonons, are investigat- 
ed. The phonon flux introduced into the specimen under these conditions produces a considerable 
drag effect in the contact region. It is shown that, when the thermally conducting medium is a 
superconductor with T, ) T  and both superconductors form a closed thermoelectric circuit, the 
contact contribution to the "thermoelectric" magnetic flux @ , may exceed the bulk diffusion 
contribution by two or three orders of magnitude. It is pointed out that these conclusions may be 
relevant for real thermoelectric experiments in which values of @, are often found to exceed 
theoretical estimates by several orders of magnitude. 

There has been considerable interest in recent years in 
thermoelectric phenomena in superconductors whose spe- 
cific feature (first noted by Ginzburgl) is the balancing of the 
thermoelectric current of normal excitations by the current 
of the superconducting condensate. The first step was to exa- 
mine the appearance of the unquantized thermoelectric ad- 
dition to the magnetic flux threading the closed supercon- 
ducting thermoelectric ring. This effect was investigated in 
both theory (see, for example, Refs. 2 and 3 and the review 
given in Ref. 4) and It was shown subsequent- 
ly, both theoretically and experimentally, that, when a tem- 
perature gradient and a superconducting current are simul- 
taneously present in superconducting films, a difference is 
established between the populations of the electron-like and 
hole-like branches of the quasiparticle spectrum, which 
gives rise to the appearance of a thermoelectric contribution 
U ,  to the gauge-invariant potential.9-12 At the same time, 
whereas measurements of U ,  showed adequate agreement 
with the theory, several experimentsc8 concerned with the 
thermoelectric addition to the magnetic flux cP . showed the 
presence of temperature-dependent magnetic fluxes that ex- 
ceeded theoretical estimates2s3 by several orders of magni- 
tude. The temperature dependence of these fluxes was much 
more pronounced than predicted by the theory.' One possi- 
ble reason for this behavior is the presence of a masking "re- 
distribution effect" due to the temperature dependence of 
the depth of penetration of the magnetic field and the sensi- 
tivity to "background" magnetic fields. This was pointed out 
in Refs. 13 and 14. However, it would appear that not all the 
observed anomalies are due to this effect. For example, the 
authors of Ref. 8 reported control measurements, made on a 
homogeneous superconducting circuit, in which no evidence 

was found for an appreciable contribution of the redistribu- 
tion effects. The overall picture of phenomena occurring in a 
real thermoelectric circuit is thus still not entirely clear. 
Further studies of thermoelectric phenomena in supercon- 
ductors would therefore appear to be important from two 
points of view. Firstly, it would be desirable to have new 
experiments capable of yielding additional information on 
the transport properties of superconductors. Secondly, it 
would be desirable to perform an analysis of the wide range 
of phenomena that can be observed in real thermoelectric 
experiments. 

In a previous paper,14 we drew attention to the fact that 
the electrodynamics and kinetics of superconductors sug- 
gest that, in some cases, the surface region may play an im- 
portant role in thermoelectric effects. In particular, thermo- 
electric currents localized for one reason or another in the 
surface region may provide a contribution of the same order 
as that due to bulk currents of the same density. However, 
Ref. 14 was largely restricted to the analysis of thermoelec- 
tric currents associated with the motion of the condensate 
(and proportional to v, V T, where u, is the superfluid veloc- 
ity). It was assumed that the corresponding addition to the 
distribution function relaxes only on phonons; it was subse- 
quently shown15 that, in reality, this addition relaxed on im- 
purities and was therefore negligible. In this paper, we shall 
examine a different class of surface phenomena due to the 
drag of quasiparticles by phonons. We shall show that this 
drag may often give rise to an anomalously large contribu- 
tion to the thermoelectric effect in surface and contact re- 
gions. 

The influence of drag processes on thermoelectric ef- 
fects in superconductors was first investigated by Gurevich 
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and Kryl~v. '~ ,"  They showed that the contribution of 
phonon drag to the thermoelectric current may be of the 
same order as or greater than the usual "diffusion" contribu- 
tion. The size of the effect was determined, in particular, by 
the fact that the excitation-dragging phonon flux was limited 
by scattering on the excitations. We note, however, that this 
limitation (unavoidable in the spatially homogeneous situa- 
tion examined in Refs. 16 and 17) may be lifted when the 
quasiparticles occupy a relatively small volume as compared 
with the entire volume in which the phonons propagate, and 
when the size of the corresponding region is smaller than the 
phonon mean free path I,, . This situation may occur, in par- 
ticular, when the semiconducting film of thickness d < I,, 
(here, we have in mind values of I,, characteristic for a met- 
al) is deposited on a dielectric substrate. The nonequilibrium 
phonon distribution function in the dielectric is determined 
by the relaxation time T,, , which is much greater than the 
corresponding time in the metal. Since, for temperatures less 
than or of order Tc , the phonon-phonon processes are "fro- 
zen out," the relaxation time T ~ ,  in a reasonably clean crys- 
tal dielectric is controlled by scattering by the boundaries, 
and may reach values of 10-6-10-5 s. If the acoustic contact 
between the film and substrate is good enough, and the coef- 
ficient k representing the influx of phonons into the films is 
not too small, the phonons entering the film produce a sub- 
stantial drag effect. We shall show that, when k- 1, the ratio 
between the corresponding contribution to the thermoelec- 
tric current and the diffusion contribution is determined by 
the parameter T,, /T, -,, % 1, where T, - ph is the escape re- 
laxation time of electrons on phonons. 

We note that Zavaritskii and Zavaritskii, in their inter- 
esting paper," were the first to emphasize the contribution 
of drag in the situation where electrons occupied a small 
portion of the volume of the specimen. These authors1' in- 
vestigated the thermoelectric effects in quasi-two-dimen- 
sional n-type semiconducting systems on cleavage surfaces 
and in Ge bicrystals. Our treatment is essentially analogous 
to that put forward in Ref. 18. 

It is obvious that, in the system that we are considering, 
the role of the dielectric can be played by a superconductor 
whose Tc is appreciably lower than the Tc of the film. Quasi- 
particle excitations in this superconductor are then "frozen 
out" and the phonon mean free path is large. It is probable 
that it is easier to achieve good acoustic contact with the film 
in this system. An interesting and unusual physical picture 
can be realized in a massive homogeneous superconductor 
when Tc )Twhen a superconducting current is flowing over 
its surface. It is well known that, in this case, there is a group 
of quasiparticles localized in the surface layer, due to the 
additional term pnv, in the total quasiparticle energy (p is the 
quasimomentum) and, forpus% T, the density of these parti- 
cles is exponentially large in comparison with the corre- 
sponding value within the body of the specimen. In this situ- 
ation, we are dealing with a peculiar layered system which, 
in many respects, is analogous to the above dielectric-super- 
conductor system and, as will be shown later, it also exhibits 
the anomalous contribution of the drag effect. It turns out 
that the thermoelectric current of surface particles is then 
very sensitive to the nature of surface scattering, and the 

main contribution is provided by a small group of particles 
moving almost parallel to the surface. The associated ther- 
moelectric magnetic flux is appreciable and accessible, at 
least in principle, to experimental observation. However, in 
practice, this effect appears to be difficult to observe because 
of the presence of the masking redistribution effect.I3,l4 

We shall therefore also consider another surface ther- 
moelectric effect, namely, branch imbalance in the quasipar- 
ticle spectrum under the influence of a temperature gradient, 
which is an extension of the effect examined in Refs. 9-12 to 
the case of a bulk superconductor. We shall show that, in this 
situation, the surface assumes a certain potential U ,  rela- 
tive to distant portions of the volume, which can be mea- 
sured by a method analogous to that described in Refs. 9 and 
1 1. The potential U is not very sensitive (in contrast to @ .) 
to the nature of surface scattering (although "glancing" par- 
ticles again play the leading role in this case). As will be seen, 
the contribution of phonon drag to U can be at least com- 
parable with the diffusion contribution. It is probable that 
these contributions can be separated because they have a 
different temperature dependence and because of a peculiar 
size effect (due to the dependence of T ~ ,  on the size of the 
specimen at low enough temperatures). The important point 
is that measurement of U ,  will enable us to investigate the 
kinetics of surface quasiparticles in a superconductor placed 
in a magnetic field, thus avoiding the influence of the mask- 
ing effect.13.14 

It is well known (see, for example, Ref. 19) that, if a 
temperature difference is established between the ends of a 
metal specimen of macroscopic size, the quasiequilibrium 
distribution in the electron and phonon systems (corre- 
sponding to a temperature gradient V To common to elec- 
trons and phonons) is established only at a sufficient distance 
from the thermal contact (exceeding the characteristic elec- 
tron diffusion length I,, for scattering on phonons). In the 
contact region, on the other hand, this distribution is essen- 
tially of the nonequilibrium type. The point is that, since the 
electron thermal conductivity tt, of a metal that is not too 
"dirty" is much greater than the phonon conductivity tt,,. 
electrons are largely responsible for the transfer of heat 
"within the body" of the specimen. However, the thermal 
flux due to electrons on the boundary of the specimen is zero, 
so that there is a contact region of finite size (of the order of 
the phonon mean free path I,, in the metal) in which phon- 
ons are responsible for the transfer of heat. Since x, Ntt , , ,  
the phonon flux in this region is much greater than in the 
quasiequilibrium region. On the other hand, the effective 
phonon temperature difference A Tph over the length I,, is 
of order 

and may be comparable with (or even greater than) the elec- 
tron temperature difference across the entire specimen. 
These considerations are also valid for a superconductor 
when T- T,. It is natural to assume that a high contact 
phonon flux will produce an appreciable drag effect. How- 
ever, in the case of thermal contact with a dielectric, the 
condition that the normal current on the specimen boundary 
must be zero ensures that, as we shall see, the drag current 
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can only reach values of the order of the "bulk" thermoelec- 
tric current of diffusion origin. However, a different situa- 
tion obtains when the specimen is in contact with a super- 
conductor with much higher T, = T,,, . On the one hand, 
the thermal conductivity in the second superconductor may 
be due to phonons if the quasiparticle excitations at the cor- 
responding temperature are "frozen out" so that the above 
considerations become valid in this situation as well. On the 
other hand, since, for T(A,, , practically all the quasiparti- 
cles in the first superconductor undergo Andreev reflection 
by the separation boundary between the two superconduc- 
tors, the boundary condition on this boundary demands that 
there be a branch imbalance in the excitation spectrum1' and 
not that the normal quasiparticle current must be zero. We 
shall show, on the basis of the above considerations, that the 
contact drag current of normal excitations can be quite large 
in this case, so that its contribution to the thermoelectric 
effect may appreciably exceed the contribution of the "bulk" 
thermoelectric current. Since, in practical thermoelectric 
experiments, the superconductors making up the thermo- 
electric circuit usually have very different values of Tc (the 
"active" pure superconductor has the lower Tc ), it may well 
turn out that the situation that we are considering will be 
relevant to such experiments. 

1. DRAG EFFECT IN A SUPERCONDUCTING FILM 
DEPOSITED ON A DIELECTRIC OR SUPERCONDUCTOR 
WITH HIGHER T, 

Let us suppose that a superconducting film of thickness 
d 5 I,, - fiv,/ T (I,, is the phonon mean free path in the cor- 
responding metal for T- T, ) is deposited on a substrate in 
the form of a crystalline dielectric. Suppose, further, that a 
temperature gradient2' V T is established in the substrate 
along the surface. The phonon distribution function in the 
dielectric then contains the following contribution, which is 
odd in the phonon momenta +iq: 

where w is the velocity of sound and No is the equilibrium 
phonon distribution function. For simplicity, we shall ne- 
glect the difference between the elastic parameters of film 
and substrate, and will also assume that a perfect acoustic 
contact is established between the two, i.e., we shall suppose 
that the phonon transmission coefficient kt between sub- 
strate and film is equal to unity (for kt < 1, our subsequent 
estimates must be multiplied by k ,  ). Under these conditions, 
the order of magnitude of the phonon distribution function 
in the film is again given by (1). [Strictly speaking, on the 
boundary with vacuum, N, differs from that given by (1) 
because the reflection of phonons by this boundary is not 
purely specular; however, this difference does not affect the 
order of magnitude of the quantity given by (1) nor the struc- 
ture of this expression, and we shall neglect it.] Substituting 
(1) into the quasiparticle-phonon collision integral, we ob- 
tain the following expression for the addition nl to the quasi- 
particle distribution function in the film (see Appendix): 

where E = (6 + A2)1'2, = E, - p,  Ep is the electron dis- 
persion law in the normal state, p is the electron chemical 
potential, T~~ is the electron relaxation time on impurities, 
and, for T -  T, , we have 

Hence, it is clear that the ratio of the contribution of drag 
processes to the thermoelectric current j, of normal excita- 
tions to the corresponding diffusion contribution [deter- 
mined by the first term on the left of (211 is measured by 

In practice, (4) must be multiplied by the phonon transmis- 
sion coefficient k t .  However, since T /T= T,ph ) 1 (for exam- 
ple, for T-4 K, -,, -h@b/F3 - s, T ~ , ,  -L  / 
w - s, T ~ ,  / re - p h  - lo4), the phonons in the substrate 
may be expected to have an appreciable influence on the 
thermoelectric effect even when the acoustic contact is not 
perfect. In view of the foregoing, we find that, when T- Tc , 

where 7 is the thermoelectric coefficient of the metal in the 
normal state. Thus, when the dielectric substrate is not too 
"dirty," j, exhibits a peculiar size effect. 

As noted above, the substrate in the above situation can 
also be a superconductor with a high T, .  If we neglect the 
scattering of phonons by defects, we then have 

It is clear that, when the thermoelectric magnetic flux is 
measured, the contacts with the second component of the 
thermoelectric ring must be placed on the free surface of the 
film.3' In accordance with the calculations reported in Ref. 
14, the observed value of @ is then exclusively determined 
by the surface current density of normal excitations (at 
depths of the order of the magnetic field penetration deptha ) 
and is therefore insensitive to the electrodynamic properties 
of the system due to the presence of the superconducting 
substrate. 

2. THERMOELECTRIC EFFECTS IN A MASSIVE 
SUPERCONDUCTOR IN THE PRESENCE OF A 
SUPERCONDUCTINGCURRENT 

Consider a massive superconductor carrying a super- 
conducting current on its surface (for example, due to 
Meissner screening) and let us suppose that 

Since the total quasiparticle energy is 2. = E + p v , ,  the sur- 
face layer (whose thickness is determined by the rate at 
which the magnetic field decreases) contains a localized 
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group of quasiparticles which are reflected from the surface 
of the specimen in the usual way and from the v, profile in 
the Andreev manner (see, for example, Refs. 20 and 14 and 
21). Let us investigate the effect of phonon drag on this group 
of particles. In view of (6), the characteristic distance t of the 
trapped particles from the surface is given by t-( T/p,u;), 
where u; = us (z = O) ,  z is measured from the surface along 
the inward normal to the superconductor, and it is clear that 
Z<Iph. Hence, the phonon distribution function is given by 
(I) ,  where 

and L is the size of the specimen. To calculate the thermo- 
electric current j, and the thermoelectric potential U, , we 
use the kinetic equation given in Ref. 15, i.e., we shall assume 
the validity of the classical description of the trapped parti- 
cles, the condition for which can be written in the form (cf. 
Ref. 21) 

where & is the characteristic value of the corresponding ve- 
locity component. In general, when (6) is satisfied, we obtain 
the requirement T 3 /A(PF~s  )2>(J /A )2, wherecis the coher- 
ence length. This condition is relatively rigid and corre- 
sponds to a pure type I1 superconductor. However, on the 
one hand, the approach based on the kinetic equation pro- 
vides us with a very clear physical interpretation; on the oth- 
er hand, we shall see that the resulting qualitative conclu- 
sions are valid irrespective of whether (7) is satisfied. This is 
probably also true for the estimated orders of magnitude of 
the various quantities in which we are interested. We note 
that (7) is much more readily satisfied for "glancing" parti- 
cles with low u,, which, as we shall see, provide the main 
contribution to the effects that we are considering. For ex- 
ample, when the "thermoelectric" potential U ,  is calculat- 
ed, the significant values are u, - v, ( T /p ,  us )2(il /I, ), where 
I, is the electron mean free path in the normal state, so that 
(7) reduces to @,us )2/ TA>(< /I, )2. We can therefore write 

d dn,' n1 

where 7% is the effective relaxation time of quasiparticles on 
impurities, which depends on 16 / and u, . In the present case, 

1 1 IEI T ----- 
m T i m  E PFV,' ' 

The contribution of phonon drag in this case has the form 
(see Appendix) 

d2no k 
-mw2--) de2 (TA)'" 

The solution of the transport equation (8) can be expressed in 

terms of the integral over the classical trajectory of the parti- 
cle: 

t t 

The constant of integration C depends on the boundary con- 
ditions on the surface. For specular reflection, C = - a. 

Motion over trajectories is then periodic, with each period 
containing two reflections from the us profile (which change 
the sign of { without changing the direction and magnitude 
of momentum to within T /p)  and two reflections from the 
surface (which involve a change in the sign of u, ). The period 
Tof the trajectory is given by 

where z* is the coordinate of the turning point on the us 
profile. 

In the general case, the boundary condition is 

where the parameter p * represents specular reflection of 
the quasiparticles and, generally speaking, may be different 
from the corresponding parameter p in the normal metal. It 
is clear, however, that p *> p. When 1 - p  (1 (this is valid 
for a group of glancing particles which, as we shall see, pro- 
vide the main contribution), we find using (1  1) and the peri- 
odic nature of the trajectories that 

1 x exp (-- ( [- + ln  p* s ( t "  ti)] d t " ] ,  (12) 
t <  TTm 1 

where the time ti correspond to reflections from the surface. 
Let us first calculate the thermoelectric current due to 

surface particles. It is readily seen that, if we use the estimate 
given by (41, the main contribution is due to drag effects and 
only the part I;,, which is even in 6 is important. As a 
result, and using the fact that F ( t  ') has a constant sign, we 
find from (12) that 

2 2' 
nl+-~-min{-  e - p h  9 Tim'} 

I-@' 1 u,I&I / E  1 

(the bar represents averaging over the period). The drag cur- 
rent can be expressed directly in terms of nl: 

It is clear from (13) that, for sufficiently pure specimens for 
which nl+ is controlled by the diffuseness of reflection from 
the surface, integration over p produces a divergence for 
small v, , which emphasizes the contribution of glancing par- 
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ticles. It is clear from (12) that this divergence is cut off for 

We shall also take into account the fact that the specular 
parameter p * will, in general, depend on the angle of inci- 
dence of a particle, so that the diffuseness measure for parti- 
cles with small 9- is smaller than the mean.4' We shall not 
examine in detail the characteristics of surface scattering 
(which depend on the particular properties of the surface) 
but, instead, will introduce the phenomenological relation 
(1 - p *) = (1 - p,) (v, /up)". In view of the foregoing, and 
using (9), we find that the current density is given by 

where Y, is the density of states on the Fermi surface and the 
function F ( z )  determines the reduction in the current j, 
along the inward normal to the specimen over distances 
Z-R T/(pFv, ). In accordance with (14), the surface current 
of normal excitations, j,, in an ordinary thermoelectric cir- 
cuit corresponds to the thermoelectric magnetic flux 

where 6 Tis the temperature difference. We note that, in this 
situation, it is easier to establish large temperature gradients 
because of the low thermal conductivity of the superconduc- 
tor for T4 T, . 

A more stringent limitation on possible measurements 
of @ is related to the fact that such measurements reduce 
to the determination of the temperature dependence of the 
corresponding magnetic flux. At the same time, when an 
external magnetic field is present (due to the presence of v, ), 
there is also a temperature-dependent contribution A@ to 
the flux in the aperture of the thermoelectric ring, due to the 
trivial dependence R ( T )  (redistribution effect13.14). In our 
case, T( p,vs (A and, by analogy with Ref. 14, we have 

where R is a characteristic linear dimension of the circuit. If 
we substitute T-2 K, re-,, - s, T /  Tc - 1/4, 

pFv, - A/2, 1 - p, - 1/2, a = 2 (as in the theory given in 
Ref. 22), and rim - 10-'s, we find from (14)-(16) that @ ./ 
A@-0.01 (whereas @ -0.1@, for T- 1). Thus, despite the 
fact that @ is relatively large, the effect appears to be diffi- 
cult to observe because of the considerable masking effect. It 

is, nevertheless, observable because of the different depen- 
dence of these effects on us, V T, and the geometry of the 
experiment. In principle, these differences enable us to com- 
pensate the redistribution effect in particular situations (see 
Ref. 14 for further details). 

Comparison of the contribution due to the surface ther- 
moelectric drag effect with the bulk phenomenon (due to the 
presence of quasiparticles within the bulk of the specimen, 
the number of which is exponentially small) shows that the 
surface effect predominates when 

We now turn to the analysis of the part of the function 
n1 which is odd in{, which describes the branch imbalance in 
the quasiparticle spectrum and is due to the appearance of 
the gauge-invariant potential U: 

The determination of n l -  on the basis of (12) is complicated 
to some extent by the fact that the integrand has an alternat- 
ing sign. However, simple rearrangement (see Appendix) 
leads to the following estimate for the part of the function 
nl- which is even in v, : 

1 z" sign E 
-[ni- (v,>O) +nl- (v,<O) ] ( ,SO- 

2 2 @/&) U Z 2 ~ i r n *  

The function [nl-(v, > 0) + nl-(u, <0)] decreases mono- 
tonically with distance from the surface, and vanishes at the 
point z*. It is clear that, as before, integration in (18) will lead 
to a divergence in the region of low v, , which emphasizes the 
contribution of glancing particles. This divergence is cut off 
when 

Using this result and integrating (18), we finally obtain 

where C- 1. The second term in brackets is due to the diffu- 
sion thermoelectric effect, whereas the first is due to the drag 
effect. It is clear that the relative importance of the drag 
effect is determined by the parameter (rph /re - p h  ) ( r n ~ ~ / ~ )  
(A/ Z')'I2, which may be of order unity for low enough tem- 
peratures (or, more precisely, high enough Tc ), for which the 
phonon mean free path is restricted by the dimensions of the 
specimen. Since 

the contribution of drag can be isolated from the diffusion 
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background either by exploiting the difference in the expo- 
nential dependence on T or the size effect. 

We now note one further important point. The poten- 
tial U ,  is measured with the aid of a tunnel S-N contact by 
the balance method, i.e., a determination is made of the ex- 
ternal bias voltage V that must be applied to the contact to 
stop the ~urrent .~."  This balance voltage is related to U ,  by 
V = U ,/g, where g is the normalized conductivity of the 
contact (i.e., the ratio of the conductivity of the S-N contact 
to the conductivity of the N-N contact). Since g decreases 
exponentially with decreasing T,  this balances the corre- 
sponding exponential dependence of U .  (although the sen- 
sitivity of the null-detecting galvanometer must, of course, 
increase with decreasing T ). 

We now consider the above surface effect for low us for 
which (p,v,)( T.5' The contribution of trapped particles is 
then small6' and we obtain the following expression for the 
function n' - : 

where, in this case, the expression for .F is the first-order 
term in the expansion of the right-hand side of (8) in powers 
ofpus/ T,  since it is only in this order that we have a contri- 
bution that is even in the velocity. Finally, for I ,  = v,ri, )A 
we have 

It follows from this expression that the magnitude of the 
surface effect due to the diffusion contribution is of the same 
order as the bulk effect in the films examined in Refs. 9-12 if 
we put rim -A /up. 

3. THERMOELECTRIC EFFECTS IN THE NEIGHBORHOOD OF 
THE THERMAL CONTACT WlTH DIELECTRIC OR 
SUPERCONDUCTOR WlTH HIGH T, 

Consider a high-purity superconductor at T - T , .  It 
occupies the half-spacex > 0 and is in thermal contact on the 
x = 0 plane with a material whose thermal conductivity is 
due to phonons (we shall label it with subscript 11), i.e., a 
dielectric or superconductor with T,,, ) T.  We shall suppose 
that heat is introduced into the superconductor from medi- 
um I1 so that, well away from the contact, in the region of 
quasilocal equilibrium between the electron and phonon sys- 
tems, there is a temperature gradient V To + X .  This gradi- 
ent will be assumed to be low enough so that, at any rate, 
V Told ( T. The electron and phonon distribution functions 
in the neighborhood of the contact will be written in the form 

n, ( 5 )  =no ( T o )  fn,' ( x )  , N q  ( x )  =NO ( T O )  +Nqi ( x ) ,  

where TO = T :  + (V Tab. To describe the nonequilibrium 
distribution in the neighborhood of the contact, we turn to 
the transport equations for the electrons and phonons, lin- 
earized in the nonequilibrium increments ni and N :  . 

The transport equation for the phonons is 

The first term on the right-hand side describes the absorp- 
tion of phonons by equilibrium quasiparticles, and the sec- 
ond, the contribution of the nonequilibrium addition n:. It 
will be clear later that N ' -(a To / T ) ( 1  ;/Iph )NO, -and 
n15(V T O /  ~)l~n,[sothat?~~-.(n~)5.~;~ (V TO/ T ) l d N O ] .  
Since I ,  ) I p h ,  we shall confine our attention to the solution of 
the homogeneous equation (denoting it by N I ) ,  which en- 
sures that the boundary conditions are satisfied and de- 
scribes the transfer of heat by phonons near the contact: 

where 8 is the Heaviside function. In general, energy conser- 
vation yields 

The detailed form of the boundary condition for N, depends 
both on the phonon distribution function in medium I1 and 
on the frequency and angular dependence of the phonon 
transmission coefficient k, of the boundary. We shall not 
analyze this here, and confine our attention to simple esti- 
mates. We shall suppose that the boundary condition for N :  
corresponds to the frequency dependence 

i.e., formally, it has the same form as when there is a discon- 
tinuity in the phonon temperature at the contact (which oc- 
curs for k, -t 0): 

Nqol=[No(To+ATph) -NO (To) 10 (qx>O) 

This description is valid, in particular, if the phonon distri- 
bution in medium I1 may be looked upon as being in local 
equilibrium (with temperature depending on position), if the 
elastic scattering of phonons within it (for example, by the 
boundaries) predominates over inelastic scattering, and if 
the frequency dependence of the diffusion coefficient Dph ,, 
(a) and the angular and frequency dependence of k, can be 
neglected. Condition (25) then corresponds to the "mating" 
of the phonon flux of given frequency in medium 11, 
j, = Dph V N I I  (a) = Dph V Tph ciN,,/d T, with the flux in the 
metal at x = 0, j, - k, N io w,, if we take A Tph e V  Tph Dp,/ 
wk,. We note that, since A Tph - V Tph I,, ,, , there is no con- 
tradiction with the mating condition for the local-equilibri- 
um parts of the distribution function at x = 0, since the vari- 
ation in N,,,, over distances - I p h  cannot be allowed for 
within the framework of the hydrodynamic approximation. 
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Condition (25) is convenient because it substantially facili- 
tates the analysis of the collision operator. It will be seen 
later that estimates obtained in this way are also valid for 
more general boundary conditions. We shall also use the fact 
that the main contribution is due to phonons with energies 
fiw - T, and that the contribution of low-energy phonons is 
small in comparison with the phase volume." We shall thus 
introduce certain effective values of rph and I,, . 

We now turn to the equation for the electrons. Substi- 
tuting N in the electron-phonon collision integral (see Ap- 
pendix) and separating out the contributions which are even 
and odd in p, , we obtain the following estimates: 

We shall consider the case of sufficiently pure specimens, so 
that I,, (I, 5 I,. Since the scale of variation in j +, - is 
much smaller than I,, we shall reduce the action to some 
effective boundary conditions for the hydrodynamic equa- 
tions. We shall define the x = x ,  plane so that I,, (x,(l,. 
For x >x,,  the transport equation, which does not contain 
the small-scale inhomogeneity, will reduce to the hydrody- 
namic equation for the parts of the distribution function 
which are even and odd in 6: 

1 - div j, = div (-D Vnel+) 
Ye 

div j,=div ( - o V U )  =-Uv,/tb, (27b) 

where 

and T, is the relaxation time of the branch imbalance in the 
quasiparticle spectrum. To derive the boundary conditions 
for (27), we solve the transport equation for O(x(xl8': 

E 1 v- Vnt=- (P++T- )  - -(ni-<nl>) 
8 Tim 

1 
- -<nl>--l',-ph(<nl>+), (28) 

zb 

where angle brackets represent averaging over the surface 
with given 6, and ( ) + and ( ) - represent, respectively, the 6- 
even and 6-odd parts. The boundary condition at x = 0 cor- 
responds to the vanishing of the current j,. On the other 

hand, the conditions for j, and U depend on the form of the 
contact. For the contact with the dielectric [case (a)], 
j,,, = ,  = 0. For the contact with the superconductor with 
T,,, ) T [case (b)], the boundary condition corresponds to 
Andreev reflection. We then have U, ,  = ,  = 0. Simple inte- 
gration of (28) finally gives the following conditions for 
X = x,: 

where C,, C,, and C, are certain constants. It is clear that, in 
this particular situation [in which (25) and (26) are valid], the 
boundary condition forj, is satisfied if 

or, in other words, we have the local-equilibrium particle 
distribution for the entire region x > x,  in which thermal 
conductivity is of the electron type.9' We then obtain 

On the other hand, in the general case [when the expression 
for & ' is different from that given by (25)], the energy depen- 
dence of the current j, at x = x, may differ from the corre- 
sponding quasiequilibrium distribution (30). Local equilibri- 
um [corresponding to (30)] is then established over lengths - 1, [the estimate given by (3 I), which follows from the con- 
tinuity of the flux, will, of course, remain valid]. We note 
that, when the estimates given in the Appendix are taken 
into account, the function n, will decrease monotonically 
with increasing x even for x ,  <x 5 I,. 

Since we are assuming that V To Id( To, the coordinate 
dependence of the parameters re -,,, T,, can be neglected. 
Inclusion of the nonequilibrium addition may be important 
only for the evaluation of the superconducting parameters A 
and N, . It is then clear that, if the condition 

is also satisfied, the specific form of the distribution nl+ for 
x 5 1, can be ignored [having used (30) for all x]. If, on the 
other hand, V To Id 2 T, - T, estimates based on the use of 
(30) are valid, at any rate, to within an order of magnitude. 

Turning now to (27b), we note that T, may, in general, 
depend on x because of the dependence T, (A). Thus, if the 
imbalance relaxes on phonons, then r, -re -,, (A/  T, ) -  ', 
i.e., 

This dependence is unimportant if V To I, 5 T, - T. How- 
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ever, since it is weak, we shall neglect it in approximate esti- 
mates when we solve (27b) in the general case, as well. 

Using the boundary conditions (21) and the estimates 
given by (3 l), we find from the solution of (27b) that 

case (a) , (33a) 

case (b) , (33b) 

These two solutions determine the contribution of the 
phonon drag in the contact region to the thermoelectric ef- 
fect. It is clear that, in the case of thermal contact with a 
dielectric, this contribution can only be of the order of the 
contribution of the ordinary thermoelectric current. How- 
ever, in the case of contact with a high-Tc superconductor 
[case (b)], the "contact" contribution may substantially ex- 
ceed the "bulk" contribution. If we evaluate the thermoelec- 
tric addition to the magnetic flux by analogy with (2) for a 
ring consisting of superconductors, we find, using (33b) and 
(30), that the contribution due to the contact region is 

The ratio of this to the "bulk" contribution'" is of order 

where L is the characteristic length of the "active" supercon- 
ductor. It is clear that, for sufficiently "clean" specimens 
(rim - T, ), this ratio may be two or three orders of magnitude 
bigger than unity. 

As far as the temperature dependence (34) is concerned, 
we find that, since I, ( L, it is stronger than that predicted in 
Ref. 2. The transition from the (T, - To)-' law to the loga- 
rithmic law occurs not for Tc - To- V To L (as in the bulk 
case), but for T, - To-V To/, .lo' We note that a stronger 
dependence of the effect was observed in some experiments8 
than that predicted in Ref. 2. 

We now draw attention to an important point. If the 
temperatures of the "hot" and "cold" junctions are mea- 
sured by special probes attached to the specimen, and the 
heat flux into these probes is negligible, they will record the 
local-equilibrium phonon temperature which, for x > Iph , is 
equal to, or almost equal to, the electron temperature. This 
fixes the value of the gradient V To (or, more precisely, the 
temperature difference V To L ). In its turn, the instant of the 
superconducting transition determines the effective electron 
temperature in the region x < I,, . Consequently, such mea- 
surements yield no information about the phonon tempera- 
ture jump in the contact region A Tph - V To I,, x ,  /xph 
which, in general, may exceed the measured temperature 
difference - V To L. 

Our estimates thus show that analysis of the contact 
region is very important in experimental studies of the ther- 
moelectric magnetic flux in a superconducting circuit. In 

particular, if the "active" superconductor (with-T, - T) is 
clean enough, whereas the "passive" superconductor has an 
appreciably greater Tc and is not too clean (which corre- 
sponds to the typical experimental situation), the contribu- 
tion of contact effects may exceed the bulk contribution2" 
by several orders of magnitude, and may lead to a different 
temperature dependence of the magnetic flux. It seems that 
these estimates may be relevant for measurements of the ab- 
solute thermo-emf in circuits consisting of a normal metal 
and a superconductor (with Tc S T ) ,  in which case the "con- 
tact" drag current j, ensures that there is a corresponding 
contact contribution to the thermo-emf. 

I am indebted to Yu. M. Gal'perin for reading this pa- 
per in manuscript and for useful discussions, and to V. L. 
Gurevich and B. Z. Spivak for discussions and a number of 
valuable suggestions. 

APPENDIX 

1. Transformation of the electron-phonon collision operator 

Substituting the phonon distribution function (I),  
which is odd in q, into the standard expression for the elec- 
tron-phonon collision operator of a superconductor (see, for 
example, Ref. 15), we obtain 

EE' - A2 

where 

Consider, to begin with, the case where u, = 0, 
T -  Tc(A < T) .  

A. Processes in which the number of quasiparticles is 
conserved 

The coherence factor selects processes with sign 
({{ ') > 0. Conservation laws give 

(P. q )  =-hq2/2+om sign E , 

where the signs correspond to the sign of fia in the argument 
of the S function. The difference n,. - n, must now be ex- 
panded up to the second order in (&' - &), and it is then clear 
that the first order provides the contribution to the part of 
le-ph which is even in { and the second order to the odd 
part. The result is given by (3). 

B. Processes with the creation of pairs of excitations 

The coherence factor selects processes with sign 
((6 ') < 0. The conservation law gives 

(P. q) =-fiq2/2-om sign E ;  

both the even and odd contribu:ions are proportional to 
(I - n, - n,. ) > 0. It is clear that processes involving pair 
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creation contribute to I ;,, with the same sign and to the 
same order as processes with the conservation of particles. 
However, for simplicity, we do not write them out in (3)  
because they have no effect on the order of magnitude given 
by the final expressions. 

We now turn to the case T<T,, us # 0. Pair production 
can now be neglected and it is seen that, since +iq( p,, the 
pv,  terms in the arguments of the S functions will vanish. 
The coherence factor [ l  + ( { { I  - A')/&&'] goes over to the 
form -({ + { ')2/2A2 and, if we recall that 
E' - E- (6 - { 2)/2A, we find that the S functions trans- 
form to 

Bearing in mind the summation over sign { ', we can readily 
see that the even and odd parts provide the following combi- 
nations, respectively: 

The final result is given by (9). 

2. Expression for the function n f -  

Since we are only interested in the part which is even in 
v, , we note that the replacement u, + - u, is equivalent to 
dt --+ - dt from the point of view of motion over trajector- 
ies. In view of this, we transform (12) as follows: 

where 3 - is the odd (in { ) part of 3. It is clear that 

Using the periodicity properties of motion over trajectories, 
it may be shown that, on the one hand, the first-order term in 
the expansion of the exponential in the numerator again pro- 
vides no contribution to the integral and, on the other hand, 
the integral is identically equal to zero as rf --+ co . The non- 
zero terms in the expansion of the numerator are thus found 
to be proportional to (l/rim )' and (lnp * / r im) .  Next, if the 
point z(t ) corresponds to the turning point z* on the us pro- 
file, the numerator is an integral of the product of an even 
and an odd function, and is therefore zero. The integral in- 
creases monotonically as z shifts toward the surface, and (1 9) 
is obtained when z = 0. 

3. Analysis of I,,-. in the contact region 

Let us represent N (defined for q, > 0) as the sum of 
the even and odd (in q) parts defined for all q: 

Ni=Ri++Ni-; + = /  ( 1 )  ; mi-=i/2 [ N 1  (q, x=O) 
-N' (-q, xt.=O) ] e - ' ' l ~ z l r ~ k .  (A31 

The collision integral linearized in N ' assumes the form 

-6 ( e , - ~ , , f  h o )  ]ml- 
+[6 ( E , - E , , ~  ho )  +6 (8,-8pr-Am) I R " )  

Analysis of the angular dependence shows that the contribu- 
tion N '+ appears in the zero order of the expansion ofI, -,, 
in terms of the parameter cos @ij)<l (see Appendix 1) and the 
contribution N '- appears in the first order, where the angu- 
lar dependence of the decay law can be neglected in approxi- 
mate estimates. When the conservation laws are taken into 
account, all this leads to (26). Moreover, we have neglected 
in (26b) the part which is odd in { and which describes the 
contribution of the drag to thermal conductivity for mw2/ 
0,4 1. We note that it is readily seen from (A4) that, what- 
ever the particular form of N '+, we have 

and i + -E/ T for E( T. At the same time, 1 + < 0 for all 
&)A, which corresponds to an increase in the number of 
particles. On the other hand, + is different from zero only in 
the first order in A/ T( 1 for E - A. 

"In this case, the normal current j, satisfies the boundary condition 
j, = - j , ,  where j, is the current of the superconducting condensate. 
This follows from the electrodynamics of superconductors. 

''We note that, if x,, d<xphz L, where the subscripts 1 and 2 refer to the 
film and the substrate, respectively, and L is the thickness of the sub- 
strate, the temperature distribution is independent of the presence of the 
film. For T- T,, this condition can be rewritten in the form a-* (7, ,/ 
T~~ ')(OD '/ T ) 2 ( ~ F / ~ )  (d / L )< 1, where T, < d /v ,  is the electron relaxa- 
tlon tlme. 

3' Measurement of the magnetic field localized in the region of the contact 
with the substrate, and analogous to that examined in Ref. 1 for a simply- 
connected inhomogeneous superconductor, appears to be difficult. 

4'Soffer22 has analyzed the reflection of electrons from the surface (in 
the normal state) and has shown that, when there is no correlation 
between reflection from different points of the surface, p 
= exp[ - cosZh -'(2p r )'I, where the scaler characterizes the rough- 

ness of the surface and 8 is the angle of incidence of a particle on the 
surface, cos2 8 = (u,/uF )'. 

'I We note that the condition for the validity of the classical description 
that we are using leads to the restriction ( l / A )  (v,/u,)>([/R. ). 

6'Although one would expect an enhanced contribution due to particles 
with low 6, because of the presence of the singularity in the density of 
states, this singularity is compensated by the factor ( g / e )  in the expres- 
sion for U, given by (18). 

'I We are assuming that D,,,, does not have a strong divergence for o 4 ,  
i.e., that scatterring by impurities is not the principal mechanism for the 
relaxation of phonon momentum. 

8iIn this region, we neglect terms due to the differentiation of the local- 
equilibrium function no( To). 

9)Sincex>x1, the contribution of phonons to the thermal conductivity is 
negligible, the scale of variation in N :  is of the order of I,, ( I , ,  and the 
establishment of quasilocal equilibrium in the electron-phonon system 
[described by (30)] is determined precisely by the electron kinetics; we 
shall therefore ignore the behavior of N for x>x,.  
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lo' We note that the estimate given by (34) is based on the use of (30) for n,f . 
Since, for x < I,, the distribution n,+ may, in general, differ somewhat 
from (30) [independently of the assumption expressed by (25)], this, in 
turn, will lead to a modification of (34) for T,  - T <  V To I,. However, 
by virtue of the condition Vn,?, = ,, < 0 (and hence V N,,, = < 0), this 
modification appears to be unimportant. 
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