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The influence of defects on the propagation of charge-density waves in quasi-one-dimensional 
systems is investigated. It is shown that, when disorder is present in the system, the current 
transported by the charge density waves may increase as a result of the increase in the rate of 
generation of solitons on fluctuations in the random field of defects. 

It is well known that impurities present in quasi-one- 
dimensional compounds, whose electrical properties at low 
temperatures are due to the existence of charge-density 
waves, have an important influence on the behavior of the 
system. The static characteristics of charge-density waves 
(CDW) in systems with disorder (e.g. correlation length and 
static susceptibility) have been examined in papers by one of 
the present authors.' In the present work we analyze how 
disorder in quasi-one-dimensional systems affects the static 
CDW conductivity in systems with high viscosity. 

Systems with high viscosity probably include most of 
the compounds with one-dimensional CDWs that are being 
investigated experimentally at present (for example, TaS,, 
NbSe,, and so on). The dynamic properties of such systems 
can be described by the equation 

1 acp 6 H  
--=-- 
r a t  6cp 

+ E ( x , t ) .  

where e, (x, t ) is the CDW phase, x is the coordinate, H i s  the 
Hamiltonian of the system, r is the viscosity, 6 (x, t ) is the 
thermal noise, 

( E  (x, t )  (x ' ,  t ' )  )=2rT6 (x-x ')  6 ( t - t ' ) ,  

and Tis the temperature. The CDW Hamiltonian is given by 

+ h z6 (.-xi) cos (2kpx+cp) + Vf ( x )  vrp 1, 

tions. In such systems, microbridges are typical disorder 
elements and are described by a small random additional 
term f (x) in the amplitude of the commensurability poten- 
tial Vo. It can be readily verified that they have the same 
qualitative effect on vortex dynamics as impurities in sys- 
tems with charge-density waves. In this paper, we shall con- 
fine our attention to subthreshold fieldsF< Vo and moderate 
temperatures T<A, where A is the energy necessary to pro- 
duce a soliton-antisoliton pair in the system. 

The system characterized by Hamiltonian (2) admits of 
a simple and clear mechanical description if we use the mod- 
el of an elastic string lying in a sinusoidal potential distribu- 
tion. This representation is used, for example, to describe the 
motion of dislocations in crystals. A dislocation is then de- 
scribed by the elastic string model, and the potential distri- 
bution is called the Peierls distribution. The CDW phase can 
be interpreted as a transverse displacement, and the current 

as the rate of transverse displacement of the string. 
The motion of an elastic string in subthreshold fields for 

T <  A occurs through the activated formation of a soliton- 
antisoliton pair (i.e., a fluctuational transition of a small por- 
tion of the string to a neighboring valley of the potential) and 
the subsequent propagation of this pair under the influence 
of external fields.,s4 Random fields affect the motion of the 
string in two ways: by reducing, at some points, the energy 
necessary to produce nuclei, and by retarding the subsequent 
propagation of solitons. The resultant effect (increase or de- 
crease in the velocity of the string) is determined by the com- 
petition between these two phenomena. 

- 
where v, = uF/2.rr, v, is the Fermi velocity, F = (e*/a)E, e* To determine the mean velocity (+ ) (the angle brackets 

is the soliton charge, E is the external electric field (hence- indicate an average over realizations of the random fields), 

forth, we shall refer to Fas the external field), h is the incom- We must find the mean time ( t  ) for the transition of an arbi- 

mensurability parameter, m is the commensurability order, trary point on the string to a neighboring of the Peierls 

and Vo is the amplitude of the commensurability potential. We then have 

The last two terms in the Hamiltonian describe random im- <@)-2nl<t>. (4) 

purity fields that are responsible for forward and backward 
scattering, respectively.' 

Let us begin by considering a commensurable CDW. In 
this case h = 0 and, to simplify the formulas, we set m equal 
to unity (generalization to the case where m # 1 is trivial). It 
is found that backward-scattering impurities have the great- 
est effect, so that the basic formulas reproduced below will 
refer to this particular case. We note that (1) with the Hamil- 
tonian given by (2) (without the last two terms) will also de- 
scribe the propagation of vortices in SNS Josephson junc- 

The mean time ( t  ) can be determined by the Kolmogorov 
method5: 

rn Z 

whereS(z) is the rate of generation of the nucleus whose cen- 
ter of gravity lies at the point z and r(z) is the time taken by a 
soliton initially located at the point z to reach the point of 
observation (the origin), i.e., t = r(x). The exponential in the 
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integrand in (5) is then the probability that the point x = 0 
will be in the original valley at time t. The rate of generation 
of nuclei in a pure system was calculated by Biittiker and 
Landauer4 and has the activated form 

Jo=vo exp (-blT) . 

In a disordered system, the configuration and energy of a 
nucleus can be determined by minimizing the Hamiltonian 
(2) and solving the resulting equation of motion: 

-ij.q"+V0 sin 9-F+ dV,/dq=O, (6) 

where represents the random potential. Equation (6) can- 
not be solved in its general form but, if the impurities are 
weak, we can use a perturbation theory to treat the impuri- 
ties. The increment U on the energy of a nucleus due to ran- 
dom fields is calculated in the Appendix for different types of 
disorder, and is given by 

where @, depends on the shape of the nucleus and is differ- 
ent for different types of disorder. The condition for the va- 
lidity of perturbation theory is that p,(Vi )/p,( 1, where p, is 
the configuration of the nucleus in a pure system, and p1 is 
the increment due to impurities. This condition is definitely 
satisfied if the characteristic fluctuation of the random field 
is SV, (A, = l 6 ( ~ ~ ~ ~ ) ' / ~ .  It can be shown, however, that, 
near the threshold (F? V,), we have p,(S Vi )/pO - [( Vo - F)/ 
v,] 'I4( 1 even when S Vi - A. This enables us to use (7) for 
the increment in the energy of the nucleus (with the corre- 
sponding function Q, )near the threshold even for large fluc- 
tuations in the random fields. We shall suppose that the im- 
purities are weak: ( V 2 ) ' / 2 4 ~ 0  and are frequently 
encountered (cu, > ( V:) 'I2), which enables us to describe the 
statistical properties of random fields by correlators of the 
form (the mean separation between the impurities is less than 
the size of the soliton) 

< vi (5) vi (z') ) = y s  (x-x') . (8) 

Thus, the nucleation rate can be described 

J=Jo exp (--PU), P=I/T. 

We now proceed to specific calculations. Consider a 
commensurate wave near the threshold (Fz V,). Since the 
random fields are weak, y 1 / 2 < ~ o ,  the impurities have little 
effect on the motion of the solitons along a line, and the 
soliton propagation velocity u may be considered to be the 
same as in a pure crystal. We then have 

0, 

where the coordinates are dimensionless and measured in 
units of lo (the size of a soliton in a pure system for F = O), 
and the integration variable is t = J+/u. The properties of 
the fields U (x) are determined by the correlator 

< U ( x )  U(xf )  >=2yb2Ea-'A(x-x'), (10) 

Since for fields close to the threshold the size of the nucleus is 
the smallest length parameter, we may assume that 

[we use the dimensionless coordinate in (12)]. Using the local 
character of the nucleus A (x - x'), we readily find that, in (9), 

When the mean of the exponential in (13) is evaluated, it 
must be remembered that negative fluctuations in the ran- 
dom field U, whose absolute magnitude exceed the energy A 
of a nucleus in a pure system, need not be taken into account 
because the activation formula for J i s  meaningful only when 
/3 (U + A)% 1. We must therefore introduce a cutoff at 
U =  - h a n d  

m 

UZ 
<exp(-pU))- .f d ~ e x p  (--- P ~ ) ,  r=48byEolo. (14) 

-A 22 

The nucleation rate will be written with exponential preci- 
sion: J- exp( - /3A - pU) since, to calculate the factor mul- 
tiplying the exponential, we must know the configuration of 
the nucleus in the presence of the random fields. The coeffi- 
cient obtained in Ref. 4. cannot be used because translational 
invariance does not hold in a system with disorder and there 
are no Goldstone modes. The rigorous determination of the 
exponential factor is difficult and lies outside the scope of the 
present work. On evaluating the integrals, we readily find 
that 

( @ > - j o  exp ( i / l p 2 ~ ) ,  p ~ A 1 2 ,  (15) 

(a>-exp(-A2/4r),  ~ > A / Z ,  (16) 

where j, is the current in the pure system. 
As can be seen, disorder leads to an effective increase in 

the current near the field threshold. There are then two dis- 
tinct regimes: for high temperatures, T % T * = T/A, the 
main contribution is provided by the thermally activated so- 
litons, and impurities provided only a correction ( b 2~@A).  
However, since it is quite possible to have a situation where 
p 2 ~ )  1 for sufficiently low temperatures (because of the 
original conditionbA> I), the increase in the current may be 
very substantial. As the temperature is reduced, the princi- 
pal contribution begins to be due to solitons induced by im- 
purities at points where random field fluctuations become 
comparable (in absolute magnitudes) with the energy S of a 
nucleus in the pure system. In that case (T4T*),  impurities 

1074 Sov. Phys. JETP 61 (5), May 1985 V. M. Vinokur and M. B. Mineev 1074 



will also produce a substantial rise in the current; in a pure 
system, jo-exp( - 4 PA)(exp( - A2/4r), s incefi~A/r .  

Substituting for r in (15) and (16), we have 

We now turn to the case of weak fields (F( V,). In the 
limit of fields that are weak in comparison with the threshold 
value, we have two possible situations, namely, ~ , ) f i y " ~  
and ~(y" ' .  In the former case, impurities again have no 
effect on the motion of solitons but, in the latter case, the 
mobility of solitons turns out to be - exp( - y/2T ') because 
they have to overcome the impurity potential in accordance 
with an activation-type formula. When FgV,, there are 
again two temperature regimes: thermal solitons play the 
principal role for - T * - y/A, whereas solitons activated 
by impurities assume this function for T(T *. Strictly speak- 
ing, our analysis is valid only for - T * since the characteris- 
tic fluctuations in the random field that provide the principal 
contribution turn out to be of the order of y112<A. At low 
temperatures, T(T *, the main contribution is due to ran- 
dom field fluctuations - A. Impurities can then produce an 
appreciable change in the equilibrium shape and size of the 
nucleus, and perturbation theory is no longer valid for the 
solution of (6). Hence, results referring to the case of low 
temperatures are, in fact, only qualitative. 

Suppose, to begin with, that V,)F%~"~. It is conven- 
ient to rewrite the expression for the mean migration time in 
the form 

w 

where $(z) is the dimensionless random-field potential 
($ = V / T ) :  

Suppose that B(A/y. As before, we can then expand the 
exponetial into a series, and consider the mean 

(at high temperatures, the random field need not be cut off). 
Minimizing the action S, we obtain the extremal trajectory 

and the corresponding action 

Next, by evaluating the chain of integrals with respect 
to z,, . . , z, , we can readily verify that, when pgA/y, the 
principal contribution is due to points lying close to the sur- 
faces zi = z,, i.e., it is due to regions for which A (zi - z,) 
4 (0)-A,. Using the expressions for @, and A (zi - z, ) in 
the limit of small fields, which are reproduced in the Appen- 
dix, we can readily show that 

where lis the equilibrium size of the nucleus in low fields in a 
pure system.4 After this, we obtain 

and, consequently, 

<$:F)=jo exp ['/,p2y ( I f 4 e - ' ) I .  (181 
At low temperatures, the series representing the origi- 

nal exponential will diverge after integration with respect to 
z,, which shows that there is a sharp change in the nature of 
the motion for T- T *. In that case, we may proceed as fol- 
lows. If the main contribution to the integral with respect to 
time is due to fairly large values of the time (equivalently, 
fairly large x ) ,  the integral in the exponential can be written 
in the form 

m 

On evaluating the mean 
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with the aid of the familiar representation of the 8 function 

1 e i k r  
e(z)=-lim jdk-, 

2nz ,,o k-ie 

we find that 

We now consider the limiting case of weak fields for 
which F<yl/'. Taking into account the retardation of soli- 
tons by impurities, and transforming from integration with 
respect to t to integration with respect to x ,  we obtain 

m 

(t)=exp (-pF) 5 d i  (exP [--lee-" jdz e r p  {- mn 
0 0 

X J d y  e r p  { J m l ( y T - z ) p ( ~ ~ ) d ~ f } ]  

Once again, we expand the exponential in a series, and per- 
form the Gaussian integration over D (since we are con- 
cerned with high temperatures, we ignore the e function): 

where 

B(z j - z j - )  = j d z ~ . ( ~ - z )  m8(z j , - z ) ,  

Next, we can again readily verify that, at high tempera- 
tures, for which B<A/y, 

( t)=e-BF(n/2)" '  exp (L/2p2yBo) [ IO  exp ( 1 / z p 2 y  ( A ~ + B ~ )  ) I  -11' 

and 

(@)-j0e"2BF esp ['lzp2y (Ao-B,)  ] . 
Since A,  > B,, impurities will also increase the current in low 
fields. 

At low temperatures T(y/A, we should have 
( t  ) - exp(A2/2y), but the mean distance traversed by a soli- 
ton during this time is found to be -exp( - P 'y/4)exp(A2/ 
47441. This means that, at low temperatures and in weak 
fields, the solitons accumulate near impurities, and the 
above method is no longer valid. 

We note that, as shown in Ref. 4, this analysis is valid 
provided the force is not too small, i.e., 

FBn,T, (24) 

where n, is the density of solitons in the system. When the 
force is smaller, the motion of the solitons after the forma- 
tion of the nuclei becomes diffusive, and the velocity (4 ) is 
given by 

<(~>=2n(n,u>,  (25) 

where n, is the equilibrium density of solitons in the system 
for F = 0. Before we proceed to the analysis of the case of 
weak forces, which do not satisfy condition (24), we must 
establish the consequences of commensurability in the sys- 
tem. 

If the system is not subject to cyclic boundary condi- 
tions (for example, if the ends of the string are free, which 
corresponds to a free CDW phase at the ends of the speci- 
men), the so-called "geometric" solitons of the same sign 
appear in the system, and their density n, (h ) depends on the 
proximity to the commensurability threshold. When the ex- 
ternal fields are not too small, i.e., @y1I2, the contribution 
of such solitons to the CDW current is 

j,=2xuns ( h )  ; (26) 

The density of geometric solitons in one-dimensional disor- 
dered systems was calculated in a previous paper by one of 
the present authors6: 

n, ( h )  -esp [-@E,(I-hlh,)  + ' l , P 2 y ] ,  TBT, ,  

n, ( h )  -exp [ - E S 2  ( 1 - h / h , ) 2 / 8 ~ ] ,  T<T,, 
(27) 

where h, is the critical (threshold) value of the incommensu- 
rability parameter. Geometric solitons provide the main 
contribution to the current if their density is high in com- 
parison with some effective density of "dynamic" solitons, 
which can be defined as having n,(~)-(J/u)" ' .  If, on the 
other hand, n, (F )>n, (h ),the current in the system is given by 
(15)-(19) and (23). We can now construct a diagram in the F, 
h plane, which shows the regions of predominant contribu- 
tion of dynamic and "geometric" solitons, respectively. Fig- 
ure 1 shows such diagrams for three temperature intervals, 
namely, 

To the left, above the curve, n, (h )>n,(F), whereas, to the 
right, below the curve, n, (h )(n,  (F). The dot-dash lines de- 
fine the region in which the soliton densities are low: n, (F) ,  
n, (h )( 1. These results are not valid in the immediate neigh- 
borhood of the thresholds F = V, and h = h,. The line of 
"equal density" near the threshold in Fig. l a  is described by 
the equation 
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FIG. 1 .  

I-h/hc- ( I - F / v ~ ) ~ ~ ~ .  (28) 
The curve near the threshold in Fig. lb  is given by the equa- 
tions 

Finally, the curve in Fig. lc  is described by 

For low values of the field and the incommensurability 
parameter (Fg V,, hgh, ), and n, (F) -n, (h ) lines are de- 
scribed by the following equation in all three diagrams: 

Thus, in a system with incommensurability, we have two 
possible situations: if the system is in the region of the phase 
diagram, the current in the system is described by (15), (16), 
(18), (19), and (23), and is characterized by a complex nonlin- 
ear dependence on the applied field F. As the field is reduced, 
the system enters region I and, when h, - h gh, , the current 
becomes proportional to the field and is given by (32). We 
note that, as the field is reduced, the system passes from 
region I1 to region I before (24) is violated, so that the current 
is determined by "geometric" solitons in the region in which 
the current is a linear function of the force. 

Possible production of solitons on the boundary of the 
specimen was not taken into account in our calculation of 

the current in systems with CDWs. Burkov and Pok~vskiT'.~ 
have calculated the current in an impurity-free CDW, pro- 
duced as a result of the formation of solitons on the specimen 
boundary. The conditions for the existence of this current 
are the boundary conditions corresponding to a string with 
free ends. If the boundary conditions in a practical system 
correspond to a free phase on the boundaries, then, in sys- 
tems that are close to the incommensurability threshold 
(h, - hgh, ), the current in fields approaching the threshold 
value for temperatures T < A will be largely determined by 
the nucleation of solitons near the b~undary.'.~ When the 
field F is small, the influence of boundary effects will be 
slight, as before, since, according to Ref. 8, solitons will not 
then be created on the surface. 

The authors are indebted to V. Ya. Kravchenko, S. P. 
Obukhov, M. V. Feigel'man, and D. E. Khmel'nitskii for 
numerous stimulating discussions. 

APPENDIX 

Interaction of solitons with impurities 

Let us suppose that the impurity density is high, so that 

where 6, is the size of a soliton. In a pure system, the soliton 
configuration is 

x-x 
,.=4 arc,, ex, ( y ) , 

The impurity increments on the energy density are 

v b X  6 (x-xi) cos (2kFx+cp) 

=Vb, (z) (l-cos cp) -Vb,(x)sin cp, ('44'3) 

The increment (a) describes forward scattering, (b) 
backward scattering, and (c) random variations in the com- 
mensurability potential. The statistical properties of random 
potentials are determined by correlators of the form 

< V (x) V (x') > =yG (x-sf) . (A51 

We are interested in weak impurities, so that, in any 
case, 

7"2<v0. ('46) 

We can then use the soliton configuration (A2) for a pure 
system, and consider the soliton to be a particle moving in a 
random potential: 

m 
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The corresponding correlators now assume the form 

< Uf (x) U, (x') ) =4y!Af (x-x'), ('484 

< U b  (x) Ub (x') )=4rbAb (x-2') (A8b) 

< U ,  (x) U ,  (x') > =4ycAc (x-x'), (A84 

where 
m 

dz 
A,= 

cosh ti-z) cosh(xl-z) ' - m 

m 

1 sinh (x-z) sinh (2'-Z) 
~ a = I d z  [ +, 

- ,2 

I 
C O S ~  z ( x - ~ ) ~ ~ ~ h 2  ( X I - Z )  cash (x-z)cosh2 (XI-Z) 7 

The condition for constant soliton shape in the presence 
of impurities is 

~ V ~ ' ~ V ~ " ~ ,  (a) 

y < < ~ ~ ' ~ V o " ,  (b) ,  (c) 

Interaction of nuclei with impurities. 

In low fields F( V,, a nucleation is a soliton-antisoliton 
pair, the separation b in which is much greater than the size 
6, of a single soliton. The configuration of this king of nu- 
cleation can readily be described by 

(pn(x) =qs (x-1/21 +qs (x+1/2), (A l l )  

and the shape functions @, , @, and the correlators of the 
random fields U (x) are easily calculated from this. 

Near the threshold F = V,, the shape of the nucleus is 
described by4 

where 

The random increment on the energy of a nucleus in the 
impurity field is therefore of the form 

(n) 2b sinh [ (x-y) /2E] u, ( 4 = - J  
E -- dyvf(y)cosh3[ ((s--y)/2E] 

1 uLn) (3) = 1 dy [Vbi  (y)% bz cosh -' (% ) 
- m 

+ vbZ ( y )  b cosh -' (%)I , 

Using the second formula in (A14), we readily obtain [in 
the lowest order in the small quantity (b)] the equation given 
by (10) in the main text for ( u r ' ( x )  U fl(x')) [the indices b and 
(n)  are omitted from the text]. 
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