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The replica technique is used to calculate the correlation functions for individual molecules in a 
system with arbitrary bulk interactions which is in chemical equilibrium with respect to bond 
breakage and formation. Spontaneous breaking of replica symmetry is considered. For a system 
consisting of branched molecules, the condensate of the replica field describes the formation of an 
infinite molecular gel. The correlation functions for the gel have a singularity at the gel point and 
on the spinodal, and their small-scale behavior is unusual. A perturbation theory is developed for 
concentrated systems, and the expansion coefficient is determined both before and after the gel 
transition. The limits of validity of the percolation model are also discussed. 

INTRODUCTION 

The recent rapid advances in polymer physics have been 
made possible primarily through the use of field-theoretic 
methods. The analogy between polymers and magnets was 
exploited in Refs. 1-3 to develop a theory of linear polymer 
chains. In the present paper we develop a theory for systems 
of branched polymers which is based on the replica tech- 
nique. Branched polymers can form, e.g., by polycondensa- 
tion of monomeric structural RAf units (cf. Fig. la). Each 
unit consists of a monomer R connected by flexible polymer 
chains to f functional groups A.  When two of the A groups 
come into contact, they can react to form a chemical bond 
(Fig. la, b), with or without the formation of additional by- 
products. In what follows, we will refer to the flexible poly- 
mer chain joining two monomers (Fig. lb) as a bond. The 
topological structure of the molecules becomes more com- 
plicated as the number of bonds increases, and cyclic aggre- 
gates may form (Fig. lc). We will henceforth assume that the 
chemical bonding is reversible and that the system is in equi- 
librium with respect to bond formation and breakage. In this 
case, the branched molecules form by an equilibrium poly- 
condensation process. 

The state of the system is uniquely determined by two 
parameters, which we may take to be the degree of conver- 
sionp and the monomer density p. The degree of conversion 
pis  defined as the number of bonds divided by the theoretical 
maximum and can be varied experimentally (e.g., by chang- 
ing the concentrations of the reaction by-products). For 
small degrees of conversion the system contains only mole- 
cules of finite dimensions (sol), whereas a gel (an infinite 
network of flexible chains) forms ifp exceeds a critical value 
p, called the gel point. Sol molecules continue to be present 
forp >p, . The sol-gel transition can be observed experimen- 
tally by measuring the viscosity, which becomes infinite at 
the gel point. We will consider primarily concentrated sys- 
tems for whichpa3 2 1, where a is the persistence length, i.e., 
the length of the chain within which the orientations of the 
segments are mutually correlated. The density fluctuations 
will then be small and the Flory-Stockmayer theory4" 
(which neglects cyclization) describes the system to first or- 
der. This mean-field theory predicts thatp, = (f - I ) - '  and 

yields an expression for the molecular mass distribution 
(MMD) of the sol molecules. However, the theory does not 
suffice to determine the mean diameter and inertial radius of 
the molecules; however, these geometric characteristics are 
completely determined by the correlation functions (CF) for 
the density of the individual molecules of the system. 

The mean-field approximation breaks down near the 
gel point, where the critical density fluctuations become 
large. In particular, it fails to explain the experimentally ob- 
served dependence ofp, on the density p and on the flexibil- 
ity of the polymer chains. Nor does it describe the interac- 
tion between units which are located far apart on a molecule 
but may approach one another as a result of thermodynamic 
fluctuations. These so-called "bulk" interactions are not 
negligible; they determine the three-dimensional shape of 
the molecules and imply, in particular, that no two mon- 
omers can occupy the same point in space (the excluded vol- 
ume effect). 

Even when the bulk interactions are neglected, it is a 
nontrivial task to describe the behavior of branched molecu- 
lar systems which are in chemical equilibrium and have arbi- 
trary topologies. However, there are indications that bulk 
effects should be even more important for branched mole- 
cules than for linear ones,6 where they already play a decisive 
role. In particular, the bulk interactions are necessary in or- 
der for systems to be thermodynamically stable beyond the 
gel point. The gel-forming process in such systems is unusual 
in several respects. For one thing, the bulk interactions sup- 
press the density fluctuations in the system, and neither the 
CFs for the total density nor the thermodynamic parameters 
themselves yield any information about the gel pointp, . We 
note thatp, is defined by the condition that the average mo- 
lecular weight of the polymerized molecules becomes infi- 
nite; the latter is obtained by averaging the degree of poly- 
merization (the number of monomers contained in the 
individual molecules) over the MMD. Any theory that aims 
to describe gel formation in chemically equilibrium systems 
must therefore provide an expression for the MMD and for 
the CFs for the individual molecules in the system (including 
the infinite gel molecules). 

The analogy between polymers and magnets can be 
used to describe branched molecules only for a few model 
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 system^.^^^ Because of the complexity of these mathematical 
models, in which the order parameters appear as the ele- 
ments of a tensor, it is not possible to describe the behavior 
beyond the gel point. 

In this paper we use the replica techniquelO-l2 to calcu- 
late the CFs and MMD for individual molecules of a system 
in chemical equilibrium with respect to bond breakage and 
formation. We treat arbitrary bulk interactions Vand deter- 
mine the properties of the system both before and after the 
gel transition atp = p, . In Sec. 2 we give the basic definitions 
and describe the model briefly (cf. Refs. 7 and 13 for more 
details). Section 3 is devoted to the derivation of the CFs as 
functional integrals over the replica fields pi. We examine 
the self-consistent field (SCF) approximation and estimate 
the size of the fluctuation region in Sec. 4. Spontaneous sym- 
metry breaking between the replicas occurs at the gel point, 
and the ground state of the system is degenerate for p >p,. 
We calculate the CFs for an infinite gel; they are singular 
both at the gel point and on the   pi nodal,^ where the system 
becomes thermodynamically unstable. The cyclic aggre- 
gates in the gel suppress the density fluctuations over dis- 
tances comparable to their dimensions and are responsible 
for the anomalous behavior of the density correlator for the 
monomeric units in the gel. 

Section 5 is devoted to a precise formal calculation (in 
the context of the replica techniquelO-12) of the fundamental 
properties of polymer systems; the treatment, which allows 
for the fluctuations in the replica fields p i ,  sheds light on the 
unusual type of spontaneous symmetry breaking that occurs 
in these systems. Section 6 develops a perturbation theory 
for the MMD of concentrated systems, for which the density 
fluctuations are small. In Sec. 7 we examine the percolation 
model for the sol molecules both before and after the gel 
point; percolation can occur only if the bulk interactions are 
sufficiently strong. Finally, we close by discussing the choice 
of the order parameter for the sol-gel transition. 

2. CHOICE OF THE MODEL. FUNDAMENTAL DEFINITIONS 

We will consider the model in Ref. 13, in which a poly- 
mer system consists ofNidentica1 monomer units located at 
the points x,, . . . , x,. The bulk interactions are described 
by the potential energy BV(xi - xj),  while the chemical 
bonding isdescribed by the correlation functionA (x - x') for 
the nearest neighbors in the chains. The function A (x) varies 
over a characteristic length a and is normalized by 
SA (x)dx = 1. The maximum number of bonds that each par- 
ticle (monomer unit) can form with the others is equal tof, 
the number of functional groups. An (I, m)-mer is defined as 
an aggregate of I monomer units joined only by m chemical 
bonds, where m = I + r - 1 and r is the number of indepen- 
dent cycles in the molecule. By definition, the spatial distri- 
bution function for a configuration GN consisting of n, mon- 

FIG. 1. Polycondensation of monomer units Mf. a) be- 
fore start of chemical reaction; b) during chemical bond 
formation; c )  formation of a cycle. 

omers, n, dimers, . . . , n, I-mers (En, 1 = N )  is 

W { G N  \x i ,  . . . , xN) = ( f !AT3)-Ne~p { [Q (p) 

-EV(xi-x,)] IT} nkh. (xi-xj), (1) 

wherep is the chemical potential of the monomer units, and 
each bond between units located at xi and x corresponds to 
a factor kA (xi - xj ); k is defined by k = ko exp( - E/T), 
where ko and E are the bond entropy and energy. The factor 
A; = (MT/~T#)~/' in (1) results from the integration of 
the distribution function (DF) over momentum space; M is 
the mass of the particles. The factor f !  accounts for the fact 
that all of the f functional groups of each particle are identi- 
cal. The thermodynamic potential il of the system is deter- 
mined by the normalization condition 

1=zc dx, . . . d x . . , x }  z=r-p" 
N !  7 (2) 

N , G v  

where the sum is over all configurations G,. Now consider a 
given configuration GN and chose one molecule C ,  , with I 
monomer units and m bonds. The microscopic density of the 
monomer units is given by p, (x) = ZS(x - xi), where the 
sum is over the coordinates of all of the units in the molecule 
C,, , . We define the correlation function for individual ( I, 
m) - mers by the expression 

where the second sum in (3) is over all ( I, m)-mers in the 
configuration GN. The definition (3) implies that the func- 
tion g ,, , is symmetric in the xi and 

In the special case k = 0, g ,, , = p ,  , is equal to the average 
density of the ( I, m)-mers and determines the molecular 
mass distribution (MMD). The extent of conversion p and 
the average polymerization N, (by weight) are given by 

p=2pclfp, Nw=p-'Epl, mz2, 

( 5 )  

wherep andp, are the density of monomer units and bonds; 
the extent of conversionp (O<p< 1) is defined as the number 
of bonds divided by the theoretical maximum. Fork  = 2 the 
CFs (3) determine both the complete correlation function for 
the monomer density in individual molecules: 

g(x-x') =Egr, m (x, x') , (6) 

and the correlation radius 6 and mean square radius of the 
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In general, the CFs give a detailed description of poly- 
mer molecules. The fundamental problem considered in this 
paper is to calculate the CFs (3) for systems with arbitrary 
bulk interactions V. 

3. FIELD THEORY FOR THE CORRELATION FUNCTIONS OF 
INDIVIDUAL MOLECULES 

If there are no bulk interactions ( V = O), the CFs (3) for 
the individual molecules are completely determined by the 
thermodynamic potential of the system (assumed to be in an 
external field): 

Q ( p ( x ) ,  p , )  =-Tn(Oi { s ( x ) ,  s , ) ,  P ( X )  = p + T l n  s ( x ) ,  

p,=T In s,. 

Herep(x) andp, are the chemical potentials of the monomer 
units and bonds in the system. In particular, we can express 
the generating function 

for the correlation functions (3) in terms of the functional 
T(0). 

The representation 

exp (n'" { s  ( X I  , s.) ).= 6 9  e x p [  -Lo, 

Lo (a) = 11 d x  hr'h-' ( x - x ' )  cp ( x )  cp ( x ' )  i 2 k s .  

for the statistical sum as a functional integral was first de- 
rived in Ref. 13 for this model. We note that the irreducible 
correlators for the total density are found by differentiating 
Cl with respect to p(x). The formulas (9) that relate the indi- 
vidual CFs to the CF for the entire system are simple in this 
case, because for V = 0 the D F  (1) factorizes into a product 
of terms representing the contribution from each separate 
molecule. No such factorization is possible for V $0; in this 
case we use the identity 

v ( x i )  
~ X P  (-C V ( y - x ~ )  ) = ( e x p [  -C , (11) 

where the averaging is understood in the field-theoretic 
sense for the theory with the quadratic LagrangianI4 

H. (71) =- Jj d x  dxlV-I ( x - x ' )  v  ( x )  u ( x ' ) l 2 T ,  
(12) 

J d x , V ( x - x i )  V-' ( x i - x ' )  =6 ( x - x r )  . 

bonds, the thermodynamic potential 

Q, ( p  ( x )  ) =-Trio { z  ( x )  ) , z ( x )  =A,-3 exp  ( p  ( x )  IT)  

can be written in the form15 

e r p ( n , { z ~ ( x ) ) )  = ( e r p  [ J d x z ( x ) e x p ( -  )I). (13) 

If we substitute (1 1) into (2) and sum over Nbefore averaging, 
we find that 

exp ( - Q / T )  = ( e x p  [ n ( O )  { e x p  ( - u l T )  , I)]  ). (14) 

After similar calculations for the CFs (3) for the individual 
molecules, we get 

g ~ ,  m ( x i ,  . . . X A )  

= ( g i , ,  ( x l , .  . . , xhl v )  exp  [n(Oi { e x p  ( - v / T ) ,  I)] >/ 
( e x p [ n ( ' ) { e x p ( - v / T ) ,  I)]) ,  (15) 

whereg ,, , (x,, . . . , x, I v)  is the CF calculated for V = 0 for a 
system in an external field v(x). The equations (15) have a 
straightforward physical interpretation-they describe fluc- 
tuations in systems with a random bulk interaction field that 
is highly nongaussian. The integration over the field will be 
performed exactly. The simplest method is to integrate the 
statistical sum (14); substituting (10) into (4) and interchang- 
ing the order of integration over q, (x) and v(x), we find from 
(13) that 

this result was first derived in Ref. 13. In evaluating (15) it is 
helpful to work with the generating functional ~ { s ( x ) ,  s, ) for 
the CFs [it is similar in form to expressions (8) and (9)]. Ac- 
cording to (lo), ~'O'(s(x), s, ) can be expressed as the loga- 
rithm of a functional integral, and we can use the replica 
technique'' to take the average in (15) by setting 

The number n is assumed to be an arbitrary integer in the 
calculations; the limit n -+ 0 is taken only in the final results. 
The final expression for the functional is 

n  { S  ( x ) ,  s c )  

(18) 

where the quadratic form Lo is defined by 

In particular, (1 1) implies that for a system with no chemical 
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The integration in (18) is over the (1 + n)th component of the 
field pi (x) = [ po(x), p, (x)], a = 1, . . . , n. If a solvent is 
present, the functional ~ ( z ,  zs j will also depend on the ac- 
tivity z, of the solvent particles. The result (1 8) generalizes 
easily to multicomponent systems. 

4. SELF-CONSISTENT FIELD APPROXIMATION 

A. The molecular-mass distribution (MMD) 

If the fluctuations in the fields pi (x) are small, we can 
find the MMD by using the saddle point method to evaluate 
the functional integrals (18). For p <p, , we set p, =p/  
(1 -p)  and pa = pp =pu/( l  -p)  at the saddle point. The 
equations for the latter then reduce to the formulas in the 
Flory-Stockmayer theory6,"? 

u=ss, ( 1 - p f  pu) '-I, (20) 

wherep, defined by 

is the conversion factor (5). The result (21) was derived by 
expressing the characteristics of the system in terms of the 
density p (5). The generating functional (18) for the MMD 
can be written in the form 

where T is the volume of the system; in this approximation, 
only molecular "trees" with m = 1 - 1 give a nonzero con- 
tribution. By definition, N ,  in (5) becomes infinite at the gel 
point, so thatp, = (f - I)-' in this approximation. 

We will now examine the behavior of a system beyond 
the gel point, i.e., for p>p,. The sol-gel transition is de- 
scribed by the total CFs for the individual molecules (6), 
which are determined by the variational derivatives of (1 8) at 
the point s = s, = 1. For s = s, = 1 the Lagrangian in (1 8), 
(19) is symmetric under permutations of the fields pi in the 
extended replica space ( p,, pa). However, this symmetry 
breaks spontaneously for p>p,, and the ground state be- 
comes (1 + n)-fold degenerate: 

, qp+Lr) - (a) 
cPyl +cP:~ =cpe(0) - c p ~  , p+a, u=l,. . . , n. (23) 

Here the superscripts label the type of the ground state. The 
generating functional (18) forp>p, is equal to the sum of the 
contributions from all of the saddle points (23): 

For s, s, # 1 the Lagrangian in (18) is symmetric only under 
permutations of the replica fields pa ,  and the sum in the 
right-hand side of (24) reduces to a multiplication by n. Let- 
ting n -+ 0, we find that 

The CFs for the sol component are expressible in terms of the 
derivatives of (25) with respect to s and s, at the point 
s = s, = 0, and only the first term in (25) survives in the 
thermodynamic limit. The second term is nonzero only at 
the points = s, = 1; it determines the generating functional 
dg)(s, s,) for the gel. In particular, (25) and (23), (24) imply 
that a (g '  (s, s, ) = 0 except for s = s, = 1, in which case dg) (1, 
1) = 1, i.e., there is only a single gel molecule forp>p, . For 
s = s, = 1, the SCF approximation forp >p, gives 

' p  ( I - ) ,  =pu/  ( I - p )  , j+i, (26) 

where u is defined as the smallest positive solution of Eq. 
(20). The density p(4 and the extent of conversionp(') for the 
sol component are related by 

After evaluating the derivatives of (25) with respect to s and 
s, for s = s, = 1, we can expressp'") andp'") in terms of the 
total degree conversion and density p, p: 

at s = s, = 1. Here p and p are related by (21). Equations 
(26)-(28) coincide with the Flory-Stockmayer formulasI6 for 
p>p,. However, Eq. (25) provides a more detailed descrip- 
tion of the gel. The most fundamental property of the gel 
molecule is the number r of independent cycles it contains; in 
the SCF approximation we have the expression 

r = l + N ( l - u )  [pf ( I+u) /2 -1 -pu] .  (29) 

We define r- 1 - p/p, , so that - r( 1 near the transition 
point; here the gel has a tree-like structure and r increases 
very slowly withp, 

r=2f ( f -1 )  N I ~ 1 ~ / 3 ( f - 2 ) ~ .  (30) 

The gel contains many cyclic aggregates far from the transi- 
tion point (1 -p(l),  and here r increases linearly with the 
conversion: r = Nplf- 2)/2. 

8. Correlation functions 

Evaluation of the variational derivatives in (9), (25) 
leads to the expression 

p p f ~ ~ s , ~ ~ ' - =  
p(" (q ( s,  s.) - C g,". s's: = - 

L-' (qj - p ( f - I )  s~ , y -2  . .  (31) 

for the Fourier component of the generating function (8) for 
the two-point CFs for the sol molecules; here 6 = 1-p + pu. 
The total CF for the sol molecule density (6) follows by set- 
tings = s, = 1 in (3 1). This CF is singular at the pointp =p, 
and (for V #O) differs from the correlator for the total den- 
sity ofthe monomer units of the sol [cf. (36) below]. The weak 
cyclization of the gel (30) beyond the transition point 
(for - r( 1) gives rise to large fluctuations in the density of 
the sol phase-a single bond cleavage in a treelike gel mole- 
cule may suffice to liberate a sol molecule from the gel. Since 
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r increases withp, the density fluctuations of the sol compo- 
nent become smaller. 

The second term in (25) determines the CF for the den- 
sity of monomer units in the gel molecule: 

(6~:' 6p!ta )=i (q) +? (q) ji (q)/p, 

h 

where p(g) = p - p(s) and the function ~ ( q )  is defined by 

Here x,(q) is the irreducible CF for the system of broken 
chemical bonds (of density p). The CF (32), which vanishes 
forp <p,, is singular at the two points 

The equation of state in the SCF approximation takes the 
form13 

P(p)=P, (p) -pfTp/2. 

Using Eq. (21), we find that the system becomes thermody- 
namically unstable at p = po: dP (p)/dp = 0. Here we have 
assumed thatpo< 1, since otherwise the gel persists even for 
p = I. In the immediate vicinity of the transition point 
(171 gro= 1 -p/po), the CF (32) is independent of the specific 
form of the bulk interaction V and is given by 

Note the anomalous small-scale behavior of the correlator 
(34) over distances I x - x' I g{ = a/lr 1 "2-instead of the 
usual ) x  - x') dependence (cf. Ref. 17), (34) tends to a con- 
stant asp - + p , .  This behavior occurs because the cycles (30) 
in the gel increase its rigidity, so that density fluctuations are 
suppressed over distances comparable to the cycle diame- 
ters. Setting x = xi in (34), we find the condition 

treat the fluctuations in the fields pi (x), according to which 
the functional r'," is, s, J is given by 

[recall that determines the generating functional (25) for 
the CFs of the individual molecules]. Here the functional F, 
is the sum of the contributions from the irreducible diagrams 
of the Gi (x) field theory with the Lagrangian 

- f / 2  
(38) 

h, (x) =S (x) S ,  , hf  (x) =s;'', 

The functions IJI jA(x) are determined by the requirement that 
they maximize the right-hand side of (37). For p>p, and 
s = s, = 1 we use the rules (23) to select the solutions (j) for 
the pi (x). 

For p <p,, the second term in (25) is not present, the 
pa (a = 1, . . . , n)  are all equal, and po is independent of the 
"counters" s, s, in the limit n -+ 0. The density pf = p d k  of 
unreacted functional groups is obtained by differentiating 
(37) with respect to hf and determines the conversion: 
1 - p = pf/pf. The total density and the average polymer- 
ization Nw [cf. (5)] are given by the expressions 

Here the subscripts denote partial derivatives with respect to 
the corresponding fields at the point h, = hf = 1, and 
IJI, = p,. At the gel point, which is determined by the condi- 
tion that Nu is infinite, we have kFA = 1. 

Beyond the gel point (p>p, ) ,  the ground state for 
s = s, = 1 is (1 + n)-fold degenerate (23) and p = k p  ,-, 
while the remaining fields with j#i are determined by the 
density of the unreacted functional groups in the sol mole- 
cules: q, !' = kp,(s). Spontaneous symmetry breaking thus 
occurs at p = p, : pF1 = p ,- - py) > 0. The thermodynamic 

for the gel density fluctuations to be small. Away from the potential is equal to 
transition point (I - p( I) the CF (32) reduces to the correla- 

, . 
tor for thetotal density of the monomer units: a=-P(p)Y=-Tro ( 0 )  

[(6~q6~-~)1-'=[(6~q6~-q)o]-'-~fl~[~-'(q)+~l. (36) and has no singularities a t p  =p,. We find from (9) and (37) 
the expression 

We thus see that if (35) is satisfied, the SCF approximation 
y (4 provides detailed information on the properties of the sys- g ( ~ )  (q 1 s, s,) -- gl,, (q) s ~ s , m  

tem for bothp <p, and p >p, . We note that Eq. (35) contains 
a small numerical factor (equal to 0.03 for f = 3), and the =Fmm (9) + [Fmi (q) IZ[h-l (Q) Ik-Flr (q) 1 -I, 
fluctuation region is very narrow ifpa3 2 1. 

(40) 

5. FLUCTUATIONS ON THE REPLICA FIELDS FAB (4 

We start by making the change of variable d 
= l im - [S dxe" 

62Fn {rp? I h, ($9 hi (41 
pa (x) -+ S, '/'pa (x) in the functional integral (1 8), where n-o ,dn 
a = 1, . . . , n. We will use the effective action f~rmalisrn '~ to h --.-'12 

f- c 
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for the generating function for the density correlators of the 
sol molecules; (40) is valid both forp <p, and forp >p,. 

The second term in (25) determines the CFs for the gel, 
and Mayer's first theorem implies that for s(x), s, - 0, rt' 
(s(x), s, ] - rfl is a generating functional for the irreducible 
correlators of the gel. One can show that (Sp?) Sp(8',) is 
singular atp = p, andp, (recall that b'P ( p)/b'p = 0 atp = p,). 

All of the properties of the system can thus be expressed 
in terms of the functional F,, , which is given by the sum of 
the irreducible diagrams (38) for the field theory with the 
Lagrangian (38). This result is in fact an analog of Mayer's 
second theorem for polymer systems. Since the diagrams 
containing r loops involve an integration over r independent 
momenta, their contribution is small of order (pa3) -'. To 
lowest order (r = 0), we recover the results in the previous 
section. Ifp is not too close top, and the parameter x in (35) 
is small, we can limit ourselves to the contribution from cy- 
cles with r = 1. 

6. PERTURBATION THEORY 

Let us examine the properties of a system in which the 
sol molecules contain only single-loop cycles. The corre- 
sponding contribution (37) is given by the sum of the single- 
loop diagrams for the field theory (38): 

n(a) {s, s,) 
7' = z p l , m s ~ s c m  

1 { ( s ,  ~ ) - L n [ l - h ( q ) ~ ( ~ - l ) s s . ~ ~ - ~ ] } ~  

s p2 
(41) 

where we have set p, = a / ( l  - a ) ;  the value of u (pa = au/  
(1 - a)) is chosen so as to maximize (41). The distribution 
parameters a ,  8 ,  and j are related to z, z, , and k by 

The relations (42) enable us to eliminate the activities z, z,, 
and k from the equations, so that only a minimum2f infor- 
mation regarding V is required. The functions ~ ( q )  and 
g'"' (qls, s,) are defined by (33) and (31), withp,p replaced by 
6 a n d j ; l =  1 -a + a u ,  and 

Here x2(q) and x3(ql, q2) are the Fourier components of the 
irreducible CFs for the structural units (of density 8) in the 
system of broken bonds; p, is the chemical potential of the 
broken bond system. In the coordinate representation 

The distribution parameters a ,  6 ,  and j can be expressed in 
terms of the total density p: 

a ill (q) 

P 

and in terms of the extent of conversion j: 

Relation (45), which follows from pf =pf (1 -p), remains 
valid to all orders in perturbation theory; by contrast, (44) is 
only valid to first order in (pa3)-'. For an incompressible 
fluid, we find that6 = p to all orders. The equation of state to 
first order in (pa3)-' is of the form 

Equations (41)-(45) completely describe the molecular 
mass distribution for a system with arbitrary V, provided the 
sol molecules contain only single-loop cycles. For V =  0, 
this problem was solved in Ref. 19 forp <p, by applying the 
theory of branching processes to the law of mass action. The 
MMD at any time t can be found by differentiating (41) with 
respect to s and s, at the points = s, = 1; the corresponding 
derivatives at s = s, = 0 give the density of the (I, m)-mers. 
The density of monomer units in the gel is given by 

for p>p,. 
We will begin by analyzing the first moments of the D F  

(these determine the density of the monomer units and 
bonds). The first term in curly brackets in (41) treats the bulk 
interactions between the monomer units in all the molecules, 
while the second term accounts for cyclization in the sol 
molecules. Although both of these terms diverge at the point 
p =p, , their sum remains finite. The fluctuations in the total 
density are thus suppressed for p z p ,  because the cycliza- 
tion (which makes the sol molecules more compact) is offset 
by the bulk interactions (which tend to spread the molecules 
out). The series (44) for the distribution parameters [and (46) 
for the equation of state] are thus singular only on the spino- 
dalp = p,; the solution of Eqs. (44) becomes discontinuous at 
p = p,, and all of its terms have the same order of magnitude. 
Far from the spinodal, we can expand the solution in the 
parameter x (~ , ) ,  where the function 47) is defined by (35) 
with p replaced by 6 (7, = 1 -p/p,). 

For s = s, = 1 andp <p, , the right-hand side of (41) is a 
maximum for u = 1; beyond the gel point (p>p, ), the maxi- 
mum occurs in the interval O(u( 1. The cancellation is in- 
complete for the higher moments. Forp  <p, the series can 
be expanded in the parameter x(.i), where .i = 1 -j(f-- 1); 
moreover, x(+, ) z 1 at the gel point itself, which enables us to 
estimate the correction to the value ofp, given by the Flory- 
Stockmayer theory. For Irl,r, (beyond the gel point), the 
expansion is carried out in powers of the parameter ~(171) in 
(35). 
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7. THE PERCOLATION MODEL 

The fluctuations in the total density can be neglected if 
the parameter x ( ~ , )  is small near p, (171 4 1). If we make the 
change of variables 

in the functional integral (18), it can be shown easily that the 
field p (x) fluctuates only slightly for x (~ , ) ( l ;  we will there- 
fore integrate p (x), as in the Wilson renormalization group 
method. Setting x = ar, T = 1 - p(f - I), and pa = p/ 
(1 -p) + (k / u ~ ) " ~ $ ~ ,  we can then find the effective Lagran- 
gian L for the replica fields pa under the assumption that 

/ T I  (7, and the fluctuations in #(x) can be neglected. If we use 
the transformation 

to diagonalize its quadratic part, L reduces to the Lagran- 
gian for the zero-component in the Potts model: 

(j) ti) (i) (11) 1 dap7=C e, ei e, , eU 1 ,  e:" = -- 2 ~UT, (47) 
1-0 

We first examine the self-consistent field approxima- 
tion. According to the general results in Sec. 4, 1 + n types of 
spontaneous symmetry breaking can occur for T < 0: 
A h/l= =?A, where A = 2~/ i l .  The Fourier components of 
the irreducible correlator 

are found to be 

Equation (48) then determines the total CFs for the den- 
sity of the functional groups in the sol ( j  = 0) and gel ( j  = a): 

The field theory (47) describes bond percolation for 
large fluctuations ( x ( ~ )  - 1). This corresponds to the percola- 
tion in the model in Refs. 8 and 9, where a point interaction 
V(x - x') = VS(x - x') was considered only for structural 
units with two reacting functional groups. Unfortunately, 
the limitations of the percolation approximation were not 
determined there. However, an estimate for the fluctuations 
in the field p (x) shows that the percolation model will be 
valid if x(r0)4 1, where T, = 1 - p/p, and p; ' = fT/ 
[dP,(p)/dp] - 1. One can show by the renormalization 

group method that the percolation results (47) break down 
for large-amplitude fluctuations (however, this occurs at 
larger and larger amplitudes as x ( ~ , )  -+ 0). We note that the 
fluctuation region in the percolation regime is very small for 
x ( ~ , ) 4  1. Since x ( 1 ~ ( ) 4  1 almost up to the gel point itself, one 
can apply the perturbation theory developed in Secs. 5 and 6 
in the limiting case of an incompressible fluid: 

(we also set a =a = p). Expression (49) must be replaced by 
the scaling law 

in the strong fluctuation region (here 9.54 1, and y and Y are 
the critical indices of the percolation theory). 

CONCLUSIONS 

We will now discuss how to choose the order parameter 
for the sol-gel transition. For p <p, we have (pi  ) = ( p  ). 
The fluctuation correlator between different replicas 

<qi (x) vj (x') ), i+j (51) 

diverges for a symmetric phase for p +p, and s = s, = 1; 
however, the correlator ( pi (x) p, (x')) remains finite. The 
divergence of (5 1) at p = p, is responsible for the spontane- 
ous symmetry breaking (23), and the order parameter is the 
zero-component field 

Here ( A ,  )'I7 = ek1kpf(g) is nonzero only forp>p, . The fluc- 
tuations in the total density are suppressed atp =p, , and the 
thermodynamic variables are nonsingular. The sol-gel tran- 
sition is thus not a true phase transition. 

The phase diagram of the system was given schemati- 
cally in Ref. 6. Depending on the parameters characterizing 
the bulk interaction V, the line of phase equilibrium (binodal) 
for a transition of the first kind may be located either before 
(P <p, ) or after ( p >p, ) the gel point. However, if Vis repul- 
sive, the spinodalp =p, at which the system becomes ther- 
modynamically unstable lies beyond the gel point: p, >p,. 
The fluctuations in the total density increase near the spino- 
dal, and the correlator (5 1) with i = j = (i) becomes infinite. 

We may summarize our principal results as follows. 
1. A field theory has been developed for finding the cor- 

relation function for individual molecules in a polymer sys- 
tem. In addition to providing a detailed description of the sol 
molecules, the theory can also be used to calculate the corre- 
lation functions for the gel molecule for branched polymers 
( D 3 ) .  

2. The correlation functions of the gel and sol molecules 
were calculated for arbitrary bulk interactions Vby neglect- 
ing the density fluctuations. The region of strong critical 
fluctuations for the sol-gel transition was found to be very 
small for concentrated systems. We also developed a pertur- 
bation theory which is valid for concentrated systems and 
involves expansion in a parameter inversely proportional to 
the monomer concentration. 
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3. The percolation model was found to be valid for con- 
centrated systems everywhere except for a narrow region of 
large critical fluctuations. We have shown for the percola- 
tion transition that the infinite gel cluster and the finite sol 
molecules are described by different equivalent vacuum 
states of the theory. 

We note in closing that the replica technique can be 
used to generalize the description of linear molecular sys- 
tems proposed in Refs. 1-3 to systems with arbitrary bulk 
interactions. 

I am deeply grateful to S. I. Kuchanov and S. V. Koro- 
lev for assistance in this work, and to I. Ya. Erukhimovich 
and the participants at a seminar at Moscow State Universi- 
ty for a stimulating discussion of the above results. 
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