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A theory ofmagnetobending oscillations is developed for thin, free ferromagnetic rods and plates, 
and it is shown that transverse rigidity arises if a magnetic field H, is applied parallel to m, and 
normal to n, where m, is the magnetic moment and n is the unit normal to the surface of the rod or 
plate. This rigidity leads to a replacement of the bending dispersion law by a sound law at low 
frequencies. A novel mechanism is proposed for low-temperature magnetostriction in elastically 
one- and two-dimensional magnets which is based on damping of the bending wave amplitude by 
the external field. 

1. This paper is concerned with the dynamics of magne- 
toelastic interactions in ferromagnetic dielectrics whose 
elastic properties are highly anisotropic along one or two 
crystallographic directions. Such crystals may be regarded 
as quasi-one or quasi-two-dimensional systems with various 
distinctive properties. In particular, the dispersion law for 
the elastic oscillations is unusual and in the extreme case of 
noninteracting layers or chains reduces to the dispersion law 
for bending waves (cf., e.g., Ref. 1) in thin films, plates (mem- 
branes), and rods (chains). 

The natural oscillations in magnetically ordered mate- 
rials are mixed, or magneto el as ti^.^-^ However, the magne- 
toelastic coupling constants are generally quite small,5 so 
that the elastic and spin waves are appreciably mixed only 
near magnetoacoustic resonance, i.e., for Z,, (q) -63, (q), 
where Z,, (q) and Z,(q) are the energies of the interacting 
phonon and magnon, and q is the wave vector. We will see 
below that a radically different situation arises when spin 
waves interact with bending waves in thin films (rods) or 
quasi-2D (quasi-1D ) systems; in this case, in addition to the 
usual repulsion between the bending and spin-wave 
branches near magnetoacoustic the magnetic 
subsystem can appreciably alter the elastic properties even 
away from resonance. We will show that this interaction 
generates an effective transverse spin rigidity in free plates or 
rods and in quasi-2D and quasi-1D systems. 

We note that in most magnetoelastic calculations one 
assumes that the elastic and magnetoelastic energies depend 
on a symmetric small-deformation tensor l i .  Although trans- 
lational invariance is satisfied, this approach violates rota- 
tional invariance (i.e., the energy should be independent of 
rotations of the system as a whole); this was first pointed out 
for magnetically ordered materials by Vla~ov,~, '  and some- 
what later by Tierstons and Brown9 (cf. also Ref. 5). A rigor- 
ous theory (invariant under both rotations and translations) 
must directly allow for the fact that local deformations are 
accompanied by rotation as well as displacement. If the sys- 
tem has an order parameter (e.g., magnetization) that is "at- 
tached" to the local crystallographic axes and rotates with 
them, the noncentral (dipole-dipole, spin-orbit) forces in the 
material will generate an additional elastic energy which is 

described by an antisymmetric tensor for small rotations w .  
However, this fact has been neglected in the physics of mag- 
netoelastic interactions, because the complete theory has not 
been needed to accommodate the available experimental 
data. The first observation requiring the use of a rotationally 
invariant thermodynamic potential was the finding in Ref. 
10 that the velocities of transverse sound differ along and 
normal to the easy axis in MnF,. In what follows we will 
analyze another consequence of rotational invariance which 
is characteristic for bending waves propagating in low-di- 
mensional magnets. 

2. We will consider the simplest case of bending oscilla- 
tions in a thin ferromagnetic uniaxial plate (film) in a mag- 
netic field H, directed perpendicular to the normal n to the 
plate (n is parallel to they axis). We assume that the magnetic 
moment m, points along H,l/z and write the rotationally in- 
variant free-energy density of the plate as the sum 

where 

Here @, and @, are the energies of the magnetic and elastic 
subsystem; @,, is the magnetoelastic interaction energy; K 
is the anisotropy constant, H ,  = - 4m(Mn)  is the demag- 
netizing field, and the a, are the inhomogeneous exchange 
constants; cv and Bv are the elastic and magnetoelastic mod- 
uli. In order to satisfy the rotational invariance, we have 
written M for the magnetization in the intrinsic (local) coor- 
dinate system whose axes rotate together with the corre- 
sponding local region during the inhomogeneous deforma- 
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tions; for finite deformations we have also used the tensor E, 
which is known to be invariant under  rotation^.^^^,^ If we go 
from the intrinsic coordinate systems to the laboratory 
frame, the quantities in ( I )  transform as 

&I=~-'rn,  f?=f+~+i/2&2- ' /2  (zi&+^oli), 

e = ~ i + ~ / , ( ~ i - ; )  ( a+&) ,  ( 5 )  
where i is the identity operator, L and li are theAtensors for 
infinitesimal deformations and rotations, and R is the or- 
thogonal (length-preserving) operator for finite rotations, 
which we have expanded out to second order in the small 
tensors ii and 63. The above expression for the operator 2 in 
terms of ii and 2 is thus complete. After some straightfor- 
ward algebra, we can write the components of the free energy 
(1) in the form 

Here we have neglected terms quadratic in m,, my (m,, u V ,  
and wV and written 

for the anisotropy constant, where we include the deforma- 
tion 

( 0 )  - ( 0 )  - 1 ~33Bi3-ci3B33 Exx -Eu, - - - mo2, 
2 (2cll+c6;) c33-2~13 

1 (2c i i f  ~ ~ ~ ) B 3 ~ - 2 ~ ~ ~ B t 3  
E ( O ' =  -- 

li mo2 
2 ( 2 ~ l l f  ~ 6 6 )  ~33-2~13~ 

of the ground state. In principle, the quantities E I:' should 
depend on the external field, which can flip the moment m, 
or change the value of m: near the paramagnetic transition. 
These changes in E $' (or equivalently, in the lattice constant) 
correspond to the familiar magnetostriction in ferromag- 
nets, which is generally quite small. 

Expressions (7) and (8) show that the anisotropic inter- 
actions give rise to new terms in the components @, and @,, 
of the free energy. These terms are a consequence of rota- 
tional invariance and contain the antisymmetric tensor $, in 
contrast to the ordinary theory. 

The expressions 

o ~ ~ = ~ c ~ ~ u , , ~ ~ / ~ K ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ / ~ B ~ ~ ~ ~ ~  (u,,-cw,,), 
2 2  

( ~ y y = ~ i i ~ a +  (ciI+c66) u ~ ~ + c ~ ~ u ~ ~ ~  ( S ~ ~ = C ~ ~ U ~ ~ + C I ~  (uzx+uyy) 

0~,=2c,~u~,* ' /~  (Kef,+4n) m o 2 ~ v r ~ ' l ~ B l l m o 2  ( u y Z - t o y z ) ,  
ZY 

for the stress tensor components follow readily from (6)-(8); 
in this case 6 is no longer symmetric because of the presence 

of the tensor 2. The terms associated with the magnetoelas- 
tic interaction @,, (8) contribute little to B and have been 
neglected in the above expressions for the og. Since 0,. = 0 
for a free plate,' we get the expressions 

h a2q d l  wl=-y-- o or,=-- 
dx' 2 ax az  ' 

where ~ - Y ( X , Z )  is the displacement of points on a neutral 
(undeformed) surface, and 

After substituting (9) into (6)-(8) and averaging over the 
thickness h of the plate, we find a system of equations that 
describes the elastic oscillations of the plate, for which the 
Kittel boundary conditions (cf. Ref. 5) are identically satis- 
fied. For simplicity, we will state the equation for the bend- 
ing waves in an isotropic elastic plate only, for which 

1-0 0 
C I I + C ~ ~ = C ~ ~ = E  C , ~ = C ~ ~ = E  

(1+0) (1-20) ' (I+o) (1-20) ' 
1 

2c4,=c66=E - 
i t 0  ' 

where E is the Young's modulus and o is the Poisson coeffi- 
cient. The equation reads 

wherep is the density. The closed system also contains the 
Landau-Lifshitz equations, which after linearization yield 

m,=yH,Yffmo, m y = - y ~ ~ , , m a ,  m,=O, 

H.ff=O 
( y  is the gyromagnetic ratio). If we assume plane waves in 
(10) and (1 I), we get the dispersion equation 
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- 1-10% of the speed of sound in most materials and is thus for the magnetobending eigenoscillations, where 

Equation (12) describes the dispersion of magnetobending 
waves for arbitrary wave vectors; for frequencies 
Zp,(q) = ijs(q) it gives a condition for magnetoacoustic 
(here, magnetobending) resonance which differs from the 
usual condition.2s435 Apart from the different character of 
the dispersion and the polarization anisotropy of the elastic 
wave, (12) has the additional interesting consequence that 
the dispersion of the bending wave changes for frequencies 
ijph (q)gi3, (0) when H,#O. Indeed, (12) yields 

in the quasistatic approximation, which is valid for w(Z,(O). 
In other words, a transverse rigidity arises when the 

external field is parallel to the magnetic moment; as a conse- 
quence, the bending dispersion law is replaced by a sound 
law for low-frequency waves traveling at angles < n-/2 rela- 
tive to the field. A similar expression also holds for a ferro- 
magentic rod in a longitudinal magnetic field H,. Expression 
(13) can clearly also be derived for crystals consisting of lay- 
ers or chains if we include the standard corrections (cf. Ref. 
11 j. The results have a straightforward interpretation-if 
H, = 0, the bending oscillations induce oscillations of the 
magnetic moments of the ions, which because of the magne- 
toelastic coupling follow the instantaneous local direction of 
the axis of anisotropy. If H, # 0 the spins become aligned and 
hinder the oscillations, which is reflected in an additional 
transverse rigidity for the bending waves. If we assume that 
K,,m; -(lo6-lo8) erg/cm3 andp- 5 g/cm3, we get the esti- 
mate v z (1Q3-lo4) cm/s for the rigidity if H,>K,,m,. This is 

comparable to the coefficient of q2 in the original form of the 
dispersion law (neglecting rotational invariance) for elastic 
waves in layered or chain-like materials. 

3. The dispersion law (1 3) indicates that a fundamental- 
ly new mechanism of magnetostriction in elastically one- 
and two-dimensional magnets may occur. Indeed, because 
these materials have a negative thermal expansion coeffi- 
cient," the bending waves can cause contraction in the plane 
of the layers (or along the chains). Because the external mag- 
netic field favors a linear (sound) dispersion, it damps the 
oscillations and the original dimensions are restored. We 
note that this magnetostriction mechanism should become 
more important as the bending waves increased in amplitude 
(i.e., it should be enhanced with heating); moreover, the mag- 
netostriction itself may be comparatively large, because the 
field-induced expansion is independent of changes in the in- 
teratomic distance. This phenomenon should be observable 
in magnets with a layered or chain-like structure that favors 
the propagation of bending waves (e.g., chalcogenides of the 
palladium group or organic chain magnets). Neutron-dif- 
fraction studies of the dispersion curves for such systems in 
magnetic fields would also be of interest. 
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